顺序栈的各种基本运算
C++栈的基本操作

C++栈的基本操作1// zhan.cpp : 定义控制台应⽤程序的⼊⼝点。
2//34 #include "stdafx.h"5 #include <iostream>6using namespace std;7 typedef struct stacknode8 {9int data;10struct stacknode *next;11 }stacknode,*LinkStack;1213//判断栈为空14int StackEmpty(LinkStack &top)15 {16if(top ->next == NULL)17return1;18else19return0;20 }2122//⼊栈函数23 LinkStack push(LinkStack &top,int value)24 {25 LinkStack p = new stacknode;26if(p != NULL)27 {28 p ->data = value;//可以理解为在链表尾部插⼊⼀个节点。
29 p ->next = top ->next;30 top ->next = p;31 }32else33 cout << "没有内存可分配" << endl;34return top;35 }3637//出栈函数38int pop(LinkStack &top)39 {40 LinkStack temp = new stacknode;41int data;42if(StackEmpty(top))43 cout << "该栈为空!" << endl;44else45 {46 temp = top ->next;//可以理解为删除⼀个节点47 data = temp ->data;48 top ->next = temp ->next;49 delete(temp);50 }51return data;52 }5354//打印函数55void Print(LinkStack &top)56 {57 LinkStack top1 = top; //时刻要注意,我们不可以改变链表本⾝的值及指向,不过我们可以找别⼈来完成此事。
顺序栈的插入和删除

实验四顺序栈的插入和删除姓名:学号:日期:一、实验目的:1.熟悉栈的基本结构、特点2.熟悉顺序栈的插入和删除的基本算法和实现二、实验条件:1.硬件:一台微机2.软件:Windows操作系统和C语言系统(MS VC++6.0)三、实验方法:确定存储结构后,上机调试实现顺序栈的插入和删除运算。
四、实验要求:1、编写函数实现顺序栈中的删除功能2、编写函数实现顺序栈中的插入功能2.编写程序实现以下功能(1) 创建一个顺序栈:12,15,87,96,3;(2) 调用删除函数,分别令栈中的前三个元素出栈;(3) 调用插入函数,使元素6入栈;(4) 输出最终顺序栈中的元素。
五、算法流程图:六、实验算法:#include <stdio.h>#define MAXSIZE 100 /*栈中最多100个元素*/int stack[MAXSIZE];int top=-1;void push(int x) /*进栈函数*/{if(top==MAXSIZE-1){printf("栈满溢出\n");exit(1); /*非正常中断*/}else{top++;stack[top]=x;}}int pop() /*出栈函数*/{int x;if(top==-1){printf("栈空溢出\n");exit(1); /*非正常中断*/}else{x=stack[top];top--;}return x;}main(){int n,x=1,i;printf("\n请输入进栈初始化元素:(0为结束符)\n");while(x){scanf("%d",&x);push(x);}top--;printf("\n请输入出栈个数:\n");scanf("%d",&n);printf("\n出栈元素依次为:\n");for(;n;n--){printf("%d ",pop());}printf("\n请输入进栈元素:\n");scanf("%d",&x);push(x);printf("栈内元素有:\n");for(i=0;i<=top;i++){printf("%d ",stack[i]);}printf("\n");}七、算法介绍:1.算法功能:输入一个顺序栈,按要求出栈,并进栈,然后再将链表输出2.算法利用宏定义MAXSIZE,提高算法兼容性八、效果图:。
顺序栈的基本运算

顺序栈的基本运算顺序栈是一种经典的数据结构,它是基于数组实现的一种数据结构,具有先进后出(LIFO)的特点。
顺序栈在计算机科学和软件开发中有广泛的应用,是我们学习数据结构和算法的重要基础。
顺序栈的基本运算主要包括入栈、出栈、判空和获取栈顶元素。
下面我们将逐一介绍这些运算。
1. 入栈:入栈即向顺序栈中添加一个元素。
入栈操作需要把元素放入数组中的下一个空闲位置,并更新栈顶指针。
当数组已满时,无法进行入栈操作,这种情况称为栈溢出。
2. 出栈:出栈即从顺序栈中移除栈顶元素。
出栈操作实际上是将栈顶指针减一,并返回栈顶元素的值。
当栈为空时,无法进行出栈操作,这种情况称为栈下溢。
3. 判空:判空操作是判断顺序栈中是否没有任何元素。
可以通过检查栈顶指针是否为-1来判断栈是否为空。
4. 获取栈顶元素:获取栈顶元素是通过返回栈顶指针指向的元素来实现的。
获取栈顶元素不会改变栈的状态。
以上就是顺序栈的基本运算,通过这些运算,我们可以方便地进行栈的操作。
顺序栈的使用可以帮助我们解决许多实际问题。
顺序栈在实际中有许多应用。
例如,我们可以使用顺序栈来实现浏览器的前进和后退功能。
每次访问一个新的网页时,我们可以将当前网页的信息入栈;当点击后退按钮时,我们可以出栈以获取上一个访问过的网页信息。
另一个例子是编辑器中的撤销操作,我们可以使用顺序栈来存储每次操作的历史记录,当需要进行撤销操作时,可以通过出栈操作来获取前一个状态。
在编程中使用顺序栈时,我们要注意栈溢出和栈下溢的情况。
为了避免栈溢出,我们应该在进行入栈操作之前判断栈是否已满;为了避免栈下溢,我们应该在进行出栈操作之前判断栈是否为空。
总结而言,顺序栈是一种简单而有效的数据结构,可以帮助我们解决许多实际问题。
通过掌握顺序栈的基本运算,我们可以更好地理解数据结构和算法的原理,为软件开发和问题解决提供有力支持。
大学数据结构课件--第3章 栈和队列

栈满 top-base=stacksize
top
F
E
D C B
top top top top top top base
入栈PUSH(s,x):s[top++]=x; top 出栈 POP(s,x):x=s[--top]; top
base
4
A
3.1 栈
例1:一个栈的输入序列为1,2,3,若在入栈的过程中 允许出栈,则可能得到的出栈序列是什么? 答: 可以通过穷举所有可能性来求解:
3.2 栈的应用举例
二、表达式求值
“算符优先法”
一个表达式由操作数、运算符和界限符组成。 # 例如:3*(7-2*3) (1)要正确求值,首先了解算术四则运算的规则 a.从左算到右 b.先乘除后加减 c.先括号内,后括号外 所以,3*(7-2*3)=3*(7-6)=3*1=3
9
3.2 栈的应用举例
InitStack(S); while (!QueueEmpty(Q))
{DeQueue(Q,d);push(S,d);}
while (!StackEmpty(S)) {pop(S,d);EnQueue(Q,d);} }
第3章 栈和队列
教学要求:
1、掌握栈和队列的定义、特性,并能正确应用它们解决实 际问题;
用一组地址连续的存储单元依次存放从队头到队尾的元素, 设指针front和rear分别指示队头元素和队尾元素的位置。
Q.rear 5 4 Q.rear 3 2 3 2 5 4 Q.rear 3 3 5 4 5 4
F E D C
C B A
Q.front
2 1 0
C B
Q.front 2 1 0
数据结构实验报告之栈和队列

数据结构实验报告之栈和队列1. 编写程序实现顺序栈的各种基本运算:初始化、销毁、清空、判断是否为空栈、求栈的长度、取栈顶元素、进栈、出栈。
在此基础上设计⼀个主程序完成如下功能:(1)初始化栈s;(2)判断栈s是否为空;(3)依次进栈元素a,b,c,d;(4)判断栈s是否为空;(5)输出栈s的长度;(6)栈⾥元素依次出栈,并输出;(7)销毁栈s。
#include<stdio.h>#include<malloc.h>#include<stdlib.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2typedef int Status;typedef char SElemType;#define STACK_INIT_SIZE 100 //存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef struct {SElemType *base; //栈底指针SElemType *top; //栈顶指针int stacksize; //当前已分配的存储空间} SqStack;Status InitStack(SqStack &S) { //构造⼀个空栈SS.base = (SElemType*)malloc(STACK_INIT_SIZE * sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackStatus StackLength(SqStack S) {return S.top - S.base;}//StackLengthStatus DestoryStack(SqStack &S) {S.top = S.base;free(S.base);//若base的值为NULL,则表明栈结构不存在S.base = NULL;S.top = NULL;S.stacksize = 0;return OK;}Status StackEmpty(SqStack S) {if (S.top == S.base)return1;elsereturn0;}//StackEmptyStatus GetTop(SqStack S, SElemType &e) {if (S.top == S.base) return ERROR;e = *(S.top - 1);return OK;}//GetTopStatus Push(SqStack &S, SElemType e) {if (S.top - S.base >= S.stacksize) {S.base = (SElemType*)realloc(S.base,(S.stacksize + STACKINCREMENT) * sizeof(SElemType));if (!S.base)exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize+= STACKINCREMENT;}*S.top++=e;return OK;}//PushStatus Pop(SqStack &S, SElemType &e) {//判断栈是否为空if (S.base == S.top)return ERROR;e = *(S.top - 1);S.top--;return OK;}//Popvoid main(){SqStack s;SElemType e;printf("(1)初始化栈\n");InitStack(s);printf("(2)The stack is ");if (StackEmpty(s))printf("empty.\n");elseprintf("not empty.\n");printf("(3)依次进栈元素a,b,c,d\n");Push(s, 'a');Push(s, 'b');Push(s, 'c');Push(s, 'd');printf("(4)The stack is ");if (StackEmpty(s))printf("empty.\n");elseprintf("not empty.\n");printf("(5)The length of the stack is %d\n", StackLength(s));printf("(6)The stack is ");while (!StackEmpty(s)){Pop(s, e);printf("%c \n", e);}printf("(7)销毁栈s");DestoryStack(s);}运⾏结果:2. 编写程序实现链队列的各种基本运算:初始化、销毁、清空、判断是否为空队列、求队列的长度、取队列的头元素、⼊队、出队。
栈的出队顺序

栈的出队顺序一、栈的出队顺序——先进后出的数据结构二、栈的基本操作——入栈和出栈栈的基本操作包括入栈和出栈。
入栈是指将元素添加到栈的顶部,出栈是指将栈顶的元素移除。
入栈和出栈是栈的两个基本操作,它们是栈的核心功能。
通过这两个操作,我们可以实现对栈中元素的添加和删除。
三、栈的应用——逆波兰表达式求值逆波兰表达式是一种不需要括号来标识优先级的数学表达式表示方法。
在逆波兰表达式中,操作符位于操作数的后面,这样可以避免使用括号来改变运算的顺序。
逆波兰表达式求值是栈的一个典型应用场景。
通过使用栈来保存操作数,我们可以按照逆波兰表达式的顺序依次计算出结果。
四、栈的应用——括号匹配括号匹配是栈的另一个重要应用场景。
在编程中,经常需要对括号进行匹配判断,以确保代码的正确性。
使用栈可以方便地实现对括号的匹配判断。
当遇到左括号时,将其入栈;当遇到右括号时,与栈顶元素进行匹配判断。
如果匹配成功,则将栈顶元素出栈;如果匹配失败,则表明括号不匹配。
五、栈的应用——浏览器的前进和后退功能浏览器的前进和后退功能是栈的又一个典型应用。
当我们在浏览器中点击前进按钮时,当前页面的URL将被压入栈中;当我们点击后退按钮时,栈顶元素将被弹出并打开对应的页面。
通过使用栈来保存浏览历史记录,我们可以方便地实现浏览器的前进和后退功能。
六、栈的应用——实现递归递归是一种常见的编程技巧,它可以简化代码的实现。
在递归过程中,每一次递归调用都会创建一个新的栈帧,用于保存函数的局部变量和返回地址。
通过使用栈来保存每个栈帧,我们可以实现递归的执行。
七、栈的应用——系统调用和中断处理在操作系统中,系统调用和中断处理是栈的重要应用场景。
当发生系统调用或中断时,当前的程序状态将被保存到栈中,包括程序计数器、寄存器的值和局部变量等。
通过使用栈来保存这些信息,操作系统可以在中断处理或系统调用结束后恢复程序的执行。
八、栈的应用——迷宫求解迷宫求解是一个经典的问题,可以通过使用栈来解决。
实现顺序栈的各种基本运算遇到的问题和解决方法

实现顺序栈的各种基本运算遇到的问题和解决方法顺序栈是一种基于数组实现的栈结构,它具有后进先出的特性。
在实现顺序栈的过程中,我们可能会遇到一些问题,如栈溢出、栈空等,本文将探讨这些问题以及相应的解决方法。
问题一:栈溢出栈溢出是指栈中元素的个数超过了栈的最大容量,导致继续进行入栈操作时无法继续存储元素的问题。
栈溢出常见于栈的容量设置不合理或者操作不当,我们可以采取以下方法解决该问题:1. 增加栈的容量:可以通过增大栈的容量,例如增加数组的长度或者重新分配更大的内存空间,来解决栈溢出的问题。
这种方法虽然简单,但需要消耗额外的内存空间。
2. 动态扩容:可以采用动态扩容的方式来解决栈溢出的问题。
当栈满时,先申请一块更大的内存空间,然后将原有的元素拷贝到新的内存空间中,最后再将新的元素入栈。
这种方法可以减少频繁的内存申请与释放操作,提高效率。
3. 检查栈是否已满:在进行入栈操作之前,先判断栈是否已满。
如果栈已满,则停止入栈操作,并给出相应的提示。
这样可以避免栈溢出的发生。
问题二:栈空栈空是指在执行出栈操作时,栈中没有元素可供出栈的情况。
栈空一般发生在执行过多的出栈操作后,我们可以采取以下方法解决该问题:1. 检查栈是否为空:在进行出栈操作之前,先判断栈是否为空。
如果栈为空,则停止出栈操作,并给出相应的提示。
这样可以避免栈空的发生。
2. 合理控制出栈操作:在编写代码时,合理控制出栈操作的调用次数。
避免过多的出栈操作导致栈空的问题。
3. 异常处理:在出栈操作时,可以使用异常处理机制来捕获栈空异常,并给出相应的提示或者处理方法。
这样可以防止程序崩溃或者出现其他错误。
问题三:栈的操作顺序问题栈的操作顺序问题是指在执行入栈和出栈操作时,顺序不当导致栈状态出现错误的情况。
为了避免栈操作顺序问题,我们可以注意以下几点:1. 入栈和出栈要成对出现:每次进行入栈操作后,应该紧跟一个相应的出栈操作,保证栈状态的正确性。
如果无法保证入栈和出栈成对出现,需要重新考虑栈的设计或者操作。
数据结构 3.1栈和队列(顺序及链栈定义和应用)

假设从终端接受了这样两行字符: whli##ilr#e(s#*s) outcha@putchar(*s=#++);
则实际有效的是下列两行: while (*s) putchar(*s++);
例4:迷宫求解
通常用 “回溯 试探方 法”求 解
##########
# Q # $ $ $ #
#
# #$ $ $ # #
3.1 栈的类型定义
实例引进 考虑问题:一个死胡同,宽度只能够一辆车进 出,现有三辆汽车依次进入胡同停车,后A车 要离开,如何处理? 用计算机模拟以上问题
小花车
小明家 小花家 能能家 点点家 强强家
小花车
点点车 强强车
基本概念
栈(STACK) ——一种限定性的 数据结构,限定只能在表的一端 进行插入和删除的线性表。
# $ $ # #
#
## ##
##
# #
##
# # #
#
## # ## # # #
#
Q #
##########
求迷宫路径算法的基本思想
若当前位置“可通”,则纳入路径,继续( 向东)前进; 若当前位置“不可通”,则后退,换方向 继续探索; 若四周“均无通路”,则将当前位置从路 径中删除出去。
一 顺序栈
顺序栈存储的特点 顺序栈各个基本操作顺序实现 完整的顺序栈c语言程序 模拟停车场
一 顺序栈
存储特点
利用一组地址连续的存储单元依次存放 自栈底到栈顶的数据元素
c语言中可用数组来实现顺序栈
设置栈顶指针Top
elem[arrmax]
a1 a2 a3 a4
Top
top的值
elem[arrmax]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
顺序栈的各种基本运算实验内容与要求:
编写一个程序,实现顺序栈的各种基本运算,并在基础上完成以下功能:
1)初始化顺序栈;
2)判断顺序栈是否为空;
3)依次进栈元素a,b,c,d,e;
4)判断顺序栈是否为空;
5)输出栈长度;
6)输出从栈顶到栈底的元素;
7)读出栈顶元素;
8)删除栈顶元素;
9)输出从栈顶到栈底的元素;
10)判断顺序栈是否为空;
11)释放栈。
代码如下:
#include<stdio.h>
#include<malloc.h>
#include<stdlib.h>
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define NULL 0
#define OVERFLOW -2
typedef int Status;
typedef char SElemType;
Status visit(SElemType e);
#define STACK_INIT_SIZE 100 // 栈存储空间的初始分配量
#define STACKINCREMENT 10 // 存储空间分配增量
typedef struct {
SElemType *base; // 存储数据元素的数组
SElemType *top; // 栈顶指针
int stacksize; // 当前分配的栈空间大小,以sizeof(SElemType)为单位}SqStack;
Status InitStack (SqStack &S) {
// 构造一个空栈S
S.base = (SElemType *)malloc(STACK_INIT_SIZE * sizeof(SElemType));
if (!S.base) exit (OVERFLOW);
S.top = S.base;
S.stacksize = STACK_INIT_SIZE;
return OK;
}// InitStack
Status DestroyStack (SqStack &S) {
// 销毁栈S
free(S.base);
S.base=NULL;
S.top=NULL;
S.stacksize=0;
return OK;
}// DestroyStack
Status StackEmpty (SqStack S) {
// 判断栈S是否为空
if(S.top==S.base)
return TRUE;
else
return FALSE;
}// StackEmpty
Status Push (SqStack &S, SElemType e) {
// 插入元素e为新的栈顶元素
if (S.top - S.base >= S.stacksize) {
// 栈满,追加存储空间
S.base = (SElemType *) realloc(S.base,
(S.stacksize + STACKINCREMENT) * sizeof (SElemType));
if (!S.base) exit (OVERFLOW); //存储分配失败
S.top = S.base + S.stacksize;
S.stacksize += STACKINCREMENT;
}
*S.top++ = e;
return OK;
}// Push
int StackLength (SqStack S) {
// 返回S的元素个数,即栈的长度
return S.top-S.base;
}// StackLength
Status GetTop (SqStack S, SElemType &e) {
// 若栈不空,则用e返回S的栈顶元素
if(S.top==S.base) return ERROR;
e = *(S.top-1);
return OK;
}// GetTop
Status Pop (SqStack &S, SElemType &e) {
// 若栈不空,则删除S的栈顶元素
if(S.top==S.base) return ERROR;
e= * --S.top;
return OK;
}// Pop
Status StackTraverse (SqStack S, Status( *visit)(SElemType)) { // 遍历栈
while(S.top!=S.base)
visit(*--S.top);
return OK;
}// StackTraverse
void main() {
// 主函数
SElemType e;
SqStack S;
printf("(1)初始化顺序栈。
\n");
InitStack(S);
printf("(2)判断顺序栈是否为空:\n");
StackEmpty(S);
printf("(3)依次进栈元素a,b,c,d,e:\n");
Push(S,'a');
Push(S,'b');
Push(S,'c');
Push(S,'d');
Push(S,'e');
printf("(4)判断顺序栈是否为空:\n");
StackEmpty(S);
printf("(5)输出栈长度:%d\n",StackLength(S));
printf("(6)输出从栈顶到栈底的元素:\n");
StackTraverse(S,visit);
printf("(7)读出栈顶元素:%d\n",GetTop(S,e));
printf("(8)删除栈顶元素:%d\n",Pop(S,e));
printf("(9)输出从栈顶到栈底的元素:\n");
StackTraverse(S,visit);
printf("(10)判断顺序栈是否为空\n");
StackEmpty(S);
printf("(11)释放栈。
");
DestroyStack(S);
}。