第三章--《代数式》知识点及测试题
人教版七年级数学上册《第三章代数式》单元测试卷及答案

人教版七年级数学上册《第三章代数式》单元测试卷及答案【主干体系建】思维导图扫描考点【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是( )A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= ( )A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是( )A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 ( )A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= ( )A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 ( )A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.参考答案【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是(C)A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为-6.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花(4a+10b)元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= (A)A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是(C)A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 (B)A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= (C)A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 21 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 (C)A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.【解析】(1)由题图可得,新房的面积为(a2+2a+4b)m2. (2)当a=5,b=6时a2+2a+4b=52+2×5+4×6=25+10+24=59(m2)所以这套新房铺地板砖所需的总费用为59×90=5 310(元).。
七年级上册数学第三章《代数式》单元测试(含答案)

七上第三章《代数式》单元测试班级:___________姓名:___________得分:___________ 一、选择题1.有下列各式:x−y3,−15a2b2,1y,1π,√x.其中单项式有()A. 1个B. 2个C. 3个D. 4个2.已知a,b为自然数,则多项式12x a−y b+2a+b的次数应当是()A. aB. bC. a+bD. a,b中较大的数3.某校七年级1班有学生a人,其中女生人数比男生人数的45多−(−2)人,则女生的人数为().A. 4a+159B. 4a−159C. 5a−159D. 5a+1594.若代数式x2+ax+9y−(bx2−x+9y+3)的值恒为定值,则−a+b的值为()A. 0B. −1C. −2D. 25.已知代数式x+2y+1的值是3,则代数式−2x−4y+2的值是()A. −2B. −4C. −6D. 不能确定6.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如多项式f(x)=ax3+bx+1,当x=1时,f(1)=6,那么f(−1)等于()A. 0B. −3C. −4D. −57.若(a+b)2017=−1,a−b=1,则a2017+b2017的值是()A. −1B. 0C. 1D. 28.边长为a的正方形,将边长减少b以后得到一个较小的正方形,所得较小正方形的面积比原来正方形的面积减少了().A. b2B. –b2+2abC. 2abD. a2–b29.有这样一道题,“当x=1213,y=−0.78时,求多项式7x3−6x3y+3x2y+3x3+6x3y−3x2y−10x3的值”.同学甲计算时用x=−1213,y=0.78代入,同学乙计算时用x=1213,y=0.78代入,结果两人的计算结果都正确,则原因是()A. 这个代数式的值只跟x,y的绝对值大小有关与符号无关B. 代数式化简结果只含有x,y的偶次项的原因C. 代数式化简结果x,y中其中一项系数为零,还有一项刚好与符号无关D. 代数式化简结果为零,与x,y的大小均无关系10.如图,若|a+1|=|b+1|,|1−c|=|1−d|,则a+b+c+d的值为()A. 0B. 2C. −2D. −1二、填空题11.一艘轮船沿江逆流航行的速度是28km/ℎ,江水的流速是2km/ℎ,则该轮船沿江顺流航行的速度是________.12.已知a2−2b−1=0,则多项式4b−2a2+5的值等于 ___ .13.一组按照规律排列的式子:x,x34,x59,x716,x925,⋯,其中第8个式子是_________.14.一个多项式与m2+m−2的和是m2−2m.这个多项式是______.15.一个两位数的个位数字为a,十位数字为b,这个两位数可表示为__.16.如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为________。
初一数学第三章《代数式》知识点及测试题

代数式知识点总结1、代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2、_________和________统称为整式。
①单项式:由或的相乘组成的代数式称为单项式。
单独一个数或一个字母也是单项式,如,5 a。
·单项式的系数:单式项中的叫做单项式的系数。
·单项式的次数:单项式中叫做单项式的次数。
·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。
例:232a b-的系数是________,次数是_______。
②多项式:几个的和叫做多项式。
其中,每个单项式叫做多项式的,不含字母的项叫做。
·多项式的次数:多项式里的次数,叫做多项式的次数。
·多项式的幂:一个多项式含有几项,就叫几项式。
所以我们就根据多项式的项数和次数来命名一个多项式。
如:42321n n-+是一个四次三项式。
·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析例:245643a a-++是_______次________项式。
3、同类项:____________________________________ ,叫做同类项.要会判断给出的项是否同类项,知道同类项可以合并.即xbabxax)(+=+,其中的x可以代表单项式中的字母部分,代表其他式子。
判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。
在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为______;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
代数式单元测试卷(含答案)

代数式单元测试卷(含答案)第三章代数式综合测试卷一、选择题1.2014年我国启动“家电下乡”工程,国家对购买家电补贴13%。
若某种品牌彩电每台售价a元,则购买时国家需要补贴( B )。
A。
XXXB。
13%a元C。
(1-13%)a元D。
(1+13%)a元2.代数式2(y-2)的正确含义是 ( C )。
A。
2乘y减2B。
2与y的积减去2C。
y与2的差的2倍D。
y的2倍减去23.下列代数式中,单项式共有 ( D )。
312322,x+y,x+y,-1,abcx2A。
2个B。
3个C。
4个D。
5个4.下列各组代数式中,是同类项的是 ( A )。
1121A。
5xy与xyB。
-5xy与XXXC。
5ax与XXXD。
8与x5.下列式子合并同类项正确的是 ( C )。
22A。
3x+5y=8xyB。
3y-y=3C。
15ab-15ba=0D。
7x-6x=x6.同时含有字母a、b、c且系数为1的五次单项式有( C )。
A。
1个B。
3个C。
6个D。
9个7.右图中表示阴影部分面积的代数式是 ( B )。
A。
ab+bcB。
c(b-d)+d(a-c)C。
ad+c(b-d)D。
ab-cd8.圆柱底面半径为3 cm,高为2 cm,则它的体积为( B )。
2222A。
97πcmB。
18πcmC。
3πcmD。
18πcm9.下面选项中符合代数式书写要求的是 ( D )。
a2b12A。
2cbaB。
ay·3C。
D。
a×b+c4310.下列去括号错误的共有 ( B )。
①a+(b+c)=ab+c②a-(b+c-d)=a-b-c+d③a+2(b-c)=a+2b-c④a-[-(-a+b)]=a-a-bA。
1个B。
2个C。
3个D。
4个11.a、b互为倒数,x、y互为相反数,且y≠,则(a+b)(x+y)-ab-ax的值是 ( A )。
A。
B。
1C。
-1D。
不确定12.随着计算机技术的迅速发展,电脑价格不断降低。
某品牌电脑按原价降低m元后,又降价20%,现售价为n元,那么该电脑的原价为 ( D )。
苏科版 七年级上册 第三章《代数式》(基础题)单元测试(有答案及解析)

七上第三章《代数式》(基础题)单元测试班级:___________姓名:___________得分:___________一、选择题1.下列说法中正确的是()xy2是单项式 B. xy2没有系数A. −13C. x−1是单项式D. 0不是单项式2.单项式2a x b3与−a2b y是同类项,则x y等于()A. −8B. 8C. −9D. 93.下列运算正确的是A. 5a2−3a2=2B. 2x2+3x=5x3C. 3a+2b=5abD. 6ab−7ab=−ab4.下列各组整式中,不属于同类项的是()yxA. 2a2b与3ba2B. 3xy与−12D. 2a2b与−0.0001b2aC. −3.2与5165.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A. 100a+50bB. 100a−50bC. 50a+100bD. 50a+100b6.下列等式成立的是()A. −(3m−1)=−3m−1B. 3x−(2x−1)=3x−2x+1C. 5(a−b)=5a−bD. 7−(x+4y)=7−x+4y7.若2a−b=3,则4a−2b+2的值为()A. 8B. 11C. −5D. −28.下列式子去括号正确的是()A. −(2a+3b−5c)=−2a−3b+5cB. 5a+2(3b−3)=5a+6b−3C. 3a−(b−5)=3a−b−5D. −3(3x−y+1)=−9x+3y−19.表示“a与b的两数平方的和”的代数式是()A. a2+b2B. a+b2C. a2+bD. (a+b)2(a+b)210.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=−1时,多项式f(x)=x2+2x−3的值记为f(−1),那么f(−1)等于()A. 0B. −4C. −6D. 6二、填空题11.单项式−a2b8的系数是________,次数是__________.12.若单项式−x6y与x3n y是同类项,则n的值是.13.买一个篮球需要m元,买一个排球需要n元,则买4个篮球和5个排球共需要______元.14.用代数式表示“x的2倍与y的差”为______.15.若2a m b2m与a2n−3b8的和仍是一个单项式,则m+n=______________.16.按照下图所示的操作步骤,若输入x的值为−3,则输出y的值为________________.17.若m2−2m=1,则2019+2m2−4m的值是________.18.为鼓励节约用电,某地对居民用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度电价按b元收费,某户居民在一个月内用电160度,该户居民这个月应缴纳电费是_______元(用含a、b 的代数式表示).19.当k=______时,多项式x2+(k−1)xy−3y2−6xy−5中不含xy项.三、解答题20.先化简,再求值:6(x2y−13xy2)−2(x2y−xy2)−3x2y,其中x=−12,y=2.21.如图,大圆的半径为R,小圆的半径为r.(1)用关于R和r的代数式表示图中阴影部分的面积.(2)当R=10cm,r=5cm时,求阴影部分的面积(结果保留π).22.若(m−4)x4−x n+x−6是关于x的二次三项式,求m+n的值.23.小红准备完成题目:化简(δx2+6x+8)−(6x+5x2+2),发现系数δ印刷不清楚.(1)她把δ猜成3,请你化简(3x2+6x+8)−(6x+5x2+2);(2)她妈妈说:“你猜错了,我看到该题的标准答案的结果是常数.”通过计算说明原题中的δ是几⋅24.用火柴棒按下图的方式搭三角形.⋅⋅⋅⋯,照这样搭下去.(1)搭5个这样的三角形要用多少根火柴棒?搭n个这样的三角形需要多少根火柴棒.(用含有n的代数式表示)(2)现有2009根火柴棒,能搭几个这样的三角形?用2018根火柴棒搭这样的三角形,要正好用完这些火柴棒,请问能搭成吗?答案和解析1.Axy2是单项式,根据定义,只有数与字母的积,正确;解:A、−13B、xy2的系数不是3,因为数字因数是1,故系数是1,错误;C、x−1不是项式,因为有减法运算,错误;D、0是单独一个数字也是单项式,错误.2.B解:根据题意得:x=2,y=3,则x y=8.3.D解:A.5a2−3a2=2a2;则A错误;B.2x2+3x2=5x2;则B错误; C.3a与2b不是同类项,不能合并,故C错误;D.6ab−7ba=−ab;故D正确.4.D解:同类项是指相同字母的指数要相等.A.2a2b与3ba2中,同类项与字母顺序无关,故A是同类项;yx中,同类项与字母顺序无关,故B是同类项;B.3xy与−12C.−3.2和5常数都是同类项,故C是同类项;16D.2a2b与−0.0001b2a中,相同字母的指数不相等,故D不是同类项.5.A解:依题意,需付(100a+50b)元.6.D。
冀教版七年级上册第三章《代数式》单元测试卷内含知识点解析及答案(含分值)

第三章《代数式》单元测试卷第Ⅰ卷选择题一、选择题(本大题共16 个小题,1~6 小题,每小题2 分;7~16 小题,每小题3 分,共42 分)1.在下列表述中,不能表示代数式“4a”的意义的是【】A.4 的a倍B.a的4倍C.4 个a相加D.4 个a相乘2.下列各式中:-x+1,π+3,9>2,x yx y-+,S=πR2,代数式有【】A.5 个B.4 个C.3 个D.2 个3.下列式子中,符合代数式的书写格式的是【】A.22x yB.423abC.(a+b)÷5D.mn×24.对于代数式2()a b-,下列叙述正确的是【】A.a与b 的差的绝对值B.a与b 的平方差的绝对值C.a与b 的差的绝对值的平方D.a与b 的差的平方的绝对值5.有一个两位数,十位数字是x,个位数字是1,如果把它们的位置颠倒一下,则得到新的两位数是【】A.x+1 B.10x+1C.x+10D.10x+106.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以按销售价的70%出售,那么每台电视机实际售价为【】A.(1+25%)(1+70%)a元B.70%(1+25%)a元C.(1+25%)(1-70%)a元D.(1+25%+70%)a元7.已知x=1,y=2,则62x yy-的值为【】A.1B.2C.32D.238.当a=13,b=9 时,下列代数式的值是24 的是【】A.(3a+2)(b -1)B.(2a+1)(b +10)C.(2a+3)(b -1)D.(a+2)(b+1)9.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP的4%,若设2013 年GDP 的总值为n 亿元,则2013 年教育经费投入可表示为【】A.4%n 亿元B.(1+4%n)亿元C.(1-4%)n 亿元D.(4%+n)亿元10.如图所示,这个图形的面积是【】A. 112xyB. 132xyC.6xyD.3xy11.有一大捆粗细均匀的钢筋,现要确定其长度,先称出这捆钢筋的总质量为m kg,再从中截取5 m长的钢筋,称出它的质量为n kg,那么这捆钢筋的总长度为【】A.mnm B.5mnmC. 5mnm D.(5mn-5)m12.找规律:①8+0.3;②16+0.6;③24+0.9,…,则第8 个式子为【】A.24+1.2B.32+1.6C.32+1.2D.64+2.413.在下列2×2的方格中(如图所示)找出规律,你认为x应为【】A.10B.-2C.2D.214.当x=3 时,代数式ax4+x2的值为2 013,则当x=-3 时,代数式ax4+x2+1的值为【】A.2 013B.-2 013C.2 014D.2 01215.用如图所示的程序计算代数式的值,若输入n的值为5,则输出y的结果为【】A.16B.2.5C.18.5D.13.516.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-11a-+,a3=-22a-+,a 4=- 33a-+,…,依次类推,则a2 014的值是【】A.-1 006B.-1 007C.-1 008D.-2 014第Ⅱ卷选择题二、填空题(本大题共4 个小题,每小题3 分,共12 分)17.王红步行t h 所走的路程是s km,如果她骑自行车的速度是步行速度的5 倍,那么她骑自行车的速度是km/h.18.长方形的长为a cm,宽为b cm,四角各割去一个相同的边长为x cm的小正方形,折起来做成一个无盖的长方体,这个长方体的长是 cm,宽是cm,高是 cm.19.“青山常在,碧水长流”,经研究发现1 hm2有林地比1 hm2无林地可多蓄水300 t,等于一座地下水库.如果1 hm2无林地蓄水a t,那么1 hm2有林地蓄水可达 t.20.下列图案是由边长相等的小正方形按一定的规律拼接而成.依此规律,第5个图案中小正方形的个数为.第1个第2个第3个三、解答题(本大题共6 个小题,共66 分)21.(9 分)用代数式表示:(1)比x 的3 倍大6 的数;(2)比x 小6 的数的三分之一;(3)a,b 两数的和与a,b 两数的差的积.22.(10 分)3月5 日某校组织305 位同学参加“学雷锋”活动,在活动中有25的同学每人做好事a件,其余同学每人做好事(a+1)件. (1)你能用代数式表示他们共做好事的件数吗?(2)如果a=5,那么他们共做好事多少件?(3)如果a=8,那么他们共做好事又是多少件?23.(10 分)已知a=5,b=-2,那么代数式a3-b3与代数式(a-b)(a2 +ab+b2)的值分别是多少?它们的值相等吗?24.(11 分)(1)在下列两个条件下,分别求代数式a2-2ab+b2和(a-b)2的值.①a=5,b=3;②a=12,b=13.(2)观察这两个代数式,你发现了什么?(3)利用你的发现,求125.52-2×125.5×25.5+25.52的值.25.(12分)如图所示,有一块长方形的土地,长为20 m,宽为15 m,在四周留出宽度都是x m 的小路,中间余下的长方形部分(阴影部分)作为菜地.(1)用含x 的代数式表示菜地的长a和宽b;(2)用含x 的代数式表示菜地的面积S;(3)当x 的值分别取0.5 m、1 m、2 m时,菜地的面积S 分别是多少平方米?26.(14分)整体思想与转化思想是初中数学学习中的两大重要思想,试使用这两种思想求当a ba b+-=-4 时,下列代数式的值.(1)2288a ba b+-;(2)3()4()a b a ba b a b+---+.答案第三章《代数式》单元测试卷一、1.D 提示:4 个a相乘可表示为a·a·a·a或a4.2.C 提示:代数式有-x+1,π+3,x yx y-+共3 个.3.A 提示:B 应写为143ab;C 应写为5a b+;D 应写为2mn.4.D 提示:该式子是先求差,再求平方,再求绝对值.5.C 提示:由题意可得,新两位数的十位数字是1,个位数字是x,所以这个两位数是10+x,故选C.6.B 提示:根据题意可得,每台电视机的实际售价为70%(1+25%)a元.7.A 提示:62612212x yy-⨯-⨯==.8.A 提示:将a=13,b=9 依次代入各选项中即可.9.A 提示:n 亿元的4%表示为4%n 亿元.10.A 提示:阴影部分面积=2y (3x-0.5x )+0.5xy=112xy. 11.C 提示:由题意可得,每米钢筋的质量为5nkg ,所以这捆钢筋的总长度为m ÷5n = 5m nm. 12.D 提示:第n 个式子为8n+0.3n. 13.B 提示:x=3+7-12=-2.14.C 提示:原式=2 013+1=2 014.15.A 提示:因为5 是奇数,按y=3n+1 计算,得y=3×5+1=16.16.B 提示:计算可得a 1=0,a 2=-1,a 3=-1,a 4=-2,a 5=-2,a 6=-3,a 7=-3,…,除a 1 外,每两个数的值相等.又因为(2 014-1)÷2=1 006……1,所以a 2 014=-1 006-1=-1 007. 二、17. 5s t 提示:王红步行的速度为s t .18.(a-2x );(b-2x );x 提示:画出草图即可快速得到.19.(a+300) 提示:根据题意可得,1 hm 2有林地蓄水可达(300+a )t. 20.41 提示:第n 个图案中小正方形的个数为2n (n-1)+1. 三、 21.解:(1)3x+6.(2)13(x-6).(3)(a+b )(a-b ).22.解:(1)他们共做好事:25×305a+35×305(a+1)=[122a+183(a+1)](件).(2)当a=5 时,[122a+183(a+1)]=[122×5+183×(5+1)]=1 708(件),即他们共做好事1 708 件. (3)当a=8 时,[122a+183(a+1)]=[122×8+183×(8+1)]=2 623(件),即他们共做好事2 623 件.23.解:当a=5,b=-2 时,a 3-b 3=133,(a-b )(a 2 +ab+b 2)=133,它们的值相等.24.解:(1)①当a=5,b=3 时,两式的值都为4;②当a=12,b=13时,两式的值都为136.(2)发现了:a 2-2ab+b 2=(a-b )2.(3)125.52-2×125.5×25.5+25.52=(125.5-25.5)2=10 000. 25.解:(1)长:(20-2x )m ,宽:(15-2x )m ; (2)S=(20-2x )(15-2x ); (3)当x=0.5 m 时,S=266(m 2),当x=1 m 时,S=234(m 2),当x=2 m 时,S=176(m 2).26.解:(1)原式=14×a ba b+-=14×(-4)=-1.(2)原式=3×(-4)-14×(-4)=-111516.。
人教版七年级数学上册《第三章代数式》单元测试卷-附答案

人教版七年级数学上册《第三章代数式》单元测试卷-附答案一、单选题1.下列各式中,符合代数式书写规则的是( )A .5x ⨯B .112xy C .2.5t D .1x y -÷2.当2m =-,5n =时,代数式()3m n -+的值是( )A .6B .6-C .9D .9-3.代数式()55y -的正确含义是( )A .5乘y 减5B .y 的5倍减去5C .y 与5的差的5倍D .5与y 的积减去54.小明家距离学校m p ,小明从家出发骑车h t 可到学校,若要提前1h 到校(1t >),则每小时需行驶( )A .1m p t ⎛⎫+ ⎪⎝⎭B .1m pt ⎛⎫- ⎪⎝⎭ C .m 1pt - D .m 1pt +5.已知5x =,2y =且x y x y +=--,则x y -的值为( )A .3±B .3±或7±C .3-或7D .3-或7-6.当2x =时,代数式31px qx ++的值为2024,则当2x =-时,代数式31px qx ++的值为( ) A .2022 B .2022- C .2021 D .2021-7.按如图所示的运算程序,能使运算输出的结果为1的是( )A .3x = 4y =B .=1x - 1y =-C .2x = 1y =-D .2x =- 3y =8.已知x ,y ()22310x y --=,则下列式子的值最大的是( ).A .x y +B .x y -C .xyD .y x9.如图所示的正方形是由四个等腰直角三角形拼成的,则阴影部分的面积为( )A .22m n +B .22m n -C .2mnD .4mn10.已知四个不同的整数a b c d 、、、满足等式()()()()2015122479a b c d ----=,则+++a b c d 的值为( )A .0B .2015C .2058D .2067二、填空题11.小明买单价p 元的商品3件,给卖家q 元,应找回 元.12.设a b 、互为相反数,、c d 互为倒数,则()2024a b cd +-值是 .13.学校买来20个足球,每个a 元,又买来b 个篮球,每个58元.2058a b +表示 ;当45a = 10b = 则2058a b += 元.14.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的 .三、解答题15.线段AB 上有一点C ,AC 的长度是BC 的3倍少2,若BC 的长度用x 表示,则表示出AB 的长度.16.已知有理数a ,b ,c ,d ,e 其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c d ab e +++的值.17.若||2a =,b 既不是正数也不是负数,c 是最大的负整数.(1)分别求出a 、b 、c 的值;(2)求2022a b c +-的值.18.如图,是由长方形、正方形、三角形及圆组成的图形(长度单位:m ).(1)用式子表示图中阴影部分的面积:(2)按照图所示的尺寸设计并画出一个新的图形,使其面积等于参考答案1.C2.D3.C4.C5.D6.B7.D8.A9.C10.C11.()3q p -12.1-13. 买20个足球和b 个篮球一共的价钱 1480 14.a a b +/a b a + 15.42x -16.162或152- 17.(1)2a =± 0b = 1c =-;(2)3或1 18.(1)(2)。
新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为 岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式知识点总结
1、代数式的有关概念.
(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.
(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值. 求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
(3)代数式的分类
2、_________和________统称为整式。
①单项式:由 或 的相乘组成的代数式称为单项式。
单独一个数或一个
字母也是单项式,如,5a 。
·单项式的系数:单式项中的 叫做单项式的系数。
·单项式的次数:单项式中 叫做单项式的次数。
·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。
例: 232
a b -的系数是________,次数是_______。
②多项式:几个 的和叫做多项式。
其中,每个单项式叫做多项式的 ,不含字母的项叫做 。
·多项式的次数:多项式里 的次数,叫做多项式的次数。
·多项式的幂:一个多项式含有几项,就叫几项式。
所以我们就根据多项式的项数和次数来命名一个多项式。
如:42321n n -+是一个四次三项式。
·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析
例:245643a a -++是_______次________项式。
3、同类项:____________________________________ ,叫做同类项.
要会判断给出的项是否同类项,知道同类项可以合并.即x b a bx
ax )(+=+,其
中的x可以代表单项式中的字母部分,代表其他式子。
判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。
在掌握合并同类项时注意:
①如果两个同类项的系数互为相反数,合并同类项后,结果为______;
②不要漏掉不能合并的项;
③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
4、整式的运算
整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:
(1)如果遇到括号.按去括号法则先去括号:括号前是____号,把括号和它前面的____号去掉。
括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都_______.
(2)合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.
代数式单元测试卷
一、选择题(共8小题,每小题3分,满分24分)
1、a+1的相反数是( )
A 、﹣a+1
B 、﹣(a+1)
C 、a ﹣1
D 、
2、代数式2(y ﹣2)的正确含义是( )
A 、2乘以y 减2
B 、2与y 的积减去2
C 、y 与2的差的2倍
D 、y 的2倍减去2 3、下列各式中,符合代数式书写规范的是( )
A 、a ÷2
B 、8×a
C 、6a
D 、2 a
4、某班级中一个小组5人,在一次测试中,小华得了72分,其余4人的平均分为a 分,则这个小组的平均分数是( )
A 、
B 、a+72
C 、
D 、
5.用6米长的铝合金做成一个长方形的窗框,设长方形窗框的横条长度为x 米,则长方形窗框的面积为( )
(A ))6(x x -平方米 (B ))36(x x -平方米
(C ))233(x x -平方米 (D ))2
36(x x -平方米 6、已知|x|=3,|y|=2,且xy <0,则x+y 的值等于( )
A 、5
B 、1
C 、±5
D 、±1 7、下列各对单项式中,是同类项的是( )
A 、3a 2b 与3ab 2
B 、3a 2b 与9ab
C 、2a 2b 2与4ab
D 、﹣ab 2与b 2a
x
8、下列说法中,正确的是( )
A 、单项式﹣的系数是﹣
B 、单项式n 的系数和次数都是1
C 、多项式6x 2﹣3x+5由6x 2,3x ,5三项组成
D 、代数式与都是单项式
二、填空题(每小题3分,共30分)
9.温度由5℃下降了t ℃后是 ℃.
10.买10支铅笔共用a 元钱,则铅笔的单价是_____________元.
11.单项式213
r h -的系数是 ,次数是 . 12.多项式21245
a a --+的最高次项是 ,一次项系数是 . 13.若a = -2,
b =1, 则2
b a += ,))((b a b a -+ = .
14.当代数式b a +的值为-3时,代数式122++b a 的值是 .
15.若21-3b a m 与223+-n b a 能合并,则m = , n = . 16.代数式22()1a b -+的最小值是____________.
17.已知a 2-ab =15,ab -b 2= -10,则代数式a 2-b 2= .
18.用火柴棒按下图的方式搭三角形:
(1) (2) (3) (4)
照这样搭下去,(1)搭5个这样的三角形要用 根火柴棒,(2)搭n 个这样的三角形要用 根火柴棒.(用含有n 的代数式表示)
三、解答题(共5小题,满分66分)
……
19、去括号并合并同类项(每题4分,共16分)
①-(2-2)a a ; ②-(5+)-3(2-3)x y x y ; ③2+(+)-2(+)a a b a b ; ④1-(3-)+[-2(2+3)xy x x yz
20、化简(每题4分,共8分)
(1)5x ﹣(3x ﹣2y ); (2)7x ﹣[﹣2x ﹣(8x ﹣1)].
21、化简求值(每题5分,共20分)
3223(4-+5)+(5--4),-2x x x x x 其中
221123(--)-(-+1),,332234
xy y x xy x y 其中
a ﹣[4
b ﹣
c ﹣(a ﹣c )]+[6a ﹣(b ﹣c )],其中a=0.1,b=0.2,c=0.3;
已知A=2x﹣3y+1,B=3x+2y,求2A﹣B;
22、(10分)我市某网络公司电话拨号上网有两种方式,用户可以任选其一:①计时制:
0.04元/分;②
(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;
(2)若该用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?
23、(12分)某商贩一天出售了甲、乙两件商品,其中甲商品盈利10%,乙商品亏本10%. (1)若甲、乙两件商品的售价都是99元,请分析这个商贩这一天的盈亏情况;
(2)若甲、乙两件商品的售价都是a元,请分析这个商贩这一天的盈亏情况.
答案
一、选择题:
B.C.C.A..C.D.D.B.
二、填空题:
602.16002.060+=+⨯x x x
x 6.3)02.004.0(60=+11、5-t 12、10a 13、31-,3 14、22a -,5
1- 15、1-,3 16、-5 17、2,1 18、1 19、5 20、11,2n +1
三、解答题(共4小题,满分41分)
18、7a ﹣5b+c
当a=0.1,b=0.2,c=0.3时,
原式=7×﹣5×0.2+0.3=0;
(2)x ﹣8y+2;
19、化简:
(1)5x ﹣(3x ﹣2y );
(2)7x ﹣[﹣2x ﹣(8x ﹣1)].
解答:解:(1)2x+2y ;
(2)17x ﹣1.
解答:解:设原来的两位数是10a+b ,则调换位置后的新数是10b+a . ∴(10b+a )﹣(10a+b )=9b ﹣9a=9(b ﹣a ).
∴这个数一定能被9整除.
23、(1)方式一费用: (3分)
方式二费用: (3分)
(2)当20=x 时,方式一费用=72206.3=⨯
方式二费用=8460202.1=+⨯ (1分)
所以应该选择方式一较为合算. (1分)
25、(1)甲商品原价为
%10199+,乙商品原价为%10199- 实际盈亏情况:
%10199++%10199--2×99=2 答:这一天实际盈利2元 (2)甲商品原价为%101+a ,乙商品原价为%
101-a (3) 实际盈亏情况:
%101+a +%101-a -2a =a a a 992299200=-
2元
答:这一天实际盈利a
99。