圆柱和圆锥体积中的典型题 等积变形
关于六上圆柱等积变形的易错题和好题

圆柱等积变形的易错题和好题1.如图,把纸盒里的牛奶倒入圆柱体容器中正好倒满,这纸盒中的牛奶有多少毫升?2.一个底面内半径和高分别是12cm、20cm的空心圆锥和空心圆柱组合成如图①所示的容器。
若在这个密封容器内注入一些细沙,则不仅能填满圆锥,还能填注部分圆柱,经测量,圆柱部分的沙子高5cm。
若将这个容器如图①倒立,则沙子的高度是多少厘米?3.一个小圆锥体玩具被芳芳一不小心掉进了一个底面积为3平方分米,高4分米的圆柱体量杯中,她发现正好水面上升了1分米。
你能求出这个小圆锥体玩具的体积吗?4.下图中圆柱杯子与圆锥杯子底面积相等,把圆锥杯子装满水倒进圆柱杯子,至少需要倒()杯才能把圆柱杯子装满。
请在下面用你喜欢的方式描述你的思考过程。
5.如图所示,一个长方体礼盒刚好能容纳6个圆柱形茶叶罐(单位:厘米)(1)一个圆柱形茶叶罐的体积是多少立方厘米?(2)做一个长方体礼盒至少需要多少平方厘米的包装材料?(接口处不计)(3)能容纳这6个茶叶罐的长方体礼盒还可以设计出不同的方案,你所设计的礼盒长是(),宽是(),高是()。
6.一个底面半径是10厘米的圆柱形玻璃杯,原来水深15厘米,现在把一块长和宽都是8厘米,高是42厘米的长方体铁块垂直放入水中,水没有溢出,求水面上升了多少厘米?7.袁隆平爷爷,世界上第一个成功利用水稻杂交优势的科学家,被誉为“杂交水稻之父”,发展杂交水稻,造福世界人民是袁降平院士毕生的追求。
目前,我国杂交水稻年种植积约2.57亿亩,非杂交水稻年种植面积约1.94亿亩,2020年我国稻谷总产量约为120亿千克,其中杂交水稻产量与非杂交水稻产量的比为13①7,杂交水稻每年增产的稻谷,可为中国多养活8000万人。
(1)2020年杂交水稻产量约多少亿千克?,那么问题为___________________。
(2)根据上面的信息,如果列式为1.94 2.57(3)如下图,已知圆锥形谷堆的底面直径是圆柱形铁桶底面直径的2倍,它们的高一样,把这些稻谷装在铁桶中(铁桶厚度忽略不计),装得下吗?请把你的想法写下来。
等积变形

6
4
x
6
在一个底面直径5厘米、高18厘米的圆柱 形瓶内装满水,再将瓶内的水倒入一个 底面直径6厘米、高10厘米的圆柱形玻璃 杯中,能否完全装下?若装不下,那么 瓶内水面还有多高?若未能装满,求杯 内水面离杯口的距离?
本节课你学会了什么?
列一元一次方程解决有关等积变形问题 形状改变而体积不变 等量关系是 :
2.分析:
圆柱形瓶内装满水,则水的体积为:
5 2 ( ) 18 112 .5 (立方厘米) 2
圆柱形玻璃杯的容积为: 6 2 ( ) 10 90 (立方厘米) 2 因此:水的体积大于杯的容积。 可见:圆柱形玻璃杯装不下,圆柱 形瓶内仍剩余部分的水。
注意到:在变形过程中水的总体积保持不变。 所以可得到相等关系: 玻璃杯里的水的体积 + 圆柱形瓶内剩余 水的体积 = 圆柱形瓶内装满水的体积
解:圆柱形玻璃杯装不下。
设圆柱形瓶内的水面还有x厘米高, 5 2 则剩余水的体积为 ( ) x立方厘米 。 2
根据题意,列方程得
6 2 5 2 5 2 ( ) 10 ( ) x ( ) 18 2 2 2
整理得 90 + 6.25x =112.5 解得 x = 3.6 经检验,符合题意。 答:圆柱形玻璃杯装不下,圆柱形瓶内的 水面还有3.6厘米高。
1、一块长、宽、高分别为4厘米、3 厘米、2厘米的长方体橡皮泥,要用 它来捏一个底面半径为1.5厘米的圆 柱,它的高是多少?(精确到0.1厘 米,π=3.14)
:
变形前的体积=变形后的体积
注
有关圆柱、 圆锥、球等体积变换问题 中,经常给的条件是直径,而公式中的是 半径,不注意这一点就会犯错误。
意
人教版数学六年级下册体积的等积变形

人教版数学六年级下册第三单元《圆柱与圆锥》“等积变形”教学预案永川区望城路小学何开莲教材分析数学六年级下册第三单元《圆柱与圆锥》是整个小学阶段最后一个“几何与图形”的内容。
包括圆柱圆锥的认识、圆柱的表面积、圆柱的体积和圆锥体积。
圆柱、圆锥是人们在生产、生活中经常遇到的几何形体。
教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。
几何知识一向是小学生学习的难点。
特别是圆柱的表面积、圆柱圆锥体积的应用问题更是让学生忘而却步。
造成这种现象的原因除了计算复杂繁琐外,就是学生对立体图形的空间思维能力差。
不能根据文字叙述想象立体图形的样子,找不到解题的关键。
我的思考本次教研主题是“提高立体图形空间思维能力”。
围绕这个主题,我确定从“等积变形”思想方法来落实。
“等积变形”是小学阶段要渗透落实的重要思想方法之一。
生活中大量存在其身影。
在实际生活中有些物质如金属、橡皮泥、或装在容器里的液体等,可以通过熔铸、锻造、重塑或更换容器等改变原来的形状,在这个变换的过程中物体的形状发生了变化,体积不变,这就是形体的“等积变形”。
围绕“等积变形”,我设计“面积变形”和“体积变形(重点)”两个内容。
“面积变形”是为了使计算简便。
“体积变形”设计为稍复杂的体积变形:不规则物体体积计算(看图计算)和未完全浸没(解决问题)。
利用“化曲为直”、“动画重现”“割补剪拼”、“移花接木”“数形结合”等方式,让学生体会转化思想在数学中的广泛应用,提高学生的立体图形空间观念。
教学目标1.优化圆柱体表面积计算公式,能够解决稍复杂的体积的“等积变形”问题。
2.在不同情境中,找准“形变”与“体积不变”的关系,在变化中找不变的量,抓住解决问题的关键,从而正确解决实际问题。
3.发展空间观念,提高学生立体图形空间思维能力。
体会转化的思想价值。
教学重、难点重点:运用多种方法通过“等积变形”解决实际问题。
难点:在不同题目情境中,找准不变的量,抓住“等积”这一解题关键。
圆柱与圆锥的等积变形(课件)北师大版六年级下册数学

度。
S底=3.14×52=78.5(cm2)
V圆锥=13×3.14×62h×=130 76.8÷78.5
= 37.68×10 =4.8(cm)
=376.8(cm3)
答:圆柱内水面的高度为4.8厘米。
变式1: 在一个底面直径是8厘米,高10厘米的圆柱 形量杯内放入一些水,水面高是8厘米。把 一个小球浸没在量杯里,水满后还溢出 12.56克。求小球的体积。(每立方厘米水 重1克)
分析:放入小球前水的高度是8cm,还没达到量 杯的高度,放入小球后,水满溢出,水不仅升高 了10-8=2(cm),还有水溢出,
溢出水的体积:12.56÷1=12.56(cm³)
3.14×(8÷2)²×(10-8)+12.56
=100.48+12.56 =113.04(cm³)
答:小球的体积是113.04cm³。
1250 20 100(0 毫升)
5 厘米
20 5
答:瓶内有饮料1000毫升。
20
厘 米
8、把一个正方体木块削成一个最大的圆 锥。正方体木块的棱长是6 dm,被削 去部分的体积是多少立方分米?
63-
1 3
×3.14×(6÷2)2×6=159.48(dm3)
答:被削去部分的体积是159.48 dm3。
半径:15.7÷3.14÷2=2.5(dm) 体积:3.14×2.5²×2=39.25(dm³) 高:39.25×3÷10=11.775(dm)
答:圆锥的高是11.775 分米。
3、把一个体积是282.6立方厘米的铁块熔
铸成一个底面半径是6厘米的圆锥形机器零
件,求圆锥零件的高。
282.6÷(3.14×62× 1 )
3-2.4= 0.6(分米)
圆柱与圆锥的等体积变化练习题

圆柱与圆锥的等体积变化练习题一、填空。
1、 一个圆柱和一个圆锥等底等高。
已知圆柱的体积是9立方米,圆锥的体积是(3)立方米。
2、 一个圆锥的体积是1.2立方分米,和它底面直径相等,高也相等的圆柱的体积是(3.6)立方分米。
二、选择。
1、 把一个圆柱形状的木块切削成一个和它等底等高的圆锥形状的木块。
削掉的部分是这个圆柱体积的(B )A .31 B. 32 C.3倍 2、一个圆柱和一个圆锥体积相等,底面积也相等。
如果圆柱的高是2.4厘米,那么圆锥的高是(A )厘米。
A.7.2B.2.4C.0.83、把一个棱长为4厘米的正方体铸件切削成尽可能大的圆柱形状的机器零件。
这个零件的体积是(B)立方厘米。
A.5.024B.50.24C.200.96三、解决问题。
1、一个圆锥形麦堆,底面周长是25.12米,高3米。
把这些小麦装入一个底面直径是4米的圆柱形粮囤内,正好装满。
这个粮囤的高是多少米?(25.12÷3.14÷2)²×3.14×3÷3=50.24(m³)50.24÷((4÷2)²×3.14)=4(m)答:这个粮囤的高是4m。
2、一个底面直径为20厘米的圆柱形的玻璃杯装有一些水,水中放着一个底面直径为6厘米、高20厘米您的圆锥形铅锤。
当取出铅锤后,杯里的水下降几厘米?(6÷2)²×3.14×20=565.2(cm³)3、把50个底面直径都是30厘米,高20厘米的圆锥形钢坯,熔铸成一根底面直径是60厘米的圆柱形钢材。
求钢材长多少厘米?4、一个圆锥形的沙堆的沙堆,底面积是12.56平方米,高是1.2米。
用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?。
初中数学七年级《等积变形问题》

二、排除法:
排除法根据题设和有关知识,排除明显不正确选项,那么剩下
惟一的选项,自然就是正确的选项,如果不能立即得到正确的选 项,至少可以缩小选择范围,提高解题的准确率。排除法是解选 择题的间接方法,也是选择题的常用方法。
已知一次函数y=ax+c与二次函数y=ax2+bx+c,它们在同 一坐标系内的大致图象是( )
O
x
点拨:画出两函数的草图即可得答案
Y=-x-2
四、特殊值法:
选择题中所研究的量可以在某个范围内任意取值,这时可以 取满足条件的一个或若干特殊值代人进行检验,从而得出正确答 案.有些问题从理论上论证它的正确性比较困难,但是代入一些 满足题意的特殊值,验证它是错误的比较容易,此时,我们就可 以用这种方法来解决问题。
解:圆柱形玻璃杯装不下。
设圆柱形瓶内的水面还有x厘米高, 则剩余水的体积为 (5)2 x立方厘米 。
2
根据题意,列方程得
(6)2 10 (5)2 x (5)2 18
2
2
2
整理得 90 + 6.25x =112.5
解得 x = 3.6
经检验,符合题意。
答:圆柱形玻璃杯装不下,圆柱形瓶内的 水面还有3.6厘米高。
A
128 27
C 12
B 10 D 27
直接变形法
选项变形
练习3 、当a=-1时,代数式(a+1)2+a(a-3) 的值是( )
A -4
B4
C -2
D2
直接代入法
已知代入
练习4、
不等式组
x
2x 3 1 8 2x
的最小整数解是 ( )
A -1 B 0
圆柱与圆锥难题解析

二、切割问题 1、一根长4米,底面直径4厘米的圆柱形钢
材,把它锯成同样长的3段,表面积比原来增加了
多少平方厘米?
五、图形题 3、如图, 你能否求它的体积?( 单位:厘米)
3.14×(2÷2)2×(4+6) ÷2 = 15.7(cm3)
4
2
6
五、图形题 解法二: 4
2
6
3.14×(2÷2)2×4=12.56(cm3) 3.14×(2÷2)2×(6-4)÷2 =3.14(cm3)
12.56+3.14= 15.7(cm3)
五、图形题
2、如下图所示,有一块长方形铁皮,把其中 的阴影部分剪下,正好制成一个圆柱形油桶。求 这块长方形铁皮的面积是多少?
12.56cm
8÷2=4(cm)
3.14×4=12.56(cm)
8cm
12.56+4=16.56(cm)
16.56cm
16.56×8=132.48(cm 2)
V沙= 14V锥
11
4× ×33.14×12 ×0.6 = 0.157(m3)
六、动态几何
1、一个直角梯形,以它的下底为轴旋转一周,
形成一个图形(如图),你能算出这个图形的体积
吗?(单位:厘米解)法一:13×3.14×62×(4-2)
2
=75.36(cm3)
3.14×62×2
6
4 6 2=226.08(cm3)
五、图形题 1、如图,在一个棱长是20厘米的正方体铸铁
中,以相对的两个面为底,挖出一个最大的圆柱
体。求剩下的铸铁的体积是多少立方厘米?
解法一:20×20×20-3.14×(20÷2)2×20
解法二:
20×20 ÷4×(4-3.14)×20 = 17S正20(cm3S)底
圆柱圆锥练习等积变形

8、一个圆锥形沙堆,占地面积为15平方米, 高2米,把这堆沙铺在宽8米的路上,平 均厚度5厘米,能铺路多少米?
2厘米=0.02米
a×0.2= 10×π×0.4 a= 62.8
6、一个长方体钢坯,长50厘米,宽20厘 米,高10厘米,铸造成一个底面直径是 20厘米的圆柱形钢柱,高多少厘米? (得数保留整数)
7、一个棱长为5分米的正方体油桶装满油, 倒入一个底面积是10平方米的圆柱形油桶 中,正好倒满,这个油桶高多少分米?
解:设圆锥的高为h。 体积不变:圆柱体积 圆锥体 h=6
3、一个圆锥形沙堆底面直径8米,高12分 米,把这些沙子铺在一条长31.4米,宽8米 的道路上,能铺多厚?
解:设能铺h米厚。 体积不变:长方体体积=圆锥体积
10×π×8×h= 16×π×0.4 8÷2=4米 12分米=1.2米 10×π×8×h= 16×π×0.4 5×h= 0.4 h= 0.08
等积变形问题
1、一辆货车箱是一个长方体,它的长是4 米,宽是1.5米,高是4米,装满一车沙, 卸后沙堆成一个高是1.5米的圆锥形,它的 底面积是多少平方米?
沙的体积不变
2、把一个底面积是12.56平方分米,高是 4.5分米的圆柱形钢材熔铸成一个底面直 径是6分米的圆锥,这个圆锥的高是多少 分米?
4、一个圆锥形沙堆,底面积是3.6平方米, 高是3米。将这堆沙装在一个底面积是2.4 的圆柱形沙坑里,能装多高?
解:设能铺h米厚。 体积不变:圆柱体积=圆锥体积
5、一个圆锥形沙堆,底面积是31.4平方米, 高是1.2米。用这堆沙在10米宽的公路上, 铺上2厘米厚的路,能铺多少米长?
解:设能铺a米长。 体积不变:长方体体积=圆锥体积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱和圆锥中的典型题
讲解:数学老师
【例1】把一块高为9cm的圆锥形钢坯浸在一个底面 积为28.26cm2的圆柱形水桶内,水面上升了2cm,这 个圆柱形钢坯的底面积是多少平方厘米?
解:上升的水的体积: 26.26×2=50.24(cm3)
圆锥的底面积: 50.24 ×3÷9=18.84( cm2)
5
正方体零件熔铸成圆柱形零件
10 10
解:正方体的体积: 10×10×10=1000(cm3)
圆柱的底面积: 3.14×52 =78.5(cm3)
圆柱的高: 1000 ÷78.5 ≈13(cm)
答:圆柱形零件的高是零件有多 高?(单位:cm,结果保留整数)
4
长方体零件熔铸成圆锥形零件
10
20
14
解:长方体的体积: 20×10×4=800(cm3)
圆锥的底面积: 3.14×(14÷2)2 =153.86(cm2)
圆锥的高:
800 ×3 ÷153.86 ≈16(cm)
答:圆锥形零件的高是16厘米。
答:这个圆锥形钢坯的底面积是18.84 平方厘米。
【例2】如图,圆柱形零件有多高?圆锥形零件有多 高?(单位:cm,结果保留整数)
·10
正方体零件熔铸成圆柱形零件
10 10
10 4
长方体零件熔铸成圆锥形零件
10 20
14
10
【例2】如图,圆柱形零件有多高?圆锥形零件有多 高?(单位:cm,结果保留整数)