如何求非齐次线性方程组A =b的通解
非齐次方程的通解

定理 3 设非齐次方程(2)的右端 f ( x)是几个函
数之和, 如 y p y q y f 1 ( x ) f 2 ( x )
而
y* 1
与
y* 2
分别是方程,
y p y q y f 1 ( x )
y p y q y f 2 ( x )
的特解,
那么
y* 1
y
* 2
就是原方程的特解.
要
注 意
设原方程的特解为 y* (a cos x bsin x) x,
将 y*, ( y* ) 代入原方程得
2bcos x 2a sin x cos x
2b 1
2a 0
a0 b 1
2
原方程的一个特解为 y* x sin x
2
故os x C2 sin x 2 sin x
对应的齐次方程的通解为 Y C1e4x C2e2x .
设原方程的特解为 y* k ,
代入原方程得:0-0-8 k =24
k=- 3
原方程的一个特解为 y* 3
故原方程的通解为 y C1e4x C2e2x 3.
例2.求通解 y 2 y 8 y x
解:特征方程 r2 2r 8 0, 特征根 r1 4, r2 2,
(6a x 2b)e x 12 x e x
6a 12
2b 0
a2
b0
原方程的一个特解为 y* 2 x 3 e x,
故原方程的通解为 y (C1 C2 x) e x 2 x 3e x 例6.求 y y cos x
解: 特征方程 r2 1 0,
特征根 r i,
对应的齐次方程的通解为 Y C1 cos x C2 sin x.
1 8
非齐次方程的通解

* 1 * 2
解的叠加原理
例7
解
1 求解方程 y 4 y ( x cos 2 x ). 2 特征方程 r 2 4 0,
特征根 r1, 2 2i ,
对应的齐方的通解为 Y C1 cos 2 x C2 sin 2 x .
* * 设原方程的特解为 y* y1 y2 . * * * (1) 设 y1 ax b, 则 ( y1 ) a , ( y1 ) 0,
1 1 代入 y 4 y x,得 4ax 4b x, 2 2
1 4ax 4b x, 2 1 4a , 2 由 解得 4b 0,
* 2
故原方程的通解为
1 1 y C1 cos 2 x C 2 sin 2 x x x sin 2 x . 8 8
作业:P406
6(1,4,5)
8
1 y x; 8 b 0,
* 1
1 a , 8
* (2) 设 y2 x(c cos 2 x d sin 2 x ),
则 ( y ) (c 2dx) cos 2 x (d 2cx ) sin 2 x,
* 2
* ( y2 ) (4d 4cx ) cos 2 x (4c 4dx) sin 2 x,
y py qy 0 y py qy f ( x )
(1) (2)
定理1:非齐次的两个特解之差是齐次方程的解 定理2:
非齐次通解=齐次通解+非齐次特解
2、非齐次方程特解的求法——试解函数检验法 根据非齐次项,假设其解函数,检验后,求出 待定系数,得其特解。
f( x )
设非齐次方程(2)的右端 f ( x ) 是几个函 数之和, 如 y p y q y f 1 ( x ) f 2 ( x ) 定理 3
4-3.非齐次线性方程组PPT

1 1 2 1 1 0 0 2 4 0 0 3 t 5 1 2 3
(k1 , k2 R)
练习 k为何值时,线性方程组
x1 x2 x3 x4 x5 1 3 x1 2 x2 x3 x4 3 x5 0 x2 2 x3 2 x4 6 x5 k
有解,并在有解时求通解.
解
1 A 3 0 1 r2 3r1 0 0
唯一解 x1 d1 , x2 d 2 , xn d n
x1 c1r 1 xr 1 c1n xn d1 x c x c x d 2 2 r 1 r 1 2n n 2 xr crr 1 xr 1 crn xn d r 其中 xr 1 ,, xn 为自由变量,故方程组有依赖于
4-2=2个独立参量的无穷多解
1 1 0 1 1 2 0 0 1 2 1 2 . 0 0 0 0 0
所以方程组的通解为
同解方程组为 x1 x2 x4 1 2 x2 x2 2 x4 1 2 x3 x4 x4
思考题解答
解
2 3 1 1 1 6 1 3 1 3 B 3 1 p 15 3 1 5 10 12 t
2 3 1 1 1 4 2 2 0 2 ~ 0 4 p6 6 0 0 6 12 9 t 1
n-r 个独立参量的无穷多解.
例1 设有线性方程组
(1 ) x1 x2 x3 0, x1 (1 ) x2 x3 3, x x (1 ) x . 3 1 2
问 取何值时,此方程组 (1)无解; (2)有唯一解; (3)有无穷多解.
齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法)一、齐次线性方程组的解法【定义】r (A )=r <n ,若AX =0(A 为m n ⨯矩阵)的一组解为,,,n r -12ξξξ,且满足:(1),,,n r -12ξξξ线性无关;(2)AX =0的)任一解都可由这组解线性表示. 则称ξ称齐次线性方程组的关键问题就是求通解,而求通解的关键问题是求基础解系(1)(2)(注:1于n -2程组 (1)(2(3)当m n =且()r A n =时,若系数矩阵的行列式0A ≠,则齐次线性方程组只有零解; (4)当m n >时,若()r A n ≤,则存在齐次线性方程组的同解方程组;若()r A n >,则齐次线性方程组无解。
1、求AX =0(A 为m n ⨯矩阵)通解的三步骤(1)−−→A C 行(行最简形);写出同解方程组CX =0.(2)求出CX =0的基础解系,,,n r -12ξξξ;(3)写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…,k n-r 为任意常数.【例题1】解线性方程组12341234123412342350,320,4360,2470.x x x x x x x x x x x x x x x x +-+=⎧⎪++-=⎪⎨+-+=⎪⎪-+-=⎩解法一:将系数矩阵A 化为阶梯形矩阵式:注:解:可得r 12x x =⎧⎨=⎩令3x 令3x 令30x =,40x =,51x =,得125,6x x ==-, 于是得到原方程组的一个基础解系为112100ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,212010ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,356001ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦.所以,原方程组的通解为112233X k k k ξξξ=++(1k ,2k ,3k R ∈).二、非齐次线性方程组的解法 求AX =b 的解(,()m n r r ⨯=A A )用初等行变换求解,不妨设前r 列线性无关1112111222221()0rn r n rrrn r r c c c c d c c c d c c d d +⎡⎤⎢⎥⎢⎥⎢⎥−−→⎢⎥⎢⎥⎢⎥⎢⎥A b 行其中0(1,2,,),ii c i r ≠=所以知(1)r d +(2)r d (3)r d +,,n r k -为任意常数。
如何求非齐次线性方程组Axb的通解

如何求非齐次线性方程组Axb的通解
如何求非齐次线性方程组A x=b的通解
解答:由非齐次线性方程组的解的结构知识,只要求出它的一个解和对应的齐次线性方程组的基础解系,其具体步骤如下:
(1)用初等行变换将增广矩阵化为行最简形矩阵;
(2)写出同解方程组(用自由未知量表示所有未知量的形式);
(3)读出右端常数项(即自由未知量全部取零),则求出Ax=b的一个解;
(4)读出自由未知量的系数(相当于一个自由未知量取1,其余自由未知量取0),则求出Ax=0的基础解系;
(5)写出所求通解.。
线性代数-非齐次线性方程组

充分性:若r(A)=r(A|b) ,即d r+1 =0,则(*)有解。
把这 r 行的第一个非零元所对应的未知量作为 非自由未知量, 其余n r个作为自由未知量,
即可得方程组的一个解. 并令 n r 个自由未知量任意取值,
定理1更常用的描述是:
此乃第三章的 精华所在
定理1’
对n 元非齐次线性方程组 Amn x b ,
Ch3 矩阵的秩与线性方程组
第 二节
(非)齐次线性方程组
一、线性方程组有解的 判定
二、线性方程组的解法
对于m个方程n个未知数的线性方程组
a11 x1 a12 x 2 a1n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 ........................................... a x a x a x b m2 2 mn n m m1 1
解 对增广矩阵 A 进行初等变换,
r12 ( 3) 1 2 3 1 1 1 2 3 1 1 r ( 2) A 3 1 5 3 2 13 0 5 4 0 1 2 1 2 2 3 r23 ( 1) 0 5 4 0 1 0 0 2
2 当 1时,
1 1 2 A ~ 0 1 1 1 2 0 0 1 2 1 1 1 1 2 ~ 0 1 1 0 0 ( 2 ) 1 2
问取何值时, 有唯一解? 无解?有无穷多个解 ?
解一 对增广矩阵 A ( A, b) 作初等行变换,
A 1 1
1
如何求非齐次线性方程组Ab的通解

如何求非齐次线性方程组
A b的通解
The following text is amended on 12 November 2020.
如何求非齐次线性方程组Ax=b的通解
解答:由非齐次线性方程组的解的结构知识,只要求出它的一个解和对应的齐次线性方程组的基础解系,其具体步骤如下:
(1)用初等行变换将增广矩阵化为行最简形矩阵;
(2)写出同解方程组(用自由未知量表示所有未知量的形式);
(3)读出右端常数项(即自由未知量全部取零),则求出Ax=b的一个解;
(4)读出自由未知量的系数(相当于一个自由未知量取1,其余自由未知量取0),则求出Ax=0的基础解系;
(5)写出所求通解.。
§4[1].6__非齐次线性方程组有解的条件及解的结构
![§4[1].6__非齐次线性方程组有解的条件及解的结构](https://img.taocdn.com/s3/m/6db0e3db6f1aff00bed51ea7.png)
为 求 A X=β 的 一 个 特 解 , 把 x3 = 0, x4 = 0, x5 = 0代 入 方 程 组 即 可
7 1 1 2 2 2 1 3 1 2 2 2 AX=β的通解 0 + c1 1 + c2 0 + c3 0 0 0 1 0 0 0 1 0 3 2 1 2
定理2 n 元非齐次线性方程组 As×n X = β :
1) 无解的充要条件 R ( A ) < R ( A , b ) ;
2) 有唯一解的充要条件 R( A) = R( A, b) = n ;
3) 有 无 穷 多 解 的 充 要 条 件 是 R ( A ) = R (A,b AX=β 的 通 解 为
2
2) λ = 2时,
1 B ~ 0 0 1 3 0 2 3 0 4 6 3
R ( A ) ≠ R ( B ),故方程组无解 . 故方程组无解
练习 : a, b取何值时, 方程组 x1 + x2 + x3 + x4 + x5 = 2 2x + 3x + x + x 3x = a 1 2 3 4 5 x1 + 2x3 + 2x4 + 6x5 = 6 4x1 + 5x2 + 3x3 + 3x4 x5 = b 无解, 有唯一解, 有无穷多解 ? 有解时 求出所有解.
1 0) 1) ( , ,(0, 得到导出组的基础解系 =( 1, T X1 =( 1,0), X2 = (1,0,1)T .让自由为知量x2 , x3代入
T (0,0)得 =( (0,0)得到AX=β的一个特解X0 =(1,0,0).
其通解为 X0 + c1 X1 + c2 X2 , c1 , c2任意。