平面向量加减法练习题
平面向量的加法与减法试题

平面向量的加法与减法试题在平面向量的学习中,理解和掌握向量的加法与减法是非常重要的。
通过试题的形式,我们可以帮助学生进一步巩固和应用相关的知识点。
下面是一些关于平面向量加法与减法的试题。
一、选择题(每题4分,共20分)1. 若向量a = (-2, 3)T,向量b = (4, -1)T,则向量a + b的分量形式是:A. (6, 2)TB. (2, 4)TC. (-2, 2)TD. (2, 2)T2. 已知向量a = (3, -2)T,向量b = (-1, 4)T,则向量a - b的模长为:A. 5B. 4C. 3D. 23. 设向量a = (1, 2)T,向量b = (3, 4)T,则向量a + b与向量a - b的夹角为:A. 0°B. 30°C. 45°D. 60°4. 已知向量a的模长为3,向量b的模长为4,向量a与向量b的夹角为60°,则向量a + b的模长为:A. √7B. √19C. √31D. √435. 设向量a = (2, 1)T,向量b = (-3, 2)T,则向量a - b的模为:A. √2B. √6C. √10D. √14二、填空题(每空4分,共16分)1. 在平面直角坐标系中,已知向量a = (2, 3)T,向量b与向量a的夹角为90°,则向量b的分量形式为()。
2. 若向量a = (5, -1)T,向量b = (-4, 2)T,则向量a - b的模长为()。
3. 已知向量a = (1, 2)T,向量b = (2, 3)T,则向量a + b的模长为()。
4. 已知向量a = (3, -4)T,向量b与向量a的夹角为60°,则向量b的模长为()。
三、应用题(每题10分,共20分)1. 设ABCD为平面上的四边形,其中A(2, 1),B(-1, 4),C(5, 5),D(4, 2)。
求向量AC的分量形式。
数学上册综合算式专项练习题平面向量的加减混合运算

数学上册综合算式专项练习题平面向量的加减混合运算数学上册综合算式专项练习题:平面向量的加减混合运算在数学的学习中,我们经常会遇到关于平面向量的加减混合运算。
平面向量的加减混合运算是一类比较常见的问题,它涉及到向量的相加、相减和数乘等运算。
本文将通过一些综合算式专项练习题来探索平面向量的加减混合运算。
1. 已知平面向量A = 2i + 3j,B = -4i + j,计算向量A + B - 2A。
解答:首先将A和B相加,得到向量A + B = (2i + 3j) + (-4i + j) = -2i + 4j。
然后将2A乘以2,得到2A = 2(2i + 3j) = 4i + 6j。
最后将向量A + B和2A相减,得到向量A + B - 2A = (-2i + 4j) - (4i + 6j) = -6i - 2j。
2. 已知平面向量C = 3i - 5j,D = -i + 2j,计算向量C - D + 3C。
解答:首先将C和D相减,得到向量C - D = (3i - 5j) - (-i + 2j) = 4i - 7j。
然后将3C乘以3,得到3C = 3(3i - 5j) = 9i - 15j。
最后将向量C - D和3C相加,得到向量C - D + 3C = (4i - 7j) + (9i - 15j) = 13i - 22j。
3. 已知平面向量E = 2i + 3j,F = -i + 4j,G = 5i - 2j,计算向量E + F - G。
解答:首先将E和F相加,得到向量E + F = (2i + 3j) + (-i + 4j) = i + 7j。
然后将向量E + F和G相减,得到向量E + F - G = (i + 7j) - (5i - 2j) = -4i + 9j。
通过以上三个综合算式专项练习题,我们对平面向量的加减混合运算有了更深入的了解。
在进行平面向量的加减混合运算时,我们需要注意向量的方向和大小,以及数乘的运算规则。
高中试卷-6.3.3 平面向量加、减运算坐标表示(含答案)

第六章平面向量及其应用6.3.3平面向量加、减运算坐标表示一、基础巩固等于 【详解】因为12AB AD AD DE AE +=+=uuu r uuu r uuu r uuu r uuu r ,6.已知(5,4)a =r ,(3,2)b =r ,则与23a b -r r 平行的单位向量为( )A .525,55æöç÷ç÷èøB .525,55æöç÷ç÷èø或525,55æö--ç÷ç÷èøC .(1,2)或(1,2)--D .(1,2)【答案】B【详解】解:∵(5,4)a =r ,(3,2)b =r ,23(1,2)a b \-=r r ,22|23|125a b \-=+=r r ,则与23a b -r r 平行的单位向量为15(23)(1,2)5|23|a b a b ±×-=±-r r r r ,化简得,525,55æöç÷ç÷èø或525,55æö--ç÷ç÷èø.7.在矩形ABCD 中, 5AB =,3BC =,P 为矩形内一点,且52AP =,若(),AP AB AD R l m l m =+Îuuu r uuu r uuu r ,则53l m +的最大值为( )A .52B .102C .334+D .6324+【答案】B【详解】由题意,以点A 为坐标原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,建立如图所示的平面直角坐标系,则()0,0A ,()5,0B ,()0,3D ,设(),P x y ,则(),AP x y =uuu r ,()5,3AB AD l m l m +=uuu r uuu r ,8.已知点P 分12PP uuuu v 的比为23-,设A .2-B .3(7,8),u u u r解得432x y ì=ïíï=î,所以4,23P æöç÷èø,当点P 靠近点2P 时,122PPPP =uuu r uuur ,则()()24124x x y y ì=-ïí-=-ïî,解得833x y ì=ïíï=î,所以8,33P æöç÷èø,11.(多选)已知向量1(1,2)e =-u r ,2(2,1)e =u u r ,若向量1122a e e l l =+r u r u u r ,则可使120l l <成立的a r 可能是 ( )A .(1,0)B .(0,1)C .(−1,0)D .(0,−1)【答案】AC【详解】11221212=(2,2)a e e l l l l l l =+-++r u r u u r 若(1,0)a =r ,则12122120l l l l -+=ìí+=î,解得1212,55l l =-=,120l l <,满足题意;若(0,1)a =r ,则12122021l l l l -+=ìí+=î,解得1221,55l l ==,120l l >,不满足题意;因为向量(1,0)-与向量(1,0)共线,所以向量(1,0)-也满足题意.12.(多选)已知向量(,3)a x =v ,(3,)b x =-v ,则下列叙述中,不正确是( )A .存在实数x ,使a bv v P B .存在实数x ,使()a b a +v v P v C .存在实数x ,m ,使()ma b a+v P v v D .存在实数x ,m ,使()ma b b +v P vv 【答案】ABC【详解】由a b r r P ,得29x =-,无实数解,故A 中叙述错误;(3,3)a b x x +=-+r r ,由()a b a +r r r ∥,得3(3)(3)0x x x --+=,即29x =-,无实数解,故B 中叙述错误;(3,3)ma b mx m x +=-+r r ,由()ma b a +r r r ∥,得(3)3(3)0m x x mx +--=,即29x =-,无实数解,故心中叙述错误;由()ma b b +r r r ∥,得3(3)(3)0m x x mx -+--=,即()290m x +=,所以0m =,x ÎR ,故D 中叙述正确.二、拓展提升13.如图,已知ABCD Y 的三个顶点A ,B ,C 的坐标分别是(2,1)-,(1,3)-,(3,4),求顶点D 的坐标.【答案】(2,2)【详解】解:设顶点D 的坐标为(,)x y .(2,1)A -Q ,(1,3)B -,(3,4)C ,(1(2),31)(1,2)AB \=----=uuu r ,(3,4)DC x y =--uuu r ,又AB DC =uuu r uuur,所以(1,2)(3,4)x y =--.即13,24,x y =-ìí=-î解得2,2.x y =ìí=î所以顶点D 的坐标为(2,2).由平行线分线段成比例得:1234h MB h AB ==,1122132142MNC ABC h NC S h NC NC S h BC BC h BC D D ´´==×=×´´89NC BC \=,89NC BC \=uuu r uuu r ,8(1)求点B,点C的坐标;(2)求四边形OABC的面积.【答案】(1)533,,,222 B Cæöæç÷çç÷çèøè。
数学练习平面向量的加减练习题

数学练习平面向量的加减练习题一、绪论在数学学科中,平面向量是一个重要的概念。
它们常常应用于几何、物理和工程等领域,并且对于解决实际问题具有重要意义。
本文将针对平面向量的加减练习题展开讨论,通过解析和计算题目,帮助读者加深对平面向量的理解和运用。
二、练习题下面是一些关于平面向量的加减练习题,希望读者能够仔细阅读题目并尝试解答。
1. 已知向量a = (2, 4)和向量b = (-1, 3),求向量a + b的结果。
2. 已知向量c = (3, -2)和向量d = (-4, 1),求向量c - d的结果。
3. 设向量e = (5, 2),向量f = (-3, 6),求向量e + f的结果。
4. 设向量g = (7, -1),向量h = (-2, 5),求向量g - h的结果。
5. 已知向量i = (4, 0),向量j = (0, 6),求向量i + j的结果。
6. 设向量k = (-3, 2),向量l = (1, -4),求向量k - l的结果。
7. 设向量m = (2, 5),向量n = (5, 3),求向量m + n的结果。
8. 设向量p = (-1, -3),向量q = (-4, -2),求向量p - q的结果。
三、解答与计算1. 向量a + b = (2, 4) + (-1, 3) = (2 - 1, 4 + 3) = (1, 7)。
2. 向量c - d = (3, -2) - (-4, 1) = (3 + 4, -2 - 1) = (7, -3)。
3. 向量e + f = (5, 2) + (-3, 6) = (5 - 3, 2 + 6) = (2, 8)。
4. 向量g - h = (7, -1) - (-2, 5) = (7 + 2, -1 - 5) = (9, -6)。
5. 向量i + j = (4, 0) + (0, 6) = (4 + 0, 0 + 6) = (4, 6)。
6. 向量k - l = (-3, 2) - (1, -4) = (-3 - 1, 2 - (-4)) = (-4, 6)。
平面向量的加减与数量积练习题

平面向量的加减与数量积练习题一、向量的加减平面向量的加减是指根据向量的性质进行运算,可以将向量看作有方向和大小的箭头,通过对箭头进行平移和反转等操作进行运算。
1. 已知向量a = 2i + 3j,b = 4i - 5j,求a + b的结果。
解:将a和b的对应分量进行相加,得到:a +b = (2 + 4)i + (3 - 5)j = 6i - 2j2. 已知向量c = 6i - 7j,d = -3i + 2j,求c - d的结果。
解:将c和d的对应分量进行相减,得到:c -d = (6 - (-3))i + (-7 - 2)j = 9i - 9j二、数量积数量积也称为点积或内积,是将两个向量进行运算得到的结果,具体计算方式为将两个向量的对应分量相乘后相加。
3. 已知向量e = 3i + 4j,f = 2i - 5j,求e · f的结果。
解:将e和f的对应分量相乘后相加,得到:e ·f = (3 * 2) + (4 * (-5)) = 6 - 20 = -144. 已知向量g = 5i + 3j,h = -2i + 6j,求g · h的结果。
解:将g和h的对应分量相乘后相加,得到:g · h = (5 * (-2)) + (3 * 6) = -10 + 18 = 8三、练习题1. 已知向量m = 2i + j,n = 3i - 4j,求m + n的结果。
解:将m和n的对应分量进行相加,得到:m + n = (2 + 3)i + (1 - 4)j = 5i - 3j2. 已知向量p = 4i + 3j,q = -2i + 5j,求p - q的结果。
解:将p和q的对应分量进行相减,得到:p - q = (4 - (-2))i + (3 - 5)j = 6i - 2j3. 已知向量r = i - 2j,s = 3i + 4j,求r · s的结果。
解:将r和s的对应分量相乘后相加,得到:r · s = (1 * 3) + (-2 * 4) = 3 - 8 = -54. 已知向量t = 5i + 2j,u = -3i + 6j,求t · u的结果。
平面向量的加减法测试题

平面向量的加减法测试题(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平面向量的加减法练习题一、选择题1、下列说法正确的有 ( )个.①零向量是没有方向的向量,②零向量的方向是任意的,③零向量与任一向量共线,④零向量只能与零向量共线.A.1 B.2 C.3 D.以上都不对2、下列物理量中,不能称为向量的有( )个.①质量②速度③位移④力⑤加速度⑥路程A.0 B.1 C.2 D.33、已知正方形ABCD的边长为1, = a , = b , = c,则| a+b+c|等于()A.0 B.3 C.2 D.224、在平行四边形ABCD中,设 = a, = b,= c, = d,则下列不等式中不正确的是()A.a+b=c B.a-b=d C.b-a=d D.c-d=b-d5、△ABC中,D,E,F分别是AB、BC、CD的中点,则-等于()A. B.C.D.6、如图.点M是△ABC的重心,则MA+MB-MC为()A.0 B.4C.4 D.47、在正六边形ABCDEF中,不与向量相等的是()A. + B.-C. +D.+8、a=-b是|a| = |b|的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件二、填空题:9、化简: + + + + = ______.10、若a=“向东走8公里”,b=“向北走8公里”,则| a+ b|=___,a+b的方向是_ ____.11、已知D 、E 、F 分别是△ABC 中BC 、CA 、AB 上的点,且=31 , =31 , =31,设 = a , = b ,则 = __________.12、向量a,b 满足:|a |=2,|a +b |=3,|a -b |=3,则|b |=_____. 三、解答题:13、如图在正六边形ABCDEF 中,已知:= a , = b ,试用a 、b 表示向量 , , ,.14、如图:若G 点是△ABC 的重心,求证: ++= 0 .15、求证:|a +b | 2+|a -b | 2=2 (|a | 2+|b | 2).16、如图 ABCD 是一个梯形,AB∥CD 且AB=2CD,M,N 分别是DC 和AB 的中点,若= a ,= b ,试用a,b 表示和.E一、BCDBD DCA 二、(9)0 (10)28千米、东偏北45° (11)b a 3132+-(12)5 三、(13)分析:连接AD 、BE 、FC ,由正六边形性质知它们交于点O ,再由正六边形性质知ABOF ,AOCB ,BODC 是全等的平行四边形. E DF O C)(22,b a AO AO AO OD AO b AF BO CD b a AO BC +==+=+===+==∴注:向量的加法依赖于图形,所以做加法时要尽量画出图形,以便更好的理解题意.另外也要注意三角形法则和平行四边形的运用.即“首尾相接”如."".的平行四边形的对角线起点相同和AE DE CD BC AB =+++(14)证明:延长GF 到H ,使GF=FH.连结HA 、HB ,则四边形AGBH 平行四边形,于是,2,,2=+=++∴=∴∆==+ABC G 的重心为 (15)分a 、b 是否共线两种情况讨论.若a 、b 共线,则等式显然成立.若a 、b 不共线,则由向量的加、减法的几何意义可证.注:这是一个很有用的结论,请同学们记住.(16)分析:解:连结CN ,将梯形ABCD 为平行四边形ANCD 和△BCN,再进行向量运算.连结CN,N 是AB 的中点,.4121,,0,,,//b a a b CN b AD CN ABCD DC AN DC AN -=+=-=∴-=--=∴=++-=-=∴= 又是平行四边形四边形且 注:只要向量a 、b 不共线,任何向量都可用a 、b 表示出来.在后面我们将证明这个定理。
平面向量习题及答案

平面向量习题及答案平面向量习题及答案引言:平面向量是高中数学中的重要内容之一,它在几何、代数和物理等领域中都有广泛的应用。
通过解决平面向量习题,我们可以加深对平面向量的理解,提高解题能力。
本文将介绍几个常见的平面向量习题,并给出详细的解答过程。
一、向量的加法和减法1. 已知向量a=2i+3j,b=4i-5j,求a+b和a-b。
解答:a+b=(2+4)i+(3-5)j=6i-2ja-b=(2-4)i+(3+5)j=-2i+8j2. 已知向量a=3i+2j,b=-i+4j,求2a-3b。
解答:2a-3b=2(3i+2j)-3(-i+4j)=6i+4j+3i-12j=9i-8j二、向量的数量积和向量积1. 已知向量a=2i+3j,b=-i+4j,求a·b和|a×b|。
解答:a·b=(2)(-1)+(3)(4)=-2+12=10|a×b|=|(2)(4)-(3)(-1)|=|8+3|=112. 已知向量a=3i+2j,b=4i-5j,求a×b的模长和方向角。
解答:a×b=(3)(-5)-(2)(4)=-15-8=-23|a×b|=|-23|=23设a×b与x轴正向的夹角为θ,则cosθ=(4)/√(4^2+(-23)^2)=4/√545θ≈84.3°三、向量的共线与垂直1. 已知向量a=2i+3j,b=-4i-6j,判断a和b是否共线。
解答:若a和b共线,则存在实数k,使得a=kb。
2i+3j=k(-4i-6j)2i+3j=-4ki-6kj2=-4k,3=-6k解得k=-1/2所以,a和b共线。
2. 已知向量a=2i+3j,b=-4i-6j,判断a和b是否垂直。
解答:若a和b垂直,则a·b=0。
a·b=(2)(-4)+(3)(-6)=-8-18=-26-26≠0所以,a和b不垂直。
结论:通过解答上述平面向量习题,我们可以巩固向量的加法、减法、数量积、向量积等基本概念和运算规则。
向量加减法简单练习题(打印版)

向量加减法简单练习题(打印版)# 向量加减法简单练习题## 一、向量加法### 练习题1:向量求和给定两个向量 \( \vec{A} = (2, 3) \) 和 \( \vec{B} = (4, -1) \),求它们的和 \( \vec{A} + \vec{B} \)。
### 练习题2:向量加法的几何意义考虑向量 \( \vec{C} = (1, 2) \) 和 \( \vec{D} = (-3, 1) \),画出这两个向量,并在坐标系中表示它们相加的结果。
### 练习题3:向量加法的分量表示已知向量 \( \vec{E} = (x, y) \) 和 \( \vec{F} = (a, b) \),求\( \vec{E} + \vec{F} \) 的分量。
## 二、向量减法### 练习题4:向量差给定向量 \( \vec{G} = (5, 6) \) 和 \( \vec{H} = (1, 4) \),求它们的差 \( \vec{G} - \vec{H} \)。
### 练习题5:向量减法的几何意义考虑向量 \( \vec{I} = (-2, 3) \) 和 \( \vec{J} = (3, -1) \),画出这两个向量,并在坐标系中表示它们相减的结果。
### 练习题6:向量减法的分量表示已知向量 \( \vec{K} = (m, n) \) 和 \( \vec{L} = (p, q) \),求\( \vec{K} - \vec{L} \) 的分量。
## 三、向量加法和减法的综合应用### 练习题7:向量加法和减法的组合给定向量 \( \vec{M} = (7, -2) \),\( \vec{N} = (-1, 5) \) 和\( \vec{O} = (3, -4) \),求 \( \vec{M} + \vec{N} - \vec{O} \)。
### 练习题8:向量加减法的几何应用在平面直角坐标系中,点 \( A(1, 2) \),\( B(4, 6) \) 和 \( C(-1, 3) \),求从点 \( A \) 到点 \( C \) 的向量,然后求从点 \( C \) 到点 \( B \) 的向量,并计算这两个向量的和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量概念加减法·基础练习
一、选择题
1.若a 是任一非零向量,b 是单位向量,下列各式①|a |>|b |;②a ∥b ; ③|a |>0;④|b |=±1
a b ,其中正确的有( ) A .①④⑤ B .③ C .①②③⑤ D .②③⑤
2.四边形ABCD 中,若向量AB 与CD 是共线向量,则四边形ABCD ( )
A .是平行四边形
B .是梯形
C .是平行四边形或梯形
D .不是平行四边形,也不是梯形
3.把平面上所有单位向量归结到共同的始点,那么这些向量的终点所构成的图形是( )
A .一条线段
B .一个圆面
C .圆上的一群弧立点
D .一个圆
4.若a ,b 是两个不平行的非零向量,并且a ∥c , b ∥c ,则向量c 等于( )
A . 0
B . a
C . b
D . c 不存在
5.向量(AB +MB )+(BO +BC )+OM 化简后等于( )
A . BC
B . AB
C . AC
D .AM
6. a 、b 为非零向量,且|a +b |=|a |+|b |则( )
A . a ∥b 且a 、b 方向相同
B . a =b
C . a =-b
D .以上都不对
7.化简(AB -CD )+(BE -DE )的结果是( )
A . CA
B . 0
C . AC
D . AE
8.在四边形ABCD 中,AC =AB +AD ,则( )
A .ABCD 是矩形
B .ABCD 是菱形
C .ABC
D 是正方形 D .ABCD 是平行四边形
9.已知正方形ABCD 的边长为1,AB =a ,AC =c , BC =b ,则|a +b +c |为( )
A .0
B .3
C . 2
D .22
10.下列四式不能化简为AD 的是( )
A .( A
B +CD )+ BC
B .( AD +MB )+( B
C +CM ) C . MB +A
D -BM D . OC -OA +CD
a
11.设b 是a 的相反向量,则下列说法错误的是( )
A . a 与b 的长度必相等
B . a ∥b
C .a 与b 一定不相等
D . a 是b 的相反向量
12.如果两非零向量a 、b 满足:|a |>|b |,那么a 与b 反向,则( )
A .|a +b |=|a |-|b |
B .|a -b |=|a |-|b |
C .|a -b |=|b |-|a |
D .|a +b |=|a |+|b |
二、判断题
1.向量AB 与BA 是两平行向量.( )
2.若a 是单位向量,b 也是单位向量,则a =b .( )
3.长度为1且方向向东的向量是单位向量,长度为1而方向为北偏东30°的向量就不是单位向量.( )
4.与任一向量都平行的向量为0向量.( )
5.若AB =DC ,则A 、B 、C 、D 四点构成平行四边形.( )
7.设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍.( )
9.在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆.( )
10.凡模相等且平行的两向量均相等.( )
三、填空题
1.已知四边形ABCD 中,AB =
21DC ,且|AD |=|BC |,则四边形ABCD 的形状是 .
2.已知AB =a ,BC =b , CD =c ,DE =d ,AE =e ,则a +b +c +d = .
3.已知向量a 、b 的模分别为3,4,则|a -b |的取值范围为 .
4.已知|OA |=4,|OB |=8,∠AOB=60°,则|AB |= .
5. a =“向东走4km ”,b =“向南走3km ”,则|a +b |= .
四、解答题 1.作图。
已知 求作(1)b a (利用向量加法的三角形法
则和 四边形法则)
b
(2)b a
2.已知△ABC ,试用几何法作出向量:BA +BC ,CA +CB .
3.已知OA =a ,OB =b ,且|a |=|b |=4,∠AOB=60°, ①求|a +b |,|a -b |
②求a +b 与a 的夹角,a -b 与a 的夹角.。