小学数学数与代数知识整理

合集下载

人教版小学数学数与代数知识梳理

人教版小学数学数与代数知识梳理

人教版小学数学数与代数知识梳理建议复内容:1.数的认识:能认、读、写亿以内的数,了解十进制计数法,会用万、亿为单位表示大数,掌握各数位的名称和数字所表示的意义。

2.数的运算:掌握整数、小数、分数、百分数的加减乘除法,了解运算法则和性质。

3.比和比例:掌握比的概念和比例的计算方法,能解决实际问题。

4.代数与方程:了解代数的基本概念和符号,能用代数式表示实际问题并求解方程。

5.解决问题:能运用所学知识解决实际问题,提高数学思维能力和实际运用能力。

数是我们日常生活中不可或缺的元素,我们需要认识、读写亿以内的数,并了解十进制计数法和各数位的意义。

同时,我们需要掌握整数、小数、分数、百分数的加减乘除法,以及运算法则和性质。

比和比例也是数学中重要的概念,我们需要掌握比的概念和比例的计算方法,能解决实际问题。

代数与方程也是数学中的基础概念,我们需要了解代数的基本概念和符号,能用代数式表示实际问题并求解方程。

最后,我们需要能够运用所学知识解决实际问题,提高数学思维能力和实际运用能力。

在1到100的自然数范围内,可以找到某个自然数的所有因数,同时也可以找到两个自然数的公因数和最大公因数。

教材对于“整除”的具体要求是,要直接为研究分数做准备。

在复中,少介绍用整除知识解决实际问题的例子。

数的整除归根结底是讲解整数的性质,其中概念多且联系密切,联系方式也是多种多样的,包括并列关系、包含关系和引申关系。

奇数和偶数都是整数中的基本概念,同时还有能够被2、3、5整除的数的特征、互质数、因数公因数最大公因数、质数、质因数、分解质因数、整除、倍数、合数、公倍数和最小公倍数等概念。

关于数与计算的知识,新课标对其整体要求是:能够口算百以内一位数乘、除两位数,能够笔算三位数乘两位数的乘法和三位数除以两位数的除法。

同时,能够结合现实素材理解运算顺序,并进行简单的整数四则混合运算。

还需要探索和理解运算定律,能够应用运算定律进行简便运算。

在具体运算和解决简单实际问题的过程中,需要体会加与减、乘与除的互逆关系。

小学数学1—6年级数与代数知识点汇总

小学数学1—6年级数与代数知识点汇总
3的倍数:各位上数的和一定是3的倍数。
五、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。
六、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
七、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
八、在1—20这些数中:(1既不是素数,也不是合数)
奇数:1、3、5、7、9、11、13、15、17、19。
二、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变。
一、运算定律:
二、乘、除法的互化。(小技巧:符号是相反的;两个数相乘得“1”。)
三、求近似数的方法。
①四舍五入法。②进一法。③去尾法。
四、积与因数、商与被除数的大小比较:
(三)式与方程
01用字母表示数
一、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“·”,也可以省略不写。在省略数字与字母之间的乘号时,要把数字写在字母的前面。
一、4×3 = 12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
二、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
三、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。
四、5的倍数:个位上的数是5或0。
2的倍数:个位上的数是2、4、6、8或0。2的倍数都是双数。
偶数:2、4、6、8、10、12、14、16、18、20。
素数:2、3、5、7、11、13、17、19。(共8个,和为77。)
合数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。)
九、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。
十、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。

小学二年级数学知识点总结数与代数

小学二年级数学知识点总结数与代数

数与代数是小学数学的重要内容,它包含了数的概念和运算,以及代数的初步应用。

小学二年级是数学学习的基础阶段,下面是关于数与代数的知识点总结:一、数的概念与认识1.数的读法和写法:认识个位数、十位数、百位数。

2.数的比较:使用大于、小于、等于符号比较两个数的大小。

3.账数法:学会使用中文的读法写大数。

4.排列、顺序:掌握正序、倒序和顺序写数的方法。

二、数的加减法1.数的加法:掌握数的加法原理和加法法则,进行小数的口算和写法。

2.数的减法:认识减法符号“-”,掌握数的减法原理和减法法则,进行小数的口算和写法。

3.加减法的运算顺序:根据计算顺序进行加减法的综合运算,掌握两步运算的方法。

三、乘法和除法1.数的乘法:认识乘法符号“×”,掌握数的乘法原理和乘法法则,进行小乘法口算。

2.数的除法:学习使用除法符号“÷”,了解数的除法原理和除法法则,进行小除法口算。

3.乘法和除法的关系:掌握乘法和除法的逆运算关系,理解乘法和除法的互逆关系。

四、数的应用:日期和时间、长度和面积1.日期和时间:认识年、月、日、星期,学会写日期,并进行简单的日期计算。

2.长度的测量:认识米、厘米、分米,学会使用简单的长度单位进行测量,并进行长度之间的换算。

3.面积的计算:认识平方厘米和平方米,并进行简单的面积计算。

五、数的图形和图形的应用1.认识图形:认识正方形、长方形、三角形、圆形等基本图形,并学会用简单的方法画出这些图形。

2.表格和图表的应用:了解和使用简单的表格和图表进行数据的整理和分析。

六、分数和小数1.分数的认识:了解分数的概念,认识分数的分子和分母,理解分数与整数的关系。

2.小数的认识:了解小数的概念,认识小数点的作用和写法,学习小数的读法和写法,进行小数的加减法运算。

七、代数的初步应用1.数式:了解数式的概念,学会根据实际情况写出数式,并进行简单的数式计算。

2.方程:学习简单的一元一次方程,并进行解方程的初步应用。

小学数学数与代数知识点汇总

小学数学数与代数知识点汇总

小学数学数与代数知识点汇总一、数与运算1.数的认识:自然数、整数、有理数、实数2.顺序数的比较:大小比较、比大小的符号3.加法与减法:加法和减法的意义、加法和减法的性质、整数的加减法4.乘法与除法:乘法和除法的意义、乘法和除法的性质、整数的乘除法5.数的倍数和因数:整数的倍数、整数的因数、公倍数、最大公约数、最小公倍数6.小数:小数的读法、小数的比较、小数的四则运算7.分数:分数的意义、分数的大小比较、分数的加减法、分数的乘除法8.百分数:百分数的意义、百分数的相互转化、百分数的加减乘除二、代数式和方程1.代数式的认识:代数式的定义、代数式的运算、多项式2.代数式的计算:代数式的约分、代数式的化简、代数式的展开与因式分解3.代数式的应用:根据实际问题编写代数式、代数式的求值4.方程的认识:方程的定义、方程的解、解方程的意义、解方程的方法5.解一元一次方程:一元一次方程的解法、方程的意义、方程的实际应用6.解一元一次不等式:一元一次不等式的解法、不等式的意义、不等式的实际应用7.解一元一次方程组:一元一次方程组的解法、方程组的意义、方程组的实际应用三、数的性质和运算1.数的分类:分数、小数、整数及其运算2.数的性质:数的大小比较、数的相反数、数的绝对值、数的相反数与绝对值的关系3.定量关系:数与长度的关系、数与面积的关系、数与体积的关系4.倍数与公约数:整数的倍数和倍数的性质、整数的公约数和公约数的性质5.比例:比例的意义、比例的性质、比例的应用6.百分数:百分数的意义、百分数的相互转化、加减乘除百分数的方法7.降幂与乘方:降幂与升幂的意义、乘方及其运算法则、次乘方的意义和运算四、数据的应用1.数据的收集:问卷调查、实地调查、统计资料2.数据的整理:频数表、频数图、折线图3.数据的分析:数据的中心趋势、数据的离散程度、数据的比较4.数据的应用:数据的解读、数据的预测、数据的比较和判断五、几何基础1.点、线、面:基本图形的认识、基本图形的命名2.直线与线段:直线、线段、射线的认识和性质3.角的认识:角的定义、角的分类、角的性质4.三角形:三角形的分类、三角形的性质、等腰三角形、等边三角形5.四边形:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质6.圆:圆的性质、圆的周长和面积7.空间几何图形:长方体、正方体、棱柱、棱锥、棱台、球体等的性质六、图形的应用1.图形的绘制:使用尺规作图仪器绘制图形2.图形的变换:平移、旋转、对称、放缩等图形的变换3.图形的投影:直线的平行投影、线段的视、上、右投影、线段的和、差投影以上是小学数学中的数与代数知识点汇总,希望对你的学习有所帮助。

小学数学总复习数与代数知识点与例题

小学数学总复习数与代数知识点与例题

小学数学总复习数与代数知识点与例题数与代数一、数的认识——整数1、数的分类:数可以分为整数和小数两种。

2、正数、负数:正数大于0,负数小于0,0既不是正数也不是负数。

3、数位顺序表:数位顺序表可以帮助我们表示和读写较大的整数。

4、数的读法和写法:读法是从高位到低位,写法是从高位到低位,没有单位的数位上直接写数字0.5、多位数的改写和省略尾数:将一个较大的数改写成用“万”或“亿”作单位的数,近似数时用四舍五入法舍去尾数。

6、倍数和因数:自然数a和b的积c就是a和b的倍数,a和b就是c的因数。

7、2、5、3的倍数特征:2的倍数的个位数是偶数,5的倍数的个位数是0或5,3的倍数各位数字之和是3的倍数。

5的倍数特征:个位上是0或5的数。

3的倍数特征:各个数位上的数字之和是3的倍数,这个数就是3的倍数。

同时是2、5、3的倍数的特征:各个数位上的数字和是3的倍数,且个位上是5.例3:在12、15、20、30、85、98、120、234和1200中,2的倍数有5个,5的倍数有3个,3的倍数有5个,既是2的倍数又是5的倍数有1个,既是3的倍数又是5的倍数有0个。

要使31□这个数有因数3,□里可以填2.要使43□既是2的倍数,又是3的倍数,□里可以填6.一个三位数,既有因数2和3,又是5的倍数,这个数最小是120.定义:①是2的倍数的数叫做偶数,最小的偶数是2.②不是2的倍数的数叫做奇数,最小的奇数是1.数的奇偶性:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数奇数×奇数=奇数定义:①一个数只有1和它本身两个因数,像这样的数叫做质数(或素数)。

②一个数除了1和它本身还有别的因数,像这样的数叫做合数。

1既不是质数,也不是合数;最小的质数是2,最小的合数是4;2是唯一的偶质数。

分解质因数:每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。

例4:在自然数1-20中,奇数有10个,偶数有10个,质数有8个,合数有12个,既是偶数又是质数的有1个,既是奇数又是合数的有0个。

小学数学数与代数知识点整理

小学数学数与代数知识点整理

小学数学数与代数知识点整理一、数的大小和比较1.数的比较:数的大小关系,如大于、小于、等于。

2.数的顺序:自然数、整数、有理数的大小顺序。

二、数的性质和运算1.数的分类:自然数、整数、有理数、无理数。

2.数的性质:奇数、偶数、质数、合数。

3.数的运算:加法、减法、乘法、除法的基本概念和运算规则。

4.数的整除性:倍数、约数、公因数、最大公约数等概念。

三、数的分数表示和运算1.分数的概念:分子、分母、真分数、假分数。

2.分数与整数的运算:加法、减法、乘法、除法。

3.分数相比较:大小比较和等值判断。

四、数的小数表示和运算1.小数的定义:小数点的概念。

2.小数的读法和写法:整数、小数部分的读法和写法。

3.小数与分数的相互转化。

4.小数运算:加法、减法、乘法、除法。

五、数的倍数和约数1.倍数的概念:一个数能整除另一个数。

2.约数的概念:一个数能被另一个数整除。

3.最大公约数:两个数公共的约数中最大的那个数。

4.最小公倍数:两个数公共的倍数中最小的那个数。

六、数的代数式和数的应用1.代数式的概念:数、字母和运算符号的组合。

2.代数式的计算:代数式的加减乘除运算。

3.代数式的应用:通过代数式解决实际问题。

七、数的方程式1.方程式的概念:等号连接的代数式。

2.一元一次方程式:解方程的方法和步骤。

3.方程式的应用:通过方程式解决实际问题。

八、数的图形的认识与应用1.数的图形的概念:点、线、面。

2.平凡形的认识:正方形、长方形、三角形、圆形、梯形等。

3.图形的属性:边、角、面积、周长等。

4.图形的运算:图形的加法和减法。

总结:小学数学数与代数知识点主要包括数的大小和比较、数的性质和运算、数的分数表示和运算、数的小数表示和运算、数的倍数和约数、数的代数式和数的应用、数的方程式以及数的图形的认识与应用等内容。

在学习过程中,要注重理论与实践相结合,通过解决实际问题来巩固所学知识。

同时,要培养学生的计算和推理能力,让他们能够自主思考和解决问题。

小学数学1-6年级数与代数知识点汇总

小学数学1-6年级数与代数知识点汇总

小学数学1-6年级数与代数知识点汇总(一)数的认识一、一个物体也没有,用0表示。

0和1、2、3……都是自然数。

自然数是整数。

二、最小的一位数是1,最小的自然数是0。

三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。

“+4”读作正四。

“-4”读作负四。

+4也可以写成4。

四、像+4、19、+8844这样的数都是正数。

像-4、-11、-7、-155这样的数都是负数。

五、0既不是正数,也不是负数。

正数都大于0,负数都小于0。

六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。

七、通常情况下,盈利用正数表示,亏损用负数表示。

八、通常情况下,上车人数用正数表示,下车人数用负数表示。

九、通常情况下,收入用正数表示,支出用负数表示。

十、通常情况下,上升用正数表示,下降用负数表示。

一、分母是10、100、1000……的分数都可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。

每相邻两个计数单位间的进率都是10。

三、每个计数单位所占的位置,叫做数位。

数位是按照一定的顺序排列的。

四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

九、整数和小数的数位顺序表:一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

表示其中一份的数,是这个分数的分数单位。

小学数学数与代数知识点汇总

小学数学数与代数知识点汇总

小学数学《数与代数》知识点汇总(一)数的认识1整数【正数、0、负数】一、一个物体也没有,用0表示。

0和1、2、3……都是自然数。

自然数是整数。

二、最小的一位数是1,最小的自然数是0。

三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。

“+4”读作正四。

“-4”读作负四。

+4也可以写成4。

四、像 +4、19、+8844这样的数都是正数。

像-4、-11、-7、-155这样的数都是负数。

五、0既不是正数,也不是负数。

正数都大于0,负数都小于0。

六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。

七、通常情况下,盈利用正数表示,亏损用负数表示。

八、通常情况下,上车人数用正数表示,下车人数用负数表示。

九、通常情况下,收入用正数表示,支出用负数表示。

十、通常情况下,上升用正数表示,下降用负数表示。

2小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。

每相邻两个计数单位间的进率都是10。

三、每个计数单位所占的位置,叫做数位。

数位是按照一定的顺序排列的。

四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

九、整数和小数的数位顺序表:3分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学数与代数知识梳理一概念(一)整数1 、整数的意义自然数和0都是整数。

像-1,-2,-3……这样的数也叫整数。

2 、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数 28=2×2×7几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。

其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

例如:15和7互质,14和7不互质。

两个合数的公约数只有1时,这两个合数互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、……是2、3的公倍数,6是它们的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数1 小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……在小数里,每相邻两个计数单位之间的进率都是10。

小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2小数的分类纯小数:整数部分是零的小数,叫做纯小数。

例如: 0.25 、 0.368 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。

例如: 3.25 、 5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。

例如: 41.7 、 25.3 、 0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。

例如: 4.33 …… 3.1415926 ……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

例如: 3.555 …… 0.0333 …… 12.109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。

例如: 3.99 ……的循环节是“ 9 ”, 0.5454 ……的循环节是“ 54 ”。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。

例如: 3.111 …… 0.5656 ……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。

3.1222 …… 0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。

如果循环节只有一个数字,就只在它的上面点一个点。

例如: 3.777 ……简写作0.5302302 ……简写作。

(三)分数1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2 分数的分类真分数:分子比分母小的分数叫做真分数。

真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3 约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数表示的两个数量间的关系,而不是表示一种数量,所以不带单位名称。

二方法(一)数的读法和写法1. 整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

3000600(读成“三百万六百”或“三百万零六百”都对2. 整数的写法:(略)(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。

2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如: 1302490015 省略亿后面的尾数是 13 亿。

3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。

例如:省略 345900 万后面的尾数约是 35 万。

省略 4725097420 亿后面的尾数约是 47 亿。

4. 大小比较1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。

分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留两位小数。

3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除1. 把一个合数分解质因数,通常用短除法。

先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

(五)约分和通分约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

相关文档
最新文档