超声造影之基本原理篇

合集下载

超声造影原理及临床应用简介

超声造影原理及临床应用简介

超声造影原理及临床应用简介1968年,Gramiak首次用生理盐水与靛青绿混合震荡液,经心导管注射,实现了右心腔显影,开创了超声造影(contrast-enhanced ultrasound imaging)的先河。

随着造影剂的不断发展、超声仪器分辨率的提高以及新型成像技术的应用,超声造影的应用范围日益扩展。

(一) 超声造影原理:超声波遇见散射体(小于入射声波的界面)会发生散射,其散射的强弱与散射体的大小。

形状及与周边组织的声阻抗差别相关。

血液内尽管含有红细胞、白细胞、血小板等有形物质,但其声阻抗差很小,散射很微弱,所以在普通超声仪上无法显示。

如果人为地在血液中加入声阻抗与血液截然不同的介质(微气泡),则血液内的散射增强,出现云雾状的回声,这就是超声造影的基本原理。

组织声学造影正是利用这一原理,静脉注入超声造影剂(含微气泡的溶液),造影剂随血流灌注进入器官、组织,使器官、组织显影或显影增强,从而为临床诊断提供重要依据。

(二) 超声造影剂的分类:第一代造影剂:包裹空气的微泡。

微泡大小及变形性与红细胞相似,经静脉注射后可自由通过肺循环。

第二代造影剂:微泡造影剂内包裹的气体与第一代声学造影剂不同,主要为高分子量、低血液溶解度的氟碳类或氟硫类气体。

该类微泡造影剂在血液中的稳定性明显高于含空气微泡造影剂,其声学造影效果优于第一代声学造影剂。

第三代造影剂:特殊用途的微泡造影剂。

主要是通过对微泡外壳的改建,将特异性配体连接到微泡造影剂表面,通过血液循环使之到达感兴趣的组织或器官,选择性地与相应受体结合,从而达到应用微泡靶向诊断与治疗作用。

可用于血栓、炎症、肿瘤的诊断,以及基因或药物的靶向传输等。

超声分子成像是超声造影成像技术一个新的研究热点。

(三) 超声造影方法:超声造影剂给药途径:(1)静脉内注射:适用于右心、左心、心肌以及肝、肾等全身血池超声造影。

(2)主动脉内或心腔内注射:使用于通过左心导管或心脏外科手术中直接注射。

超声造影临床应用(两篇)

超声造影临床应用(两篇)

引言:超声造影是一种通过在体内注射超声造影剂后利用超声波技术观察和评价器官和组织的影像方法。

在临床应用中,超声造影已经得到广泛应用,并取得了显著的成果。

本文将以超声造影临床应用为主题,从五个大点来详细阐述其在不同领域的应用。

概述:超声造影通过注射含有微小气泡的造影剂,可以使血管和实质性组织成为超声波强化影像信号的来源,从而提高超声检查的分辨率和对血流动力学的评价能力。

在临床上,超声造影已经应用于多个领域,包括心脏、肝脏、肾脏、乳腺和子宫等器官的疾病诊断和评估。

正文内容:一、心脏病领域的应用1. 心肌缺血的评估:通过超声造影可以观察心室壁运动异常区域,评估心肌缺血的程度和范围。

2. 心脏瓣膜病的评估:超声造影可以准确评估心脏瓣膜疾病,并辅助决策手术治疗的时机和方式。

3. 心脏血流动力学的评估:通过超声造影可以观察心腔和心瓣的变形情况,评估心脏血流动力学的状态。

二、肝脏病领域的应用1. 肝血流动力学的评估:通过超声造影可以观察肝血流的速度和方向,评估肝动脉和门静脉的功能和血流量。

2. 肝脏肿瘤的检测和评估:超声造影可以帮助定位肝脏肿瘤,并评估其血供情况,对肿瘤的良恶性进行初步判断。

3. 肝动脉栓塞治疗的指导:超声造影可以在肝动脉栓塞治疗过程中实时观察血流变化,指导操作和评估疗效。

三、肾脏病领域的应用1. 肾血流动力学的评估:通过超声造影可以观察肾血流的速度和方向,评估肾动脉和肾静脉的功能和血流量。

2. 结石的检测和评估:超声造影可以帮助定位肾脏结石,并评估其大小和位置,指导治疗和手术的决策。

3. 肾脏病变的定性和定量评估:通过超声造影可以观察肾脏病变的形态和血供情况,辅助肾脏病的定性和定量评估。

四、乳腺病领域的应用1. 乳腺肿瘤的检测和评估:超声造影可以帮助定位乳腺肿瘤,并评估其内部的血供情况,对乳腺肿瘤的良恶性进行初步判断。

2. 乳腺导管内乳头状瘤的检测和评估:超声造影可以观察乳腺导管内乳头状瘤的形态和血供情况,辅助诊断和治疗的决策。

超声造影准确率高吗

超声造影准确率高吗

超声造影准确率高吗目前,超声造影是国际上比较领先的一种超声成像技术,在肝脏、胰腺、肾脏、子宫附件以及乳腺等脏器中应用非常广泛,尤其是在肿瘤的检出和定性诊断中有着十分重要的意义。

那么,什么是超声造影,其原理是什么,可诊断什么疾病,准确率高不高,下面进行详细介绍。

1.什么是超声造影?超声造影又称为声学造影,指的是在常规超声检查的基础上,通过静脉注射含有气泡的超声造影剂,然后借助超声造影剂气体微泡在声场中产生的强烈背向散射来获得对比增强图像,是一种明显提高超声诊断敏感性、特异性以及分辨力的技术。

而且超声造影可实时动态观察人体的器官、组织以及病灶局部的血流灌注信息,使超声检查能够清楚显示微细血管和组织血流灌注,从而使超声的诊断水平大大提高。

1.超声造影的原理是什么?超声波遇见散射体会发生散射,其散射的强弱与散射体的大小、形状以及周边组织的声阻抗差别有一定关联。

虽然人体血液中含有红细胞、白细胞以及血小板等有形物质,但其声阻抗差别较小,散射很微弱,所以在普通超声仪上无法显示。

若人为的在血液中加入声阻抗与血液不同的介质,即超声造影剂,可使血液中的散射增强的同时也能出现云雾状的回声,这就是超声造影的基本原理。

而组织声学造影正是利用这一原理,静脉注入超声造影剂,造影剂随着血管灌注进入组织及器官,使组织和器官的显影增强,从而为临床诊断提供重要依据。

1.超声造影可诊断什么疾病?超声造影剂通过静脉注射后,可分布于全身组织和脏器的毛细血管中,使组织和脏器的超声回声增强至一万倍以上,从而发现普通超声下没有发现的、不明显的以及无法明确诊断的病灶。

而超声医生通过超声造影的特征,可对全身各脏器肿瘤为良性或恶性来进行诊断。

比如肝癌、卵巢癌、肾癌以及肝血管瘤等;可对病变的包膜以及边界进行确定。

比如确定肝脓肿病灶边界,肥大肾柱、肾肿瘤的鉴别等;可对微小病灶及早发现。

比如直径小于1cm的乳腺癌、鉴别微小病灶是囊性还是实性等;可对空腔脏器的走形及占位进行观察。

超声造影基础

超声造影基础
3、建议用剂量 (1)B模式夏的心腔显影:2.0ml。 (2)血管多普勒显影:2.4ml。 (3)如果确实需要,可按推荐用剂量重复二次。每次注射完毕后,应尾随快 速注射5ml生理盐水(快速推注)。 4、禁忌症 (1)对六氟化硫或Sono Vue内任何成分引起变态反应者禁用。 (2)近期内有急性冠心病症状或临床确定的不稳定性缺血性心脏病患者禁止 使用,这些疾病主要包括:进展或正在发作的心肌梗死、7d内有典型心绞痛 发作者、在造影前7d有明显加重的心脏病症状、最近行冠脉介入治疗者、不
要应用于M型超声心动图; 20世纪70年代 超声造影发展到M型和二维相结合的方式,扩大了超声声学造影
的应用范围; 1983年 双氧化氢被应用于子宫和输卵管超声声学造影的研究; 1986年 Matsuda等日本学者首次将二氧化碳微泡作为超声造影剂应用于肿瘤的
诊断; 1984年 Feinsttein首次报道了采用超声振动法制备的白蛋白微泡造影剂; 20世纪90年代 第二代的氟化气体型的微泡超声造影剂产生。
基频(fundamental frequency):指振动系统(声源)的最低固有频率。 基波:指其振动频率为基频的机械波。 谐波(harmanic):是指振动频率等于基频整数(n)倍的正弦波。 二次谐波:指振动频率为基频2倍的正弦波。
第三节 谐波非线性成像
一、二次谐波成像的原理 谐波成像的原理:人体组织(包括血液)的回波,其基频波的幅
度远远大于谐波,所以在超声成像中,我们往往滤去谐波,仅保留基 频波信息进行常规成像。然而在某些谐波丰富的情况下,滤去基频波, 保留谐波信息进行成像,这种成像方法就称为谐波成像。 二、谐波成像与图像质量
谐波成像技术可以明显改变超声图像质量,具体表现在: 1、消除近场伪像干扰

超声造影

超声造影

二维超声的应用
超声造影的应用
超声造影应用应用于肿 瘤诊断
第二代的氟化气体 型的微泡超声造影 剂产生
微泡超声造影剂的产生
超声造影发展到M型 和二维相结合的方
19831984
式,扩大了超声学造
影的应用范围
Matsuda等日本学 者首次将二氧化碳 微泡作为超声造影 剂应用于肿瘤的诊 断
20世纪90 年代
02 超声造影剂
超声增强造影的基本原理为:超声造影剂可以改变靶组织超声声学特 性(如背向散射系数、声速及非线性效应等)从而产生增强造影效果,超 声造影剂的浓度、尺寸及超声发射频率等都可以影响超声增强造影的效果。 其主要涉及到的物理学原理主要有以下几个方面:
A、通过微泡背向散射信号成像。 B、通过微泡非线性共振产生的谐波成像。 C、通过声衰减成像。 D、通过声速成像。
第一篇关于超声造 影的文章由美国 Raymond Gramiak 为首的小组发表主 要应用于M型超声 心动图
超声造影相关文献的发 表
法国居里兄弟(
1917
Pierre and
Jacques Curie)发
现压电效应
A型、M型、B型超
1968
声诊断仪诞生
超声造影的发展简史
20世纪70 年代
双氧化氢被应用于子宫 和输卵管超声声学造影 的研究 Feinsttein首次报道了 采用超声振动法制备的 1986 白蛋白微泡造影剂
含悬浮颗 粒的胶状

如IDE
如PFOB、Oralex, 此类多为口服造 影剂
乳剂、水 溶液
根据造影剂所能达到的靶目标分类
右心造影剂
即早期使用 的自由微泡
的造影剂
左心造影剂 指可以通过肺循环的超声造影剂, 能经外周静脉注射后实现左心及 外周器官显影成像,如Sono Vue、Levovist等

造影微泡共振原理

造影微泡共振原理

造影微泡共振原理
造影微泡共振原理主要是基于超声波的共振效应,具体来说,它涉及以下几个步骤:
1. 超声波的产生:超声波设备产生超声波,这些声波在人体组织中传播。

2. 微泡的共振:当超声波的频率与微泡的自然频率相匹配时,微泡会发生共振,即微泡会随着声波的振动而振动。

3. 增强超声波吸收:在共振状态下,微泡会产生强烈的振动,这会大大增强超声波在微泡周围的吸收。

4. 提高成像效果:由于微泡的共振,超声波的吸收增强,使得超声波的成像效果得到显著的提升。

这种共振原理使得造影微泡可以大大提高超声成像的对比度和分辨率,为医生提供更清晰的图像,以便进行更准确的诊断。

超声造影在心脏疾病诊断中的应用

超声造影在心脏疾病诊断中的应用

超声造影在心脏疾病诊断中的应用1. 什么是超声造影?大家好,今天咱们聊聊一个非常酷的医学话题——超声造影!首先,什么是超声造影呢?简单来说,就是通过超声波和一些特殊的造影剂,帮助医生更清晰地看到心脏内部的结构和功能。

这就像给心脏加了个“高清滤镜”,让它在大屏幕上更好看、更明了。

想象一下,我们平常拍照的时候,如果光线不够、焦距不对,那照片就模糊不清。

超声造影的原理就类似。

它可以帮助医生“照”出心脏的真实面貌,发现一些隐藏得比较深的心脏疾病。

像是心脏的血流情况、心肌的厚度,甚至是一些小的肿块,都能在这个过程中被一一揭开。

真是科技的力量,让人叹为观止!2. 超声造影的工作原理2.1 超声波的神奇之处超声波,这个词听起来是不是有点高深莫测?其实,超声波就是一种频率很高的声波,人耳听不见,但是它能在医学上大显身手。

通过发射超声波并接收反射回来的波,医生就能看到体内的情况。

就像在水中扔石头,水面上会出现波纹。

超声波同样可以产生“波纹”,让我们看到身体的结构。

2.2 造影剂的角色当然,单靠超声波可不够,造影剂也是这个过程中不可或缺的小伙伴。

造影剂就像给心脏穿上了闪亮的衣服,让超声波能够更清晰地捕捉到心脏的影像。

这些造影剂一般是一些气泡,注射到血管中后,它们会随着血液流动,在超声的照射下,形成明亮的回声。

医生通过这些回声,能了解心脏的形态、功能和血流情况。

3. 超声造影的应用3.1 心脏疾病的早期发现超声造影在心脏疾病的诊断中,可以说是“福音”。

它能够帮助医生在早期发现一些常见的心脏问题,比如心脏瓣膜病、心肌病等。

这些病症如果不及时发现,就可能导致严重的后果,甚至威胁到生命。

通过超声造影,医生可以很快识别出问题所在,从而及时采取措施,真是“未雨绸缪”。

3.2 评估心脏功能除了早期发现疾病,超声造影还可以用来评估心脏的功能。

心脏就像一台精密的机器,需要各个部件协调工作才能正常运转。

如果某个部分出了问题,超声造影能够迅速捕捉到这些变化,帮助医生制定治疗方案。

超声造影

超声造影
10.其他:将微泡造影剂注入膀胱有助于诊断膀胱-输尿管反流;造影剂注入子宫腔,有助于证实不育妇女输卵管是否通畅。据报告超声造影效果良好,可望替代传统的有放射性的X线造影。顾蔚蓉报道超声造影剂Levovist 的应用有助CDFI 更准确地评价肿瘤的血管,对卵巢良、恶性肿瘤的诊断、鉴别诊断与指导治疗均有重要的应用价值。。
5.胰腺肿物超声造影:戴训芦等报道应用Levovist 超声造影剂于胰腺肿瘤,它使肿瘤内血流显示增加达100 % ,恶性肿瘤以多血管为主, 良性肿瘤则少血管。它提高了肿瘤良恶性判断能力。
6. 乳腺肿物超声造影:借助于超声造影,能够显示肿瘤微血管分布特点;利用与微泡造影匹配的时间-回声强度曲线,可用来鉴别良性和恶性肿瘤。
3. 肾脏超声造影:肾动脉狭窄超声检查时常遇到困难。肾脏超声造影可以常规显示肾动脉,提高肾动脉狭窄的检出率,弥补彩色多普勒超声检查的不足。对移植肾血管彩色多普勒检查有困难者也极有帮助。动物实验研究表明,造影有助于更敏感地检出肾脏肿瘤,其临床意义尚有待进一步研究。
4. 脾脏超声造影:超声造影有助于脾肿瘤、脾外伤、脾梗塞的诊断及其范围的评价。国内学者已开始将超声造影用于微波消融治疗脾功能亢进效果的评价。
经大量研究证实,在肝脏方面谐波超声造影的临床应用最为成功,在肝肿瘤方面的应用已有突破性进展,并且可与CT 造影相媲美。首先,显著提高了小肿瘤的敏感性,对于检出小于1cm 的肿瘤特别有用;其次,特异性显著增强。(1)肝脏肿瘤或病变良性与恶性的鉴别,包括肝癌(原发性肝癌、转移瘤)、血管瘤、腺瘤、局灶性结节增生(FNH)非均匀分布脂肪肝等鉴别;(2)肝癌术前常规肝脏超声造影,进一步确定肿瘤的大小和侵及范围,有无隐蔽的肝内小的转移灶或多灶性肿瘤;(3)肝肿瘤介入性诊断中的应用:超声造影有助于对肝内可疑的微小肿瘤特别是等回声结节的定位穿刺活捡;(4)肝肿瘤介入性治疗中的应用:可在肝动脉栓塞化疗后超声造影,还可在射频、微波消融、HIFU治疗后立即床旁超声造影,判断消融治疗效果和有无残留瘤组织,以决定进一步处理,提高疗效。对于无需进一步处理的患者可以进行长期随访;(5)超声造影在肝癌手术中的应用:据报道,术中造影可检出/除外其他更小的肿瘤,及时改变外科处理范围或途径;原发肿瘤病灶切除后,可进行肝内隐匿转移灶的检查,即刻决定再切除或采用消融术;肝外伤性质和范围的评价。此外,在其他肝脏疾病如移植肝有无血管狭窄、闭塞,门静脉高压患者TIPS 支架是否保持通畅以及布查氏综合征彩色多普勒超声检出有困难者,肝脏超声造影均有一定的应用价值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
Contrast Pulse Sequencing 相干脉冲系列技术
在相干成像的基础上,采用连续发射一 组脉冲,提取来自微泡非线性二次谐波 (second harmonic)用于成像,特点 是提高了信噪比,造影效果好 。
仪器:Sequoia512,Sequoia Paragon 等
.
Contrast Tuned Imaging 对比造影成像技术
百胜集团(Esaote Group)推出的CnTi 技术, 低声压实时超声造影成像技术,采用独有的 纯净波发射激励、宽动态范围和数字滤波技 术,从而可获得纯正的造影剂二次谐波实时 图像。
CnTi 技术的独特优势之一是声压可调 (0.02≤MI≤1.7)。即使直接声压(DP)在 40Kpa,MI 在0.06 以下低声压作用于微泡时, 也能通过宽动态范围放大获得理想的低噪声、 完全实时的谐波图像。
f0 2f0
.
谐波成像
谐波造影成像技术
从组织除去或分离出线性超声信号(数 字减影),并利用微泡产生的非线性回波, 可更有效的接收造影剂谐波信号,提高 对微血流的敏感性,实时观察肿瘤实质 内微血管的血流灌注的全过程。
.
常用谐波造影成像技术
目前 国内
• PI: Pulse Inversion脉冲反相谐波技术
象技术
• CHI: Coded Harmonic I. maging编码谐波显象
谐波信号接受示意图
1.5MHZ
3.0MHZ
.
超声造影原理
采用微气泡注入血流提高声压反射系数 (Ra);
空气与血浆间Ra为99.95%,红细胞与 血浆间Ra仅1.3%;
即:空气的Ra较红细胞大75-77倍,它 们强烈的增强超声的背向散射。
.
背向散射信号
背向散射(Backscatter,BS):超声波在组 织中传播遇到小于波长的界面产生散射, 朝向探头(与入射波呈180°)的散射。
以气体成分的造影剂所产生的BS信号强 度最强。
.
微泡对超声波的反应
取决于入射声压的大小
<小于50kPa时微气泡对称性地压缩和膨胀,呈现 线性背向散射,信号强度随着入射声压的增加而 呈线性递增,这一反应主要用于基波显像;
微气泡产生的背向散射信号中不仅含有与发 射频率相同的基波f0,还含有谐波成分nf0(其 中两倍于基波频率的谐波2f0称为二次谐波)。
在接受回波时人为抑制基波,重点接收2f0信 号,从而使背向散射信号的信/噪比值大大增 加。
利用超声造影剂的特性,以某一频率f0发射, 而以2f0频率接收由造影剂产生的二次谐波信 号,即二次谐波成像技术(2nd harmonic imaging)。
.
传统超声信号处理中非线性信号往往被 忽略。
超声造影剂具有较强的非线性信号特点, 探头发射声波,声波通过造影剂产生非 线性传播,波形畸变,谐波成分明显增 多,相比之下其他组织谐波成分甚少。
基波与谐波冲击造影剂微泡产生的散射 谐波强信号,但接收时,直接取2f0的谐 波信号。
.
二次谐波成像技术
常用
HDI5000
• PPI: Power Pulse Inversion-能量脉冲反相谐
波技术
iu22

• CnTI: Contrast Tuned Imaging对比造影成像
技术
Esaote
• CPS: Contrast Pulse Sequencing:对比脉冲
系列技术
Sequoia512
• CCI: Coherent Contrast Imaging相干造影显
超声造影
基本原理篇
.
超声造影
是指将与机体组织声学特性不同的 物质----超声造影剂(Ultrasound Contrast Agent,UCA)注入体内,使 血液内出现明显不同的界面(即血液内 出现云雾状回声反射)来清楚地区分待 查目标与周围环境的差别,增强血流及 组织回声对比的一种超声检查方法。
50-200kPa时,微气泡非对称性地压缩和膨胀, 呈现非线性背向散射,产生共振和谐波,微气泡 的共振频率取决于入射声压、微气泡直径和外壳 弹性,这一反应可用于谐波显像;
200-2000kPa时,微气泡破裂,气体溢出,产生 宽频高能信号,呈现受激声波发射,这一反应可 用于触发显像和失相关显像。
.
仪器:百胜Au8等
.
极低的直接声压DP(或极低的MI),能够有 效地保存脏器内的微泡,而不被击破,有利 于完成长时间各个切面的造影扫描。
例如,心脏多个切面多个节段心肌灌注的评 价;
.
超声造影基本原理
谐波成像技术 自然组织谐波
造影谐波成像
基波成像(线性成像)
谐波成像(非线性成像)
.
声波在组织中传播
遇到规则界面,声波会发生反射和折射, 即线性传播;
遇到非规则界面,可发生波形畸变,谐 波成分增多,声衰减系数增大,即非线 性传播。
.
基波与谐波频率与能量
超声波传播的非线性效应
CnTI: Contrast Tuned Imaging对比造 影成像技术-----------百胜
.
微泡的生存时间
微泡的生存时间(longevity)
T=r2o.ρ/2D.Cs
其中 ro 为微泡半径,ρ为气体密度,D为 声压,Cs 为饱和度。
在低声压的作用下,微泡具有很好的谐 振特性,即振而不破,同时产生较强的 谐波信号。
.
利用造影剂微泡在声场作用下产生的非线性 效应,可明显提高检出血流信号的信噪比。
匹配谐波成像技术可更有效地接收造影剂谐 波信号。
克服了传统B型和彩色或能量多普勒超声的局 限性,并且能够实时显示实质组织的微血管 结构,显示动态的病变增强类型。
.
目前最常用的两种技术
CPS: Contrast Pulse Sequencing:对比 脉冲系列技术--------西门子
微泡的共振
液体中的造影剂微泡在超声场内吸收及 散射能量的同时,还以自身的固有频率 作膨胀与收缩振动。
声场频率与微泡固有频率一致时,微泡 膜振幅能量最大,产生的散射截面大于 其散射体几何截面的1000倍,BS信号 强度明显增强。
.
微泡的非线性特征
当超声场的声压达足够高时(50200kPa),微泡内的线性共振变为 非线性共振,导致包膜膨胀与收缩 幅度的不相等,产生几倍于基波f0 的谐波。
相关文档
最新文档