实数 教学设计(二)
北师大版初中八年级数学上册-《实数》教学设计-02

《实数》教学设计 教学目标:(一)教学知识点1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式 );0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba . (二)能力训练要求 1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力. 2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.(三)情感与价值观要求通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。
教学重点:1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba .并能用规律进行计算. 教学难点1.类比的学习方法.2.发现规律的过程.教学方法:类比法.教学过程:Ⅰ.新课导入 上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.Ⅱ.新课讲解1.有理数的运算法则在实数范围内仍然适用.[师]大家先回忆一下我们在有理数范围内学过哪些法则和运算律.[生]加、减、乘、除运算法则,加法交换律,结合律,分配律.[师]好.下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了. 如:2332⋅=⋅,.252)32(2322,3)212(32123=+=+=⋅⋅=⋅⋅所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题. 计算:(1)1313+⋅; (2)77-;(3)(25)2;(4)2)212(+. 2.做一做填空:(1)94⨯=_________,94⨯=_________;(2)916⨯=_________,916⨯=_________;(3)94=_________,94=_________; (4)=2516_________,2516=_______ [师]通过上面计算的结果,大家认真总结找出规律.如果把具体的数字换成字母应怎样表示呢?b a b a ⋅=⋅(a ≥0,b ≥0);b a ba = (a ≥0,b >0) 并作一些练习. 化简:(1)326⨯; (2)327⨯-4;(3)(3-1)2;(4)326⨯;(5)546. 3.例题讲解[例题]化简:(1)5312-⨯;(2)236⨯;(3)(5+1)2;(4))12)(12(-+. Ⅲ.课堂练习(一)随堂练习 化简:(1)2095⨯;(2)8612⨯;(3)(1+3)(2-3);(4)(323-)2. (二)补充练习1.化简: (1)250580⨯-⨯;(2)(1+5)(5-2);(3))82(2+;(4)3721⨯; (5)2)313(-;(6)10405104+ 2.一个直角三角形的两条直角边长分别为5 cm 和45 cm ,求这个直角三角形的面积.解:S =45521⨯⨯ )cm (5.71521)35(214552122=⨯=⨯⨯=⨯⨯= 答:这个三角形的面积为7.5 cm 2.Ⅳ.课时小结本节课主要掌握以下内容.1.在实数范围内,有理数的运算法则、运算律仍然适用,并能正确运用.2.b a b a ⋅=⋅ (a ≥0,b ≥0);b a b a =(a ≥0,b >0)的推导及运用. Ⅴ.课后作业习题2.91.化简: (1)313⨯;(2)23;(3)23222+;(4)850⨯-21. Ⅵ.活动与探究下面的每个式子各等于什么数?2222222003,2002,2001,,4,3,2 .由此能得到一般的规律吗?对于一个实数a 、2a 一定等于a 吗?当a ≥0时,2a =a .当a <0时,有 .20032003)2003(,20022002)2002(,20012001)2001(,416)4(,39)3(,24)2(222222222==-==-==-==-==-==-所以当a <0时,有2a =-a .板书设计:§2.6.2 实数(二)一、有理数的运算法则在实数范围内仍然适用二、找规律b a b a ⋅=⋅(a ≥0,b ≥0);b a ba = (a ≥0,b >0) 三、例题讲解 四、课堂练习 五、课时小结 六、课后作业教学反思:这节内容是两个公式的推导与运用。
鲁教版七年级数学上册《实数》教案教学设计(2)

《实数》教案一、教材分析1、教材的地位与作用本节课在学生学习了平方根以后,通过学生合作探究,揭示出中像 、π等无限不循环小数的存在,从而引入了无理数的概念,使学生把数的概念从有理数扩展到实数,对今后的数学学习有着非常重要的意义,并且是同学们进一步学习方程、函数等知识的基础。
另外,无理数的引入,数集的扩充的教学中充满着对立与统一的辨证关系,实数和数轴上的点一一对应蕴含着数形结合的思想,通过这节课的学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯。
2、教学目标依据本节教材的特点,并结合学生的年龄特点和认知水平,确定本节课的教学目标: 知识目标——让学生了解无理数,实数的概念,了解实数与数轴上的点一一对应,初步学会实数的大小比较,能对实数的分类进行初步的辩认。
能力目标——了解实数的分类,培养学生初步分类意识;用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的数学思想方法。
情感目标——通过合作探究,让学生经历无理数的产生过程;并向学生渗透“数形结合”及分类的数学思想,感受人类(特别是我国古代)在数的发展研究中的伟大成就,从中得到启发和教育。
3、教学重点和难点本节教学的重点是无理数、实数的概念以及实数与数轴上的点一一对应。
无理数的概念比较抽象,如 等无理数在数轴上的表示,需要比较复杂的几何作图,是本节教学中的难点。
二、教学方法和手段本节课通过创设问题情境,引导学生回顾认识数的过程,通过合作探索,经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生学习积极性,从而较好地完成实数概念的建构,达到教学目标。
并结合计算器、多媒体、实物投影仪等现代教学手段实施教学,体现直观性。
22三、学法指导学生通过动手、动口、动脑等活动,主动探索、发现问题;互动合作,解决问题;归纳概括,形成能力。
恰如其分的问题设计,真正的让学生进行探究,突出学生教学主体的地位。
北师大版八年级数学上册第二章实数教学设计

北师大版八年级数学上册第二章实数教学设计一. 教材分析北师大版八年级数学上册第二章实数,主要介绍了实数的概念、分类和运算。
本章内容是初中数学的重要基础,对于学生理解和掌握数学知识体系具有重要意义。
教材内容安排合理,既有理论知识的讲解,又有实际例子的演示,使学生能够更好地理解和运用实数知识。
二. 学情分析八年级的学生已经掌握了初步的数学知识,对于实数的概念和运算有一定的了解。
但学生在实数的分类和运算方面存在一定的困难,需要通过本章的学习进一步巩固和提高。
同时,学生对于数学知识的理解和运用能力各有差异,需要在教学过程中关注学生的个体差异,因材施教。
三. 教学目标1.理解实数的概念,掌握实数的分类。
2.熟练掌握实数的运算方法,能够运用实数知识解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.实数的分类:有理数、无理数、整数、分数、正数、负数等。
2.实数的运算:加法、减法、乘法、除法、乘方等。
五. 教学方法1.讲授法:讲解实数的概念、分类和运算方法。
2.案例分析法:分析实际例子,让学生更好地理解和运用实数知识。
3.讨论法:分组讨论,培养学生的合作意识和解决问题的能力。
4.练习法:布置适量作业,巩固所学知识。
六. 教学准备1.教材:北师大版八年级数学上册。
2.教案:实数教学设计。
3.PPT:实数相关知识点和案例分析。
4.作业:适量实数运算练习题。
七. 教学过程1.导入(5分钟)利用PPT展示实数的应用场景,引导学生思考实数的概念和分类。
2.呈现(10分钟)讲解实数的概念、分类和运算方法,通过PPT展示相关知识点,让学生更好地理解和掌握。
3.操练(10分钟)分组讨论实数的运算方法,让学生动手实践,相互交流,巩固所学知识。
4.巩固(10分钟)布置适量作业,让学生独立完成,检查对实数知识的掌握情况。
5.拓展(10分钟)分析实际例子,让学生运用实数知识解决实际问题,提高学生的应用能力。
实数的教学设计(精编7篇)

实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。
实数教学设计

实数教学设计实数教学设计作为一名人民教师,有必要进行细致的教学设计准备工作,编写教学设计有利于我们科学、合理地支配课堂时间。
教学设计应该怎么写呢?下面是小编精心整理的实数教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
实数教学设计篇1 教学目标知识与技能1、通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性。
2、能判断给出的数是否为有理数;并能说出现由。
过程与方法1、让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神。
2、通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力。
情感与价值观1、激励学生积极参与教学活动,提高大家学习数学的热情。
2、引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神。
3、了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神教学重点1、让学生经历无理数发现的过程。
感知生活中确实存在着不同于有理数的数。
2、会判断一个数是否为有理数。
教学难点1、把两个边长为1的正方形拼成一个大正方形的动手操作过程。
2、判断一个数是否为有理数。
教学方法教师引导,主要由学生分组讨论得出结果。
教学过程一、创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数。
[生]在初一我们还学过负数。
[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题。
二、讲授新课1、问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好。
(学生非常高兴地投入活动中)。
[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下。
沪教版数学七年级下册12.3《实数的运算》教学设计2

沪教版数学七年级下册12.3《实数的运算》教学设计2一. 教材分析《实数的运算》是沪教版数学七年级下册第12.3节的内容,本节内容是在学生已经掌握了实数的基本概念和性质的基础上进行教学的。
本节主要让学生掌握实数的运算规则,包括实数的加减乘除和乘方等运算,并能够熟练运用这些运算规则解决实际问题。
教材通过例题和练习题的形式,帮助学生理解和掌握实数的运算方法。
二. 学情分析七年级的学生已经具备了一定的实数基础,对于实数的基本概念和性质有一定的了解。
但是,学生在实数的运算方面可能还存在一些问题,比如运算规则记忆不牢固,运算过程容易出现错误等。
因此,在教学过程中,教师需要耐心引导学生,让学生充分理解和掌握实数的运算规则。
三. 教学目标1.让学生掌握实数的加减乘除和乘方等运算规则。
2.培养学生熟练运用实数的运算规则解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.实数的加减乘除和乘方等运算规则。
2.如何运用实数的运算规则解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题,引导学生思考和探索实数的运算规则;通过案例分析,让学生理解和掌握实数的运算方法;通过小组合作,培养学生团队合作能力和逻辑思维能力。
六. 教学准备1.准备相关的教学PPT和教学案例。
2.准备练习题和测试题,用于巩固和评估学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾实数的基本概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过PPT展示实数的运算规则,包括加减乘除和乘方等运算,让学生初步了解实数的运算方法。
3.操练(20分钟)教师给出一些实例,让学生运用实数的运算规则进行计算。
学生在计算过程中,教师进行指导和纠正,帮助学生理解和掌握实数的运算规则。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
教师选取部分学生的作业进行讲解和分析,帮助学生巩固实数的运算规则。
第二章 实数(教学设计)
第二章 实数6.实数(二)一、教材分析实数(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第6节内容.本节内容分为3个课时,本节是第2课时.本课时用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.二、学情分析七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根.这些都为本课时学习实数的运算法则、运算率提供了知识基础。
当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及下节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.三、目标分析1.教学目标●知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用.(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.(3)正确运用公式:b a b a ⋅=⋅(a ≥0,b ≥0) ba b a=(a ≥0, b >0) 这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.●过程与方法目标(1)通过具体数值的运算,发现规律,归纳总结出规律.(2)能用类比的方法解决问题,用已有知识去探索新知识.●情感与态度目标由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养.2.教学重点(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算.(2)发现规律:b a b a ⋅=⋅(a ≥0,b ≥0)ba b a =(a ≥0, b >0) 3.教学难点(1)类比的学习方法.(2)发现规律的过程.4.教学方法(1)探索——交流法.(2)课前准备:教材、课件、电脑.电脑软件:Word ,Powerpoint .四、教学过程本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识探究;第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法(乘法)交换律、结合律,分配律.问题2:实数包含哪些数?答:有理数,无理数.问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?答:这是我们本节课要解决的新问题.意图:通过问题,回顾旧知,为导出新知打好基础。
苏科版数学八年级上册4.3《实数》教学设计2
苏科版数学八年级上册4.3《实数》教学设计2一. 教材分析《实数》是苏科版数学八年级上册4.3节的内容,主要包括实数的定义、分类和性质。
本节内容是学生学习实数系统的基础,对于学生理解和掌握实数的概念、性质和运算具有重要意义。
教材通过具体的例子和练习,引导学生理解和掌握实数的概念,培养学生的逻辑思维能力。
二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。
但学生对于实数的定义和性质可能还比较陌生,需要通过具体的例子和练习来理解和掌握。
同时,学生可能对于实数的分类和运算规则有一定的困惑,需要教师进行详细的讲解和引导。
三. 教学目标1.理解实数的概念和性质,能够正确地表示和运用实数。
2.掌握实数的分类和运算规则,能够解决与实数相关的实际问题。
3.培养学生的逻辑思维能力和数学思维习惯。
四. 教学重难点1.实数的定义和性质。
2.实数的分类和运算规则。
五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和练习,引导学生理解和掌握实数的概念和性质。
同时,运用归纳法和演绎法,让学生通过自主学习和合作学习,掌握实数的分类和运算规则。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备练习题和测试题,用于巩固和评估学生的学习效果。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考实数的定义和性质。
例如,问学生:“你们认为实数是什么?实数有哪些性质?”让学生发表自己的观点和看法。
2.呈现(15分钟)教师通过PPT和讲解,向学生介绍实数的概念和性质。
可以通过具体的例子和图示,让学生直观地理解实数的概念。
例如,通过数轴和坐标系,向学生展示实数的线性结构和性质。
3.操练(15分钟)学生通过自主学习和合作学习,进行实数的运算练习。
教师可以提供一些练习题,让学生进行实数的加减乘除等运算。
同时,教师可以引导学生思考实数的运算规则,并进行讲解和引导。
4.巩固(10分钟)学生通过做一些相关的练习题,巩固对实数的理解和掌握。
北师大版八年级数学上册:2.6《实数》教学设计2
北师大版八年级数学上册:2.6《实数》教学设计2一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要让学生了解实数的定义,理解实数与数的区别,掌握实数的性质,如大小比较、加减乘除运算等。
教材通过引入实数的概念,使得学生对数的认识更加深入,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数、无理数等基础知识,对数的概念有一定的了解。
但实数作为一个全新的概念,需要学生从更高的角度去理解和把握。
此外,实数的性质和运算规则需要学生在已有知识的基础上进行推理和归纳,因此,学生在学习本节内容时可能会有一定的难度。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够进行实数的大小比较、加减乘除运算。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的定义和性质。
2.实数的运算规则。
五. 教学方法1.采用问题驱动法,引导学生主动探究实数的定义和性质。
2.运用实例解析法,让学生通过实际问题理解实数的运算规则。
3.采用小组合作学习法,培养学生团队合作、交流分享的良好学习习惯。
六. 教学准备1.准备相关实数的教学案例和实例。
2.制作PPT,展示实数的定义、性质和运算规则。
3.分组安排,便于学生进行小组合作学习。
七. 教学过程1.导入(5分钟)利用PPT展示实数的定义,引导学生回顾已学的有理数、无理数等知识,为新知识的学习做好铺垫。
2.呈现(10分钟)通过PPT展示实数的性质,如大小比较、加减乘除运算等,让学生初步了解实数的特点。
3.操练(10分钟)让学生通过PPT上的实例,亲自进行实数的运算,巩固实数的性质和运算规则。
4.巩固(10分钟)学生分组讨论,总结实数的性质和运算规则,教师巡回指导,解答学生的疑问。
5.拓展(10分钟)利用实际问题,让学生运用实数知识解决问题,提高学生运用知识的能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。
6.3_实数_教学设计_教案[修改版]
第一篇:6.3_实数_教学设计_教案教学准备1. 教学目标1.1 知识与技能:1、了解无理数和实数的概念2、会对实数按照一定的标准进行分类,培养分类能力。
3、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的义。
1.2过程与方法:1、通过无理数的引入,使学生对数的认识由有理数扩充到实数2、经历对实数进行分类,发展学生的分类意识3、经历观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的。
1.3 情感态度与价值观:1、了解到人类对数的认识是不断发展的,体会数系扩充对人类发展的作用.2、学生在对实数的分类中感受数学的严谨性。
3、培养学生的合作交流能力与学习数学的兴趣,培养学生敢于面对数学活动中的困难,并能有意识地运用已有知识解决新的知识。
2. 教学重点/难点2.1 教学重点知道无理数是客观存在的,了解无理数和实数的概念,会判断一个数是有理数还是无理数.2.2 教学难点判断个别特殊的数是有理数还是无理数,体会数轴上的点与实数是一一对应的关系。
3. 教学用具4. 标签教学过程1、认识无理数问题1:请大家把下列各数3,表示成小数,它们是有限小数还是无限小数,是循环小数还是不循环小数?大家可以每个小组计算一个数,这样可以节省时间。
3=3.0,=0.8,=,,生:3,是有限小数,是无限循环小数。
师:上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示。
反过来,任何有限小数或无限循环小数都是有理数。
上面研究过的是无限不循环小数。
无理数定义:无限不循环小数叫无理数师:除上面的,等,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数。
问题2:是无理数吗?2是无理数吗? 0.01001000100001…是无理数吗? 问题3:你能再举出一些你见到过的无理数吗? 问题4:让学生在独立思考的基础上,进行讨论交流:有理数存在哪几种形式?在学生回答的基础上让学生总结出无理数常见的三种形式:①开方开不尽的数都是无理数(如、、),②圆周率π类(简记为带π的)③有规律但不循环的无限小数(简记为人造无理数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学建议
教学评价
一、复习提问:
实数乘、除法的运算公式是什么?
二、
如:
有一些数如 , 等,需要对他们进行化简,使得被开放数不含分母和开的尽方的因数.
再如:
例1化简:
(1) (2)
(2)
(3)
(4)√2/27
引导学生回忆所学内容,教师板书,并引出其反向运用.由学生说明a、b的取值.
教师举例说明.让学生寻找解决这种问题的方法,并进行交流、总结.
学生先口头分析交流,在独立完成题目.
关注学生对知识的巩固情况.
关注学生的理解能力.
关注学生的理解能力、探究意识、归纳总结能力.
关注学生的运算能力和理解能力.
七、练习设计
例2化简:
(1)
(2)
(3)
学生讨论完成
教师进行指导
学生独立完成,教师进行指导.
学生小结谈收获教师加以总结.
学生自己摸索做题再交流,同时发挥四人小组的作用.
一、课题名称
实数教学设计(二)
课型
新授课
二、教学目标
熟练运用实数的运算法则和运算律对被开放数含有分母和开的尽的因数的实数进行化简.
三、教学重点、难点
对被开放数含有分母和开的尽的因数的实数进行化简.
对被开放数含有分母实数进行化简.
四、教学手段
讲练结合
六、教学过程
教学内容
可引导学生从以下几方面总结:
1、本节课有哪些新收获?
2、还有哪些疑问与困惑?
关注学生灵活运用知识的能力,交流的积极性.
关注学生的理解能力和应用能力.
根据学生自身情况,总结出任意的一点,教师都应加以表扬与鼓励.
八、板书设计
课题
复习提问例1例2练一练
九、教学反思
教师强调说明
让学生讨论,寻找解决这种问题的方法,并进行交流、总结.
要求学生模仿例子按步骤完成.
对于有困难的学生教师可给与必要的指导.
通过几个练习进行复习.
引导学生反用法则,理解字母的取值范围.
重点在于让学生明白算理.
可再采用书上的引例给 一个直观的几何解释,加深理解.
学生讨论、交流、总结.教师给与必要的指导.