立体几何大题综合四大类型

合集下载

立体几何15种归类

立体几何15种归类

立体几何大题的15种归类可能包括以下几种:
1. 垂直问题:证明两条直线或平面垂直,或求线面角、二面角的大小。

2. 平行问题:证明两条直线或平面平行,或求线面角、二面角的大小。

3. 距离问题:求两条直线或两个平面之间的距离。

4. 面积问题:求一个平面或一个几何体的面积。

5. 体积问题:求一个几何体的体积或表面积。

6. 角度问题:求两个平面或两个几何体之间的角度大小。

7. 截面问题:用一个平面去截一个几何体,求截面的形状和大小。

8. 轨迹问题:求一个动点的轨迹方程。

9. 翻折问题:将一个平面或一个几何体翻折后,求翻折后的形状和大小。

10. 旋转问题:将一个几何体旋转一定角度后,求旋转后的形状和大小。

11. 对称问题:求一个平面或一个几何体的对称图形。

12. 最值问题:求一个平面或一个几何体中的最值问题,如最短距离、最大角度等。

13. 体积求法问题:给定一个几何体,如何计算其体积。

14. 表面积求法问题:给定一个几何体,如何计算其表面积。

15. 空间向量问题:利用空间向量解决立体几何中的角度、距离等问题。

以上分类仅供参考,具体的题目可能涉及多种类型的问题。

在解决立体几何问题时,需要灵活运用相关的定理和公式,并结合实际情况进行分析和计算。

高三高考数学总复习《立体几何》题型归纳与汇总

高三高考数学总复习《立体几何》题型归纳与汇总

(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,

立体几何题型及解题方法

立体几何题型及解题方法

立体几何题型及解题方法
立体几何是数学中研究三维空间几何图形的学科。

以下是一些常见的立体几何题型及其解题方法:
1. 计算体积和表面积:这类题目通常涉及到三维空间中的几何形状,如长方体、圆柱体、圆锥体等。

解题方法包括使用体积和表面积的公式,以及根据题目描述建立数学模型。

2. 证明定理和性质:这类题目通常涉及到几何图形的性质和定理,如平行线性质、勾股定理等。

解题方法包括使用已知定理和性质进行推导,以及通过构造辅助线或辅助图形来证明。

3. 求解最值问题:这类题目通常涉及到求几何图形中的最值,如最短路径、最大面积等。

解题方法包括使用不等式、极值定理和优化方法等。

4. 判定和性质应用:这类题目通常涉及到判定几何图形是否满足某个性质,或应用某个性质到实际场景中。

解题方法包括根据性质进行推导和判断,以及根据实际场景建立数学模型。

以上是一些常见的立体几何题型及其解题方法,当然还有其他的题型和解题方法。

在解决立体几何问题时,需要灵活运用几何知识和方法,多做练习,提高自己的解题能力。

立体几何7大题型汇编

立体几何7大题型汇编

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

四类立体几何题型-新高考数学大题秒杀技巧(解析版)

四类立体几何题型-新高考数学大题秒杀技巧(解析版)

四类立体几何题型-高考数学大题秒杀技巧立体几何问题一般分为四类:类型1:线面平行问题类型2:线面垂直问题类型3:点面距离问题类型4:线面及面面夹角问题下面给大家对每一个类型进行秒杀处理.技巧:法向量的求算待定系数法:步骤如下:①设出平面的法向量为n =x ,y ,z .②找出(求出)平面内的两个不共线的向量a =a 1,b 1,c 1 ,b =a 2,b 2,c 2 .③根据法向量的定义建立关于x ,y ,z 的方程组n ⋅a =0n ⋅b =0④解方程组,取其中的一个解,即得法向量.注意:在利用上述步骤求解平面的法向量时,方程组n ⋅a =0n ⋅b =0有无数多个解,只需给x ,y ,z 中的一个变量赋于一个值,即可确定平面的一个法向量;赋的值不同,所求平面的法向量就不同,但它们是共线向量.秒杀:口诀:求谁不看谁,积差很崩溃(求外用外减,求内用内减)向量a =x 1,y 1,z 1 ,b =x 2,y 2,z 2 是平面α内的两个不共线向量,则向量n =y 1z 2−y 2z 1,x 2z 1−x 1z 2,x 1y 2−x 2y 1 是平面α的一个法向量.特别注意:空间点不容易表示出来时直接设空间点的坐标,然后利用距离列三个方程求解.类型1:线面平行问题方法一:中位线型:如图⑴,在底面为平行四边形的四棱锥P -ABCD 中,点E 是PD 的中点.求证:PB ⎳平面AEC .分析:方法二:构造平行四边形如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE ⎳CF ,求证:AE ⎳平面DCF .分析:过点E作EG⎳AD交FC于G,DG就是平面AEGD与平面DCF的交线,那么只要证明AE⎳DG即可。

方法三:作辅助面使两个平面是平行如图⑶,在四棱锥O-ABCD中,底面ABCD为菱形,M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD分析::取OB中点E,连接ME,NE,只需证平面MEN∥平面OCD。

立体几何常见重难题目分类整理

立体几何常见重难题目分类整理

立体几何常见重难题目分类整理
本文旨在对立体几何中常见的重难题目进行分类整理,以帮助研究者更好地理解和掌握这一知识领域。

分类一:平面图形的立体图形问题
这类问题主要涉及如何从平面图形构造出相应的立体图形,或者如何根据已知的立体图形绘制出其平面图形。

常见的题目类型包括:
- 根据平面图形绘制立体图形
- 根据立体图形绘制平面图形
- 根据给定的几何特征,确定可能的平面图形或立体图形
分类二:立体图形的参数计算问题
这类问题要求根据已知的几何参数,计算出其他相关的几何参数。

常见的题目类型包括:
- 根据立体图形的体积或表面积,计算其它几何参数
- 根据立体图形的边长、角度等几何特征,计算其它几何参数
- 根据立体图形的投影或截面,计算其它几何参数
分类三:平面和立体图形的位置关系问题
这类问题要求判断平面图形和立体图形之间的位置关系。

常见的题目类型包括:
- 判断一个平面图形是否在一个立体图形的内部或外部
- 判断两个平面图形是否相交
- 判断一个点是否在一个平面图形或立体图形上
分类四:几何变换与相似性问题
这类问题要求根据给定的几何变换,确定图形的变化情况或相似性。

常见的题目类型包括:
- 根据平移、旋转、对称等几何变换,确定图形的变化情况
- 判断两个图形是否相似,若相似,计算相似比例或变换参数
如有文档内容需要确认,请自行核实,本文档仅提供分类整理的知识参考。

高考理科立体几何大题常考题型

高考理科立体几何大题常考题型
高考理科立体几何大题常考题型包括以下几个方面:
1. 空间位置关系的证明:这类问题主要涉及线线、线面、面面的平行和垂直关系的证明。

解决这类问题需要熟练掌握相关的判定定理和性质定理,并能够灵活运用。

2. 空间角的计算:这类问题主要涉及异面直线所成的角、直线与平面所成的角、二面角的计算等。

解决这类问题需要熟练掌握相关的计算公式,并能够准确建立空间直角坐标系。

3. 空间几何体的体积和表面积计算:这类问题主要涉及圆锥、圆柱、棱锥、棱柱等基本几何体的体积和表面积的计算,以及一些组合体的体积和表面积的计算。

解决这类问题需要熟练掌握相关的计算公式,并能够根据题目要求选择合适的计算方法。

4. 投影与直观图:这类问题主要涉及根据几何体的直观图求其三视图,以及根据三视图还原几何体的直观图。

解决这类问题需要熟练掌握三视图的形成原理,并能够准确判断出几何体的各个面在三视图中的投影。

综上所述,高考理科立体几何大题常考题型多样,需要考生具备扎实的数学基础和灵活的解题能力。

建议考生在复习时注重对基础知识的理解和掌握,多做练习题,培养自己的空间想象能力和逻辑思维能力。

立体几何大题题型总结

立体几何大题题型总结
立体几何大题包括以下几种题型:
1. 体积计算题:给定一个几何体的形状和尺寸,求其体积。

2. 表面积计算题:给定一个几何体的形状和尺寸,求其表面积。

3. 三视图综合题:给定一个几何体的三视图,通过推理和计算求出其体积和表面积。

4. 截面综合题:给定一个几何体的各个截面的形状和尺寸,通过推理和计算求出其体积和表面积。

5. 相似几何体综合题:给定多个几何体的形状和尺寸,在它们之间应用相似性质,求出它们各自的体积和表面积。

6. 空间几何关系题:给定多个几何体之间的位置关系,例如相切、相交、包含等,求出它们各自的体积和表面积。

7. 作图求解题:通过构造一些几何形状,例如放射形、圆锥、圆台等,求出特定几何体的体积和表面积。

8. 混合几何体综合题:将以上多种题型进行综合,考查学生的综合运用能力。

高考文科数学__立体几何大题-知识点、考点及解题方法

立体几何大题题型及解题方法立体几何大题一般考以下五个方面:一、平行位置关系的证明1、证明线面平行(重点)解题方法:(1)线面平行判定定理;(2)面面平行的性质定理。

2、证明面面平行解题方法:(1)面面平行的判定定理;(2)面面平行判定定理的推论;(3)垂直于同一直线的两平面平行;(4)平行平面的传递性。

3、平行位置关系的探索(1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。

二、垂直位置关系的证明1、证明线线垂直解题方法:2、证明线面垂直(重点)解题方法:3、证明面面垂直4、垂直位置关系的探索(1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。

三、求空间距离1、点到平面的距离解题方法:2、空间线段长解题方法:(1)解三角形法;(2)列方程法。

四、求几何体体积五、求空间角1、异面直线所成的角2、直线与平面所成的角考点一:如何判断空间中点、线、面的位置关系(排除法)考点二:平行位置关系的证明证明题一般的解题步骤:一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法,如果无法确定,则要通过逆向思维来分析题目;二、看题目是否需要作辅助线(创造条件),证明平行位置问题一般作的辅助线是连等分点,特别是中点;三、根据确定的证明方法,看该方法需要多少个条件,然后看题目给的条件通过什么方式给,如果是间接条件则需要推理证明得出,如果是直接条件或隐含条件则直接罗列;四、准备好条件后,再次检查条件是否都满足,是否都罗列了,最后得出结论;五、规范书写答案过程:一般过程为1、作辅助线;2、准备间接条件;3、罗列直接条件或隐含条件;4、得出结论。

1、证明线面平行(重点)解题方法:2、证明面面平行解题方法:(1)面面平行的判定定理(最常用方法):(2)面面平行判定定理的推论:(3)垂直于同一直线的两平面平行;(4)3、平行位置关系的探索考点三、垂直位置关系的证明证明垂直的解题步骤:一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法,如果无法确定,则要通过逆向思维来分析题目;二、要注意先确定谁垂直于谁,如1、证明线线垂直时常考虑其中一条直线垂直于另一条直线所在的平面,究竟选择哪一条直线垂直于另一条直线所在的平面,需要通过对条件及图形结构做深入细致分析、尝试、判断。

专题 立体几何大题综合归类

专题6-3立体几何大题综合归类目录题型01平行:无交线型 (2)题型02平行:线面平行探索性 (4)题型03平行:面面平行探索性 (6)题型04垂直:线面垂直探索性 (8)题型05垂直:面面垂直翻折探索性 (10)题型06证明与建系:斜棱柱垂面法建系 (12)题型07证明与建系:斜棱柱垂线法建系 (14)题型08证明与建系:三棱柱投影法建系 (15)题型09证明与建系:角平分线法建系 (17)题型10二面角延长线法 (18)题型11翻折型 (20)题型12台体型 (22)高考练场 (23)题型01平行:无交线型【解题攻略】两个平面相交:1.两点确定一条直线,只需确定两平面的两个公共点即可2.由于两平面有一个公共点A ,再找一个公共点即可确定交线3.一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行,在平面内,过两平面的公共点作直线与已知直线平行,则此直线即为两平面的交线【典例1-1】如图,在平行四边形ABCD 中,60ABC ∠=︒,24==A D A B ,E 为AD 的中点,以EC 为折痕将CDE △折起,使点D 到达点P 的位置,且=10PB ,F ,G 分别为BC ,PE 的中点.(1)证明://PB 平面AFG .(2)若平面PAB 与平面PEF 的交线为l ,求直线l 与平面PBC 所成角的正弦值.【变式1-1】如图所示,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,24AB CD ==,0=60BAD ∠,侧棱1DD ⊥底面ABCD 且1DD DC =.(1)指出棱1CC 与平面1ADB 的交点E 的位置(无需证明);(2)求点B 到平面1ADB 的距离.【变式1-2】如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径4AB =,母线22PH =,M 是PB 的中点,四边形OBCH 为正方形.设平面POH ⋂平面PBC l =,证明://l BC ;题型02平行:线面平行探索性【解题攻略】平行的常用构造方法①三角形中位线法;②平行四边形线法;③比例线段法.注意:平行构造主要用于:①异面直线求夹角;②平行关系的判定.【典例1-1】如图,在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112AC A C A A ===,AB BC =,且AB BC ⊥,O 为AC 中点.(1)求证AC ⊥平面1A OB(2)在1BC 上是否存在一点E ,使得OE 平面1A AB ,若不存在,说明理由;若存在,确定点E 的位置.【变式1-1】如图,四边形ABCD 中,AB AD ⊥,//AD BC ,6AD =,24BC AB ==,E ,F 分别在BC ,AD 上,//EF AB ,现将四边形ABCD 沿EF 折起,使BE EC ⊥.(1)若1BE =,在折叠后的线段AD 上是否存在一点P ,使得//CP 平面ABEF ?若存在,求出AP PD的值;若不存在,说明理由.(2)求三棱锥A CDF -的体积的最大值,并求出此时点F 到平面ACD 的距离.【变式1-2】如图,在直角梯形ABCD 中,AB ∥DC ,∠BAD =90°,AB =4,AD =2,DC =3,点E 在CD 上,且DE =2,将△ADE 沿AE 折起,使得平面ADE ⊥平面ABCE ,G 为AE 中点.(1)求证:DG ⊥平面ABCE ;(2)求四棱锥D-ABCE 的体积;(3)在线段BD 上是否存在点P ,使得CP ∥平面ADE ?若存在,求BP BD 的值;若不存在,请说明理由.题型03平行:面面平行探索性【解题攻略】证明平行(1)线线平行:设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)线面平行:设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u.(3)面面平行:设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.【典例1-1】在三棱柱111ABC A B C -中,(1)若,,,E F G H 分别是1111,,,AB AC A B AC 的中点,求证:平面1//EFA 平面BCHG .(2)若点1,D D 分别是11,AC AC 上的点,且平面1//BC D 平面11AB D ,试求AD DC的值.【变式1-1】.在长方体1111ABCD A B C D -中,1222AB BC AA ===,P 为11A B 的中点.已知过点1 A 的平面α与平面1BPC 平行,平面α与直线11,AB C D 分别相交于点M ,N ,请确定点M ,N 的位置;【变式1-2】已知正方体1111ABCD A B C D -中,P 、Q 分别为对角线BD 、1CD 上的点,且123CQ BP QD PD ==.(1)求证://PQ 平面11A D DA ;(2)若R 是AB 上的点,AR AB 的值为多少时,能使平面//PQR 平面11A D DA ?请给出证明.题型04垂直:线面垂直探索性【解题攻略】垂直的常见构造:①等腰三角形三线合一法;②勾股定理法;③投影法.④菱形的对角线互相垂直【典例1-1】已知正方体1111ABCD A B C D -的棱长为2,E 、F 、G 分别是1AA 、11A B 、11A D 的中点.(1)求证://EF 平面1BC D ;(2)在线段BD 上是否存在点H ,使得EH ⊥平面1BC D ?若存在,求线段BH 的长;若不存在,请说明理由;(3)求EF 到平面1BC D 的距离.【变式1-1】如图,在四棱锥S -ABCD 中,四边形ABCD 是边长为2的菱形,∠ABC =60°,△SAD 为正三角形.侧面SAD ⊥底面ABCD ,E ,F 分别为棱AD ,SB 的中点.(1)求证:AF ∥平面SEC ;(2)求证:平面ASB ⊥平面CSB ;(3)在棱SB 上是否存在一点M ,使得BD ⊥平面MAC ?若存在,求BMBS 的值;若不存在,请说明理由.【变式1-2】如图,在直三棱柱111ABC A B C -中,90ABC ∠=,1AB BC ==,13AA =,M 为棱AC 上靠近A 的三等分点,N 为棱11A B 上靠近1A 的三等分点.(1)证明://MN 平面11BB C C ;(2)在棱1BB 上是否存在点D ,使得1C D ⊥面1B MN ?若存在,求出1B D 的大小并证明;若不存在,说明理由.题型05垂直:面面垂直翻折探索性【解题攻略】翻折1.翻折前后,在同一平平面内的点线关系不变2.翻折过程中是否存在垂直或者平行等特殊位置关系3.翻折过程中,角度是否为定值4.翻折过程中,体积是否存在变化【典例1-1】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=3,AD=CD=1,∠ADC=120°,点M是AC与BD的交点,点N在线段PB上,且PN=14 PB.(1)证明:MN//平面PDC;(2)在线段BC上是否存在一点Q,使得平面MNQ⊥平面PAD,若存在,求出点Q的位置;若不存在,请说明理由.【变式1-1】如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.【变式1-2】如图(1),点E是直角梯形ABCD底边CD上的一点,∠ABC=90°,BC=CE=1,AB=DE=2,将DAE沿AE折起,使得D-AE-B成直二面角,连接CD和BD,如图(2).(1)求证:平面ABD 平面BCD;(2)在线段BD上确定一点F,使得CF∥平面ADE.题型06证明与建系:斜棱柱垂面法建系【解题攻略】斜棱柱垂线型建系如果存在垂线(投影型)斜棱柱,则可以直接借助垂线作为z 轴建系,下底面,可以寻找或者做出一对垂线作为xy 轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何四大综合类型向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n ②.异面直线间的距离d =(12,l l 是两异面直线,其公垂向量为n,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③.直线AB 与平面所成角sin ||||AB mAB m b ×=(m 为平面α的法向量). ④.利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).二面角l αβ--的平面角cos ||||m n m n q ×= 或cos ||||m nm n q ×=-(m ,n 为平面α,β的法向量).考点一。

角与距离问题1直线和平面所成的角此类题主要考查直线与平面所成的角的作法、证明以及计算.线面角在空间角中占有重要地位,是高考的常考内容.例1. 四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC = ∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小的余弦值.考查目的:本小题主要考查直线与直线,直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.DBCS解答过程:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC = ∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥,由AD BC ==SA =AO =,得1SO =,SD =.SAB △的面积112S AB = 连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S = ,解得h = 设SD 与平面SAB 所成角为α,则sin h SD α=.所以,直线SD 与平面SBC 所成的角的为余弦值为:. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC = ∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O -0)A ,,(0B ,(0C ,,(001)S ,,,SA =(0CB =,0SA CB =,所以SA BC ⊥. (Ⅱ)取AB 中点E ,0E ⎫⎪⎪⎝⎭, yODBCAS连结SE ,取SE 中点G ,连结OG,12G ⎫⎪⎪⎝⎭,.12OG ⎫=⎪⎪⎝⎭,,1⎫=⎪⎪⎝⎭,(AB =. 0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D,(DS =.cos OG DS OG DSα=sin β=,所以,直线SD 与平面SAB 所成的角的为余弦值为:..小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值. 2 点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.例2如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.AB CD1A1C1BA1AF正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF =又112AG AB =sin AG AFG AF∴==∠. 所以二面角1A A D B --的大小为(Ⅲ)1A BD △中,111A BD BD A D A B S ===∴=△1BCD S =△.在正三棱柱中,1A 到平面11BCC B设点C 到平面1A BD 的距离为d .由11A BCD C A BD V V --=,得11133BCD A BD S S d △△,1A BDd ∴==△∴点C 到平面1A BD解法二:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB,1OO ,OA的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A,(00A ,1(120)B ,,,1(12AB ∴= ,,(210)BD =- ,,,1(12BA =- .12200AB BD =-++= ,111430AB BA =-+-=, 1AB BD ∴ ⊥,11AB BA⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =- ,,,1(020)AA = ,,. AD ⊥n ,1AA⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,nn 020x y y ⎧-+=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,. 令1z =得(1)=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴ 为平面1A BD 的法向量.cos <n,111AB AB AB >=== n n ∴二面角1A A D B --的大小为(Ⅲ)由(Ⅱ),1AB为平面1A BD 法向量,1(200)(12BC AB =-= ,,,,.∴点C 到平面1A BD的距离11BC AB d AB ==小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.3 直线到平面的距离此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化. 例3. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解答过程:解析一 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求BACDOGH 1A 1C 1D1B 1O点O 平面11D GB 的距离,1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,又⊂11D B 平面11D GB∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O S OG O . 又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于362. 解析二 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V 34222213111=⨯⨯⨯⨯=-GBB D V , ,36264==∴h 即BD 到平面11D GB 的距离等于362.小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 4 异面直线的距离此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离.例4已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离.思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解答过程:如图所示,取BD 的中点F ,连结EF ,SF ,CF ,EF ∴为BCD ∆的中位线,EF ∴∥CD CD ∴,∥面SEF ,CD ∴到平面SEF 的距离即为两异面直线间的距离.又 线面之间的距离可转化为线CD 上一点C 到平面SEF 的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是 AB 、BC 、BD 的中点,2,2,621,62=====∴SC DF CD EF CD 33222621312131=⋅⋅⋅⋅=⋅⋅⋅⋅=∴-SC DF EF V CEF S 在Rt SCE ∆中,3222=+=CE SC SE在Rt SCF ∆中,30224422=++=+=CF SC SF又3,6=∴=∆SEF S EF由于h S V V SEF CEF S SEF C ⋅⋅==∆--31,即332331=⋅⋅h ,解得332=h 故CD 与SE 间的距离为332. 小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 5利用空间向量求空间距离和角众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性. 例5.如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==.(1)求证:1E B F D ,,,四点共面;(2)若点G 在BC 上,23BG =,点M 在1BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.命题意图:本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力. 过程指引:解法一:(1) 如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1AE DN ==,12CF ND ==. 因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形.从而EN AD ∥,1FD CN ∥. 又因为AD BC ∥,所以EN BC ∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥.因此,1E B F D ,,,四点共面.(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,tan tan BM BG BGM BG CFB == ∠∠23132BC BG CF ==⨯= .因为AE BM ∥,所以ABME 为平行四边形,从而AB EM ∥. 又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B . (3)如图,连结EH .因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH于是EHM ∠是所求的二面角的平面角,即EHM θ=∠因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB == ∠∠1BM ==tan EM MH θ=解法二:CAHMDEF 1B1A1D1CN(1)建立如图所示的坐标系,则(301)BE = ,,,(032)BF =,,,1(333)BD = ,,, 所以1BD BE BF =+ ,故1BD ,BE ,BF共面.又它们有公共点B ,所以1E B F D ,,,四点共面. (2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭,,, 而(032)BF = ,,,由题设得23203GM BF z =-+= ,得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =,,, 又1(003)BB = ,,,(030)BC =,,,所以10ME BB = ,0ME BC = ,从而1ME BB ⊥,ME BC ⊥.故ME ⊥平面11BCC B .(3)设向量(3)BP x y = ,,⊥截面1EBFD ,于是BP BE ⊥,BP BF⊥. 而(301)BE = ,,,(032)BF = ,,,得330BP BE x =+= ,360BP BF y =+=,解得1x =-,2y =-,所以(123)BP =--,,. 又(300)BA = ,,⊥平面11BCC B ,所以BP 和BA的夹角等于θ或πθ-(θ为锐角).于是cos BP BA BP BAθ==tan θ=. 考点二:三视图问题例6. 某几何体的三视图如图所示,P 是正方形ABCD 对角线的交点,G 是PB 的中点。

相关文档
最新文档