苏教版高中数学高二选修1-1练习第一章《常用逻辑用语》章末检测
(压轴题)高中数学选修1-1第一章《常用逻辑用语》检测题(有答案解析)(1)

一、选择题1.命题“x R ∃∈,2230x x -+<”的否定是( )A .x R ∃∈,2230x x -+≥B .x R ∀∈,2230x x -+≥C .x R ∃∉,2230x x -+≥D .x R ∀∉,2230x x -+≥2.已知命题3:0,0,p x x x ∀>+>则命题p 的否定为( )A .30,0x x x ∀≤+≤B .30000,0x x x ≤+≤∃C .30,0x x x ∀>+≤D .30000,0x x x >+≤∃3.命题“1x ∀≥,使得2270x x -+>”的否定是( )A .01x ∃≥,使得200270x x -+≤B .01x ∃<,使得200270x x -+≤C .1x ∀<,使得2270x x -+≤D .1x ∀≥,使得2270x x -+≤ 4.“22320x x --<”的一个必要不充分条件可以是( ) A .1x >-B .01x <<C .1122x -<< D .1x < 5.命题“x R ∀∈,24cos 0x x +>”的否定为( )A .x R ∀∈,24cos 0x x +<B .x R ∀∈,24cos 0x x +≤C .x R ∃∈,24cos 0x x +<D .x R ∃∈,24cos 0x x +≤6.设有两个命题:①关于x 的不等式2240x ax ++>对一切R x ∈恒成立;②函数()(52)x f x a =--是减函数.若命题中有且只有一个是真命题,则实数a 的取值范围是( )A .(,2]-∞-B .(,2)-∞C .[2,)+∞D .(2,2)- 7.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件8.已知直线,m n ,平面,αβ,n αβ=,m ∥α,m n ⊥,那么“m ⊥β”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 9.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.已知直线l ,m 和平面α,直线l α⊄,直线m α⊂,则“//l m ”是“//l α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.命题“21,1x x ∀>>”的否定是( )A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤ 12.“2x <”是“22320x x --<”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题13.下列命题:①“若22ac bc >,则a b >”的逆命题;②“若sin sin A B =,则A B =”的否命题;③“若01a <<,则函数log (1)a y x =-在定义域内为增函数”的逆命题;④“四边相等的四边形是正方形”的逆否命题.其中所有真命题的序号是_______.14.命题“0x R ∃∈,满足不等式20040x mx ++<”是假命题,则m 的取值范围为__________.15.已知命题p :x ∃∈R ,210mx +≤;命题q :x ∀∈R ,2104x mx -+>,若“p q ∨”假命题,则实数的取值范围是______________.16.若命题“2,220x R x mx m ∀∈+++≥”为真命题,则m 的取值范围是______ 17.若命题“x R ∃∈,220x x a -+≤”是假命题,则实数a 的取值范围是________. 18.下列四种说法:①命题“x R ∀∈,231x x >+”的否定是“x R ∃∈,231x x <+”;②若不等式210ax bx ++>的解集为{}|13x x -<<,则不等式23650ax bx ++<的解集为()(),15,-∞-⋃+∞;③对于x R ∀∈,22421ax x x +-恒成立,则实数a 的取值范围是[)6,+∞;④已知p :132x ,q :2110x a x a ⎛⎫-++ ⎪⎝⎭(0a >),若p 是q 的充分不必要条件,则实数a 的取值范围是[)10,3,3⎛⎤+∞ ⎥⎝⎦正确的有________.19.命题“若a A ∉,则b B ∈”的逆否命题是______.20.设集合0,{03}1x A x B x x x ⎧⎫=<=<<⎨⎬-⎩⎭,那么“m A ∈”是“m B ∈”的_______条件.(在“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选一个)三、解答题21.已知集合{}1A x a x a =-≤≤,{}2430B x x x =-+≤.若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.22.设命题:p 对任意[1,4]x ∈,不等式22423x x m m -+-恒成立;命题:q 存在10,2x ⎡⎤∈⎢⎥⎣⎦,使得不等式2504x x m -+-成立. (1)若p 为真命题,求实数m 的取值范围;(2)若命题p q 、有且只有一个是真命题,求实数m 的取值范围.23.已知0a >,设命题p :当(],1x ∈-∞]时,函数()2f x x ax =-+单调递增,命题q :双曲线22218x y a -=的离心率[)3,e ∈+∞. (1)若命题p 为真命题,求正数a 的取值范围;(2)若命题p 和q 中有且只有一个真命题,求正数a 的取值范围.24.已知命题p :函数()221f x x mx =-+的图象与x 轴至多有一个交点,命题2:log 11q m -≤.(1)若q ⌝为真命题,求实数m 的取值范围;(2)若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围.25.命题p :实数m 满足不等式()223200m am a a -+<>;命题q :实数m 满足方程22115x y m m +=--表示双曲线. (1)若命题q 为真命题,求实数m 的取值范围;(2)若Р是q 的充分不必要条件,求实数a 的取值范围.26.已知命题p :实数x 满足22430x ax a -+<,其中0a >.命题q :实数x 满足2260280x x x x ⎧--≤⎨+->⎩. (1)若1a =,且命题p 和命题q 均为真命题,求实数x 的范围;(2)若p 是q 的必要不充分条件,求a 的范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用特称命题的否定可得出结论.【详解】命题“x R ∃∈,2230x x -+<”为特称命题,该命题的否定为“x R ∀∈,2230x x -+≥”,故选:B.2.D解析:D【分析】利用全程命题的否定直接写出答案.【详解】由于“∀”的否定为“∃”,则排除A 与C 选项;命题的否定是对该命题的真值取否定. 故选:D【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.3.A解析:A【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果.【详解】因为全称命题的否定是特称命题,否定全称命题时,一是要将全称量词改写为存在量词,二是否定结论,所以,命题1x ∀≥,使得2270x x -+>的否定为01x ∃≥,使得200270x x -+≤,故选:A4.A解析:A【分析】先通过解二次不等式化简条件22320x x --<,再利用充分条件与必要条件的定义逐一判断即可.【详解】22320x x --<等价于122x -<<, 对于A ,122x -<<能推出1x >-,1x >-不能推出122x -<<,1x >-是22320x x --<的必要不充分条件; 对于B ,122x -<<不能推出01x <<,01x <<能推出122x -<<,01x <<是22320x x --<的充分不必要条件;对于C ,122x -<<不能推出1122x -<<,1122x -<<能推出122x -<<,1122x -<<是22320x x --<的充分不必要条件; 对于D ,122x -<<不能推出1x <,1x <也不能推出122x -<<,1x <是22320x x --<的既不充分又不必要条件故选:A .【点睛】方法点睛:判断一个条件是另一个条件的什么条件,一般先化简各个条件,再确定出哪一个是条件哪一个是结论;判断前者是否推出后者,后者是否推出前者,然后利用利用充分条件与必要条件的定义加以判断.5.D解析:D【分析】全称命题的否定为特称命题,即可选出答案.【详解】全称命题的否定为特称命题,故“x R ∀∈,24cos 0x x +>”的否定为“x R ∃∈,24cos 0x x +≤”,故选:D6.A解析:A【分析】先根据①为真得22a -<<,②为真得2a <,再根据只有一个真命题分类讨论求解即可.【详解】解:若①为真,则24160a ∆=-<,即22a -<<.若②为真,则521a ->,即2a <.所以当①真②假时,无解;当①假②真时,2a ≤-.故选:A.【点睛】本题考查根据命题的真假求参数范围,解题的关键在于根据已知条件求解两个命题均为真命题的时候的取值范围,在分类讨论求解,是中档题.7.B解析:B【分析】根据充分条件、必要条件的定义判断即可;【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,8.C解析:C【分析】若m ⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的判定定理可得α⊥β, 若α⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的性定定理可得m ⊥β,再根据充要条件的定义可得答案.【详解】若m ⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ',又m ⊥β,∴m '⊥β,又∵m '⊂α,∴α⊥β,若α⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ',∵m n ⊥,∴m n '⊥,又∵α⊥β,α∩β=n ,∴m β'⊥,∴m β⊥,故“m ⊥β”是“α⊥β”的充要条件,故选:C .【点睛】关键点点睛:根据面面垂直的判定定理以及性质定理求解是解题关键.9.A解析:A根据充分和必要条件的定义即可求解.【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <,当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>,根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.10.A解析:A【分析】根据两者之间的推出关系可得两者之间的条件关系.【详解】由线面平行的判定定理可得:若//l m ,结合直线l α⊄,直线m α⊂可得//l α, 故“//l m ”能推出“//l α”.但//l α推不出//l m (如图所示),故“//l m ”是“//l α”的充分不必要条件,故选:A.11.D解析:D【分析】根据命题的否定的定义写出命题的否定.【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .12.B解析:B【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论.【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件.故选:B. 二、填空题13.②③【分析】分别对①②③④进行判断对于不能推出的情况举一个反例就可以【详解】①若则的逆命题是若则为假命题比如时;②若则的否命题为若则其逆否命题为若则是真命题所以命题若则也为真命题;③若则函数在定义域解析:②③【分析】分别对①②③④进行判断,对于不能推出的情况举一个反例就可以.【详解】①“若22ac bc >,则a b >”的逆命题是“若a b >,则22ac bc >”为假命题,比如0c 时,22ac bc =;②“若sin sin A B =,则A B =”的否命题为“若sin sin A B ≠,则A B ≠”,其逆否命题为“若A B =,则sin sin A B =”是真命题,所以命题“若sin sin A B ≠,则A B ≠”也为真命题;③“若01a <<,则函数log (1)a y x =-在定义域内为增函数”的逆命题是“若函数log (1)a y x =-在定义域内为增函数,则01a <<” 为真命题,证明:设1,log a u x y u =-=,因为函数1u x =-在定义域内为减函数,函数log (1)a y x =-在定义域内为增函数,则函数log a y u =为减函数,所以01a <<; ④“四边相等的四边形是正方形”是假命题,比如菱形,所以该命题的逆否命题也为假命题.故答案为:②③【点睛】(1)写一个命题的逆命题、否命题、逆否命题的关键:分清楚原命题的条件和结论,可以先将原命题改写成“若p 则q ”的形式(写法不一定惟一),再写出其它三种命题(大前提不变);(2)判断一个命题为真命题,需要证明;判断一个命题为假命题,只需要举一个反例即可.14.【分析】根据命题满足不等式是假命题转化为不等式恒成立利用判别式法求解【详解】因为命题满足不等式是假命题所以不等式恒成立则解得所以m 的取值范围为故答案为:解析:[]4,4-【分析】根据命题“0x R ∃∈,满足不等式20040x mx ++<”是假命题,转化为x R ∀∈,不等式240x mx ++≥,恒成立,利用判别式法求解.【详解】因为命题“0x R ∃∈,满足不等式20040x mx ++<”是假命题,所以x R ∀∈,不等式240x mx ++≥,恒成立,则2160m ∆=-≤,解得44m -≤≤,所以m 的取值范围为[]4,4-,故答案为:[]4,4-15.【分析】命题:分和利用判别式法求得命题:利用判别式法求得然后根据假命题则均为假命题求解【详解】命题:当时不成立;当时解得命题:解得若假命题则均为假命题所以且或解得所以实数的取值范围是故答案为: 解析:1m ≥【分析】命题p :分0m =和0m ≠,利用判别式法求得0m <.命题q :利用判别式法求得11m -<<,然后根据“p q ∨”假命题,则p ,q 均为假命题求解.【详解】命题p :x ∃∈R ,210mx +≤,当0m =时,不成立;当0m ≠时,040m m <⎧⎨∆=-≤⎩, 解得0m <.命题q :x ∀∈R ,2104x mx -+>, 210m ∆=-<,解得11m -<<,若“p q ∨”假命题,则p ,q 均为假命题所以0m ≥,且1m ≥或1m ≤-解得1m ≥所以实数的取值范围是1m ≥,故答案为:1m ≥16.【分析】依题意可得恒成立则得到一元二次不等式解得即可;【详解】解:依题意可得命题等价于恒成立故只需要解得即故答案为:解析:[1,2]-【分析】依题意可得2220x mx m +++≥恒成立,则0∆≤,得到一元二次不等式,解得即可;【详解】解:依题意可得,命题等价于2220x mx m +++≥恒成立,故只需要()2=4420m m ∆-+≤解得12m -≤≤,即1,2m故答案为:[]1,2-17.【分析】首先根据题意得到恒成立从而得到即可得到答案【详解】因为是假命题所以恒成立所以解得故答案为:解析:1a >【分析】首先根据题意得到x R ∀∈,22>0x x a -+恒成立,从而得到440a -<,即可得到答案.【详解】因为“x R ∃∈,220x x a -+≤”是假命题,所以x R ∀∈,22>0x x a -+恒成立. 所以440a -<,解得>1a .故答案为:1a >.18.②③④【分析】根据全称命题否定的求解二次不等式的求解恒成立问题求参数的方法以及由命题的充分性求参数范围的方法结合选项进行逐一分析即可求得【详解】对①:命题的否定是故①错误;对②:不等式的解集为故可得解析:②③④【分析】根据全称命题否定的求解,二次不等式的求解,恒成立问题求参数的方法以及由命题的充分性求参数范围的方法,结合选项进行逐一分析即可求得.【详解】对①:命题“x R ∀∈,231x x >+”的否定是“x R ∃∈,231x x ≤+”,故①错误; 对②:不等式210ax bx ++>的解集为{}|13x x -<<, 故可得12,3b a a -=-=,解得12,33a b =-=, 故不等式23650ax bx ++<等价于2450x x -->,解得()(),15,x ∈-∞-⋃+∞,故②正确;对③:x R ∀∈,22421ax x x +-恒成立等价于()22410a x x -++≥,当2a =时,显然不成立; 当2a ≠时,只需()20,16420a a ->=--≤即可,解得6a ≥,故③正确;对④:p 是q 的充分不必要条件,故可得2110x a x a ⎛⎫-++ ⎪⎝⎭在132x 恒成立. 则只需111110,931042a a a a ⎛⎫⎛⎫-+⨯+≤-+⨯+≤ ⎪ ⎪⎝⎭⎝⎭, 整理得()()3130a a --≥即可,又0a >,故解得a ∈[)10,3,3⎛⎤+∞ ⎥⎝⎦.故④正确.故答案为:②③④.【点睛】本题考查全称命题的否定的求解,二次不等式的求解,二次函数恒成立问题求参,属综合困难题.19.若则【分析】直接利用逆否命题求解【详解】因为命题若则所以其逆否命题是若则故答案为:若则【点睛】本题主要考查四种命题及其关系属于基础题 解析:若b B ∉,则a A ∈【分析】直接利用逆否命题求解.【详解】因为命题“若a A ∉,则b B ∈”,所以其逆否命题是“若b B ∉,则a A ∈”故答案为:若b B ∉,则a A ∈【点睛】本题主要考查四种命题及其关系,属于基础题.20.充分不必要【分析】先化简集合A 再利用集合法判断即可【详解】因为所以A B 所以是的充分不必要条件故答案为:充分不必要【点睛】本题主要考查集合法判断逻辑条件以及分式不等式的解法属于基础题解析:充分不必要【分析】先化简集合A ,再利用集合法判断即可.【详解】因为{}001,{03}1x A x x x B x x x ⎧⎫=<=<<=<<⎨⎬-⎩⎭, 所以A B ,所以“m A ∈”是“m B ∈”的充分不必要条件,故答案为:充分不必要【点睛】本题主要考查集合法判断逻辑条件以及分式不等式的解法,属于基础题.三、解答题21.[]2,3.【分析】首先求出集合B ,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,即可得到不等式组,解得即可;【详解】 解:由题意知,{}1A x a x a =-≤≤不为空集,{}2|430{|13}B x x x x x =-+≤=≤≤,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,则113a a -≥⎧⎨≤⎩,解得23a ≤≤. 所以实数a 的取值范围是[]2,3. 22.(1)12m ;(2)514m <或2m >. 【分析】(1)p 为真命题时,任意[1,4]x ∈,不等式22423x x m m -+-恒成立可转化为22min (42)3x x m m -+-,求解即可(2)由题可得,p q 一真一假,结合(1),再化简命题q ,即可求出m 的取值范围.【详解】(1)对任意[1,4]x ∈,不等式22423x x m m -+-恒成立,即()22min 423x x m m -+-.2242(2)2x x x -+=--,当2x =时,242x x -+取到最小值2-,223,12m m m ∴--∴,所以p 为真时,实数m 的取值范围是12m .(2)命题:q 存在10,2x ⎡⎤∈⎢⎥⎣⎦,使得不等式2504x x m -+-成立, 只需2max 504x x m ⎛⎫-+- ⎪⎝⎭,而22513422x x m x m ⎛⎫-+-=-+- ⎪⎝⎭,所以当0x =时,254x x m -+-取到最大值555,0,444m m m -∴-, 即命题q 为真时,实数m 的取值范围是54m, 依题意命题,p q 一真一假,若p 为假命题,q 为真命题,则1254m m m ⎧⎪⎨⎪⎩或,得2m >; 若q 为假命题,p 为真命题,则1254m m ⎧⎪⎨<⎪⎩,得514m <, 综上,514m <或2m >. 【点睛】思路点睛:本题考查根据命题的真假求参数,解决此类问题一般先求出命题为真时对应的参数范围,再结合命题的真假或复合命题的真假列出对应的不等式求解.23.(1)[)2,+∞;(2)(][)0,12,+∞. 【分析】(1)由命题为真命题,根据二次函数的性质可得12a ≥,即可求解. (2)由q 为真命题可得22819e a =+≥,解出01a <≤,结合(1)即可求解. 【详解】解:(1)命题p 为真命题时,函数()2f x x ax =-+在(],1-∞单调递增,∴12a ≥. 解得2a ≥,所以a 的取值范围是[)2,+∞.(2)由(1)可知p 为真命题时,2a ≥.当q 为真命题时,22819e a=+≥,解得01a <≤ ①当p 真q 假时,2a ≥且1a >,即2a ≥. ②当p 假q 真时,02a <<且01a <≤,即01a <≤.综上所述,正数a 的取值范围为(][)0,12,+∞.24.(1)()()14,-∞⋃+∞,;(2)[)(]1,11,4-⋃. 【分析】(1)先解对数不等式得m 的取值范围,再求补集得⌝q 为真命题时实数m 的取值范围, (2)先求p q 、为真时实数m 的取值范围,由已知得p 真q 假,或p 假q 真,分别求得m 的取值范围,最后求并集即得.【详解】(1)解:由2log 11m -≤,得21log 11m -≤-≤,所以20log 2m ≤≤,解得14m ≤≤,又因q ⌝为真命题,所以4m >或1m <.此时实数m 的取值范围是()(),14,∞∞-⋃+;(2)当p 真时,由函数2()2+1f x x mx =-图像与x 轴至多一个交点,所以2(2)4110m ∆=--⨯⨯≤,解得11m -≤≤,若p q ∧为假命题,p q ∨为真命题,则p 真q 假,或p 假q 真,当p 假q 真时,14m <≤,当p 真q 假时,11m -≤<,所以实数m 的取值范围是[)(]1,11,4-⋃.【点睛】本题考查复合命题的真假判定问题,属基础题.注意两点:(1)求p ⌝为真时参数取值范围,往往先求p 为真时参数取值范围,再求补集得结果. (2)若p q ∧为假命题,p q ∨为真命题,则p 真q 假,或p 假q 真.25.(1)15m <<;(2)512a ≤≤【分析】(1)由题意可得()()150m m --<,即可求解.(2)若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,根据集合的包含关系求出实数a 的取值范围即可.【详解】(1)若实数m 满足方程22115x y m m +=--表示双曲线, 则()()150m m --<,解得15m <<,(2)实数m 满足不等式()223200m am a a -+<>,解得2<<a m a , 若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,所以1250a a a ≥⎧⎪≤⎨⎪>⎩,解得512a ≤≤, 所以若p 是q 的充分不必要条件,求实数a 的取值范围是512a ≤≤. 【点睛】易错点睛:若p 是q 的充分不必要条件则{}|2a a m a <<是{}|26m m <<的真子集,一般情况下需要考虑{}|2a a m a <<=∅的情况,此情况容易被忽略,但题目中已经给出0a >,很明显{}|2a a m a <<≠∅.26.(1)(2,3);(2)(1,2]【分析】(1)当1a =时,根据一元二次不等式的解法,可求得命题p 解集,同理可得命题q 的解集,根据题意,即可求得结果;(2)求得命题p 解集,根据题意,得到命题q 是命题p 的子集,建立不等式组,即可求得结果.【详解】(1)当1a =时,命题p :2430x x -+<,解得13x <<,命题q :2260280x x x x ⎧--≤⎨+->⎩,解得23x <≤, 又命题p 和命题q 均为真命题,所以23x <<;故x 的范围为(2,3)(2)命题p :()(3)0x a x a --<,因为0a >,解得3a x a <<,由(1)可得命题q :23x <≤,因为p 是q 的必要不充分条件,所以p q ⇐,且p q ,所以332a a >⎧⎨≤⎩,解得12a <≤,故a 的范围为(1,2] 【点睛】本题考查充分条件和必要条件的应用,根据命题真假求参数问题,关键点在于,根据p 是q 的必要不充分条件,得到命题q 是命题p 的子集,即可列出不等式,考查学生对基础知识的掌握程度,属基础题.。
高中数学 第1章 常用逻辑用语章末综合测评 苏教版高二选修2-1数学试题

章末综合测评(一) 常用逻辑用语(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中的横线上)1.命题“1<3<4”使用的逻辑联结词是________.【解析】“1<3<4”的含义为“3>1且3<4”,所以使用了逻辑联结词“且”.【答案】且2.给出命题:若函数y=f(x)是幂函数,则它的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是________.【解析】原命题正确,所以逆否命题正确;逆命题“若y=f(x)的图象不过第四象限,则它是幂函数”是假命题.故否命题也是假命题.【答案】 13.(2015·某某高考改编)设a,b是实数,则“a+b>0”是“ab>0”的________条件.【解析】取a=3,b=-2,知“a+b>0”D“ab>0”,取a=-3,b=-2知“ab>0”D“a+b>0”,故“a+b>0”是“ab>0”的既不充分也不必要条件.【答案】既不充分也不必要4.设命题p:∀x∈R,x2+2x+a≥0恒成立,则实数a的取值X围是________.【解析】据题意知,Δ=4-4a≤0,解得a≥1.【答案】1,+∞)5.命题“∀x∈R,|x|+x2≥0”的否定..是________.【解析】∀改为∃,否定结论,即∃x∈R,|x|+x2<0.【答案】∃x∈R,|x|+x2<06.(2016·某某高二检测)设命题p和命题q,“p或q”的否定是真命题,则必有________.①p真q真;②p假q假;③p真q假;④p假q真.【解析】因为“p或q”的否定是真命题,所以“p或q”是假命题,则p假q假.【答案】②7.给出以下命题:①∀x∈R,有x4>x2;②∃α∈R,使得sin 3α=3sin α;③∃a∈R,对∀x∈R,使得x2+2x+a<0.其中真命题为________(填序号).【解析】①错,如x=0时不成立;②对,如α=0时sin 0=0;③错,因为y=x2+2x +a 开口向上.【答案】②8.(2016·某某高二检测)“0<a <b ”是“⎝ ⎛⎭⎪⎫14a >⎝ ⎛⎭⎪⎫14b”的________条件(填“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”).【解析】 当0<a <b 时,根据指数函数y =αx(0<α<1)是减函数,可得⎝ ⎛⎭⎪⎫14a >⎝ ⎛⎭⎪⎫14b ;反之,当⎝ ⎛⎭⎪⎫14a >⎝ ⎛⎭⎪⎫14b 时,可得a <b .所以“0<a <b ”是“⎝ ⎛⎭⎪⎫14a >⎝ ⎛⎭⎪⎫14b ”的充分不必要条件.【答案】 充分不必要条件9.已知命题“若x >m ,则x 2-3x +2>0”的逆否命题是真命题,则实数m 的取值X 围是________.【解析】 因为命题“若x >m ,则x 2-3x +2>0”的逆否命题是真命题,所以原命题是真命题,解不等式x 2-3x +2>0,得x <1或x >2,所以m ≥2,实数m 的取值X 围是2,+∞).【答案】 2,+∞)10.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①且q ;②p 或q ;③且(非q );④(非p )或q 中,其中真命题是________.【解析】p 为真q 为假,根据“或”、“且”、“非”命题的真假判断知②③为真命题. 【答案】②③11.(2016·某某某某高三模拟)已知p :-4<x -a <4,q :(x -2)(3-x )>0.若非p 是非q 的充分条件,则实数a 的取值X 围是________. 【导学号:09390017】【解析】p :a -4<x <a +4,q :2<x <3,由条件非p 是非q 的充分条件知q 是p 的充分条件,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.【答案】 -1,6]12.已知命题p :∃x ∈R ,x -2>lg x ,命题q :∀x ∈R ,x 2>0,下列说法正确的是________. ①p 是真命题;②q 是真命题;③命题p 或q 是假命题;④命题且q 是真命题;⑤命题且(非q )是真命题;⑥命题p 或(非q )是假命题.【解析】 对于命题p :∃x ∈R ,x -2>lg x ,例如当x =10时成立,故命题p 是真命题;对于命题q :∀x ∈R ,x 2>0,当x =0时命题不成立,故命题q 是假命题.所以命题且(非q )是真命题,即①⑤正确.【答案】①⑤13.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的________条件.【解析】 将直线l 的方程化为一般式得kx -y +1=0,所以圆O :x 2+y 2=1的圆心到该直线的距离d =1k 2+1.又弦长为21-1k 2+1=2|k |k 2+1,所以S △OAB =12·1k 2+1·2|k |k 2+1=|k |k 2+1=12,解得k =±1.因此可知“k =1”是“△OAB 的面积为12”的充分不必要条件. 【答案】 充分不必要14.下列叙述中错误的是________.①命题“若x 2-3x +2=0,则x =1”的逆否命题为假命题; ②“x >2”是“x 2-3x +2>0”的充分不必要条件;③若“p 或q ”为假命题,则“(非p )且(非q )”也为假命题; ④若命题p :∀x ∈R ,x 2+x +1≠0,则非p :∃x 0∈R ,x 20+x 0+1=0.【解析】 对于①,命题“若x 2-3x +2=0,则x =1”是假命题,因此该命题的逆否命题也是假命题;对于②,由x >2可得x 2-3x +2=(x -1)·(x -2)>0,反过来,由x 2-3x +2>0不能得知x >2,因此“x >2”是“x 2-3x +2>0”的充分不必要条件;对于③,若“p 或q ”为假命题,则p ,q 均为假命题,所以“(非p )且(非q )”是真命题;对于④,命题p :∀x ∈R ,x 2+x +1≠0,则非p :∃x 0∈R ,x 20+x 0+1=0.综上所述,应填③.【答案】③二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)命题:若一个三角形的一个角是直角,那么这个三角形是直角三角形.试写出该命题的逆命题、否命题和逆否命题,并判断它们的真假.【解】 逆命题:若△ABC 为直角三角形,则△ABC 的一个内角为直角,是真命题.否命题:若△ABC 没有一个内角为直角,则△ABC 不是直角三角形,是真命题.逆否命题:若△ABC 不是直角三角形,则△ABC 没有一个内角为直角,是真命题.16.(本小题满分14分)判断下列命题是全称命题还是存在性命题,并判断其真假. (1)对数函数都是单调函数;(2)至少有一个整数,它既能被11整除,又能被9整除; (3)∀x ∈{x |x >0},x +1x≥2;(4)∃x ∈Z ,log 2x >2.【解】 (1)本题隐含了全称量词“所有的”,可表述为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是存在性命题,且为真命题. (3)命题中含有全称量词“∀”,是全称命题,且为真命题.(4)命题中含有存在量词“∃”,是存在性命题,且为真命题.17.(本小题满分14分)分别写出由下列各组命题构成的“p 或q ”、“p 且q ”、“非p ”形式的复合命题,并判断它们的真假.(1)p :所有的平行四边形的对角线相等,q :所有的平行四边形的对角线互相平分;(2)p :方程x 2-16=0的两根的符号不同,q :方程x 2-16=0的两根的绝对值相等.【解】 (1)p 或q :所有的平行四边形的对角线相等或互相平分. 且q :所有的平行四边形的对角线相等且互相平分. 非p :有些平行四边形的对角线不相等.因为p 假q 真,所以“p 或q ”为真,“p 且q ”为假,“非p ”为真. (2)p 或q :方程x 2-16=0的两根符号不同或绝对值相等. 且q :方程x 2-16=0的两根符号不同且绝对值相等. 非p :方程x 2-16=0的两根符号相同.因为p 真q 真,所以“p 或q ”、“p 且q ”均为真,“非p ”为假.18.(本小题满分16分)(2016·某某高二检测)已知命题p :|4-x |≤6,q :x 2-2x +1-a 2≥0(a >0),若非p 是q 的充分不必要条件,求a 的取值X 围.【解】 非p :|4-x |>6,解得x >10或x <-2,记A ={x |x >10或x <-2},q :x 2-2x +1-a 2≥0,解得x ≥1+a 或x ≤1-a ,记B ={x |x ≥1+a 或x ≤1-a }.而非p ⇒q ,∴A B ,即⎩⎪⎨⎪⎧1-a ≥-2,1+a ≤10,a >0,∴0<a ≤3.19.(本小题满分16分)(2016·某某某某调研)已知条件p :函数f (x )=(2a -5)x在R 上是减函数;条件q :在x ∈(1,2)时,不等式x 2-ax +2<0恒成立,若p 或q 是真命题,某某数a 的取值X 围.【解】 若p 真,则0<2a -5<1,故52<a <3.若q 真,由x 2-ax +2<0,得ax >x 2+2.∵1<x <2,∴a >x 2+2x =x +2x在x ∈(1,2)上恒成立.又当x ∈(1,2)时,x +2x∈22,3),∴a ≥3.∵p 或q 是真命题,故p 真或q 真,∴有52<a <3或a ≥3.综上,a 的取值X 围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a >52. 20.(本小题满分16分)已知函数f (x )=2mx 2-2(4-m )x +1,g (x )=mx . (1)若“存在实数x 0,使得f (x 0)≤0”是假命题,某某数m 的取值X 围;(2)是否存在实数m ,使得:对任意实数x ,f (x )与g (x )至少有一个为正数?若存在,求m 的取值X 围;若不存在,请说明理由.【解】 (1)因为“存在实数x 0,使得f (x 0)≤0”是假命题,所以“对于任意实数x ,使得f (x )>0”是真命题,即对于任意实数x ,f (x )>0恒成立.①当m =0时,不成立;②当m >0时,Δ=4(4-m )2-8m <0, ∴2<m <8.(2)当m ≤0时,依题意显然不符合;当m >0时,则只要f (x )>0在(-∞,0)上恒成立,⎩⎪⎨⎪⎧4-m 2m>0,f 0≥0⇒0<m <4.或⎩⎪⎨⎪⎧4-m2m ≤0,f ⎝ ⎛⎭⎪⎫4-m 2m >0⇒4≤m <8.综上可知,0<m <8.。
(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.命题“,40x x ∀∈>R ”的否定是( ) A .,40x x ∀∉<R B .,40x x ∀∈≤R C .00,40xx ∃∉<RD .00,40x x ∃∈≤R8.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥9.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭10.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 15.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;16.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________. 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围. 23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 24.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.25.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.B解析:B 【分析】根据充分条件、必要条件的定义判断即可; 【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,故选:B .7.D解析:D 【分析】利用全称命题的否定可得出结论. 【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D.8.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C9.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②15.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.16.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤. 【分析】等价于2a x ≤在x ∈R 恒成立,即得解. 【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立. 所以2a x ≤在x ∈R 恒成立, 所以0a ≤. 故答案为:0a ≤ 【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解. 【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤. 因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假. 当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈; 当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-.故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件,所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥;当0a <时,:3q a x a ≤≤-, 则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞. 【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围.【详解】解:∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个是真命题,一个是假命题.若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤; 若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >. 综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.25.(1)见解析;(2)见解析.【分析】(1)直线方程与抛物线方程联立,消去x 后利用韦达定理判断2121212121()4OA OB x x y y y y y y ⋅=+=+的值是否为3,从而确定此命题是否为真命题; (2)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.【详解】(1)证明:设过点(,)30T 的直线l 交抛物线22y x =于点1122(,),(,)A x y B x y ,当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l 与抛物线相交于(3,A B ,所以963OA OB ⋅=-=,当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,22(3)y x y k x ⎧=⎨=-⎩,得2260ky y k --=, 则126y y =-, 又因为22112211,22x y x y ==, 所以212121212136()6344OA OB x x y y y y y y ⋅=+=+=-=, 综上所述,命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题;(2)逆命题是:“设直线l 与抛物线2y =2x 相交于A 、B 两点,如果OA OB ⋅=3,那么该直线过点2(1)3y x =+”,该命题是假命题, 例如:取抛物线上的点1(2,2),(,1)2A B ,此时OA OB ⋅=3,直线AB 的方程为2(1)3y x =+,而T (3,0)不在直线AB 上. 【点睛】该题考查的是有关判断命题真假的问题,涉及到的知识点有四种命题之间的关系,直线与抛物线的位置关系,向量的数量积,属于简单题目.26.(1)112a >;(2)11124a <<.(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。
(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)

一、选择题1.命题“x R ∀∈,210x x +-<”的否定是( )A .x R ∃∈,210x x +->B .x R ∃∈,210x x +-≥C .x R ∀∈,210x x +-≥D .x R ∀∈,210x x +-> 2.“0m >”是“不等式20x x m -+>在R 上恒成立”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充分必要条件 3.命题“a ∀∈R ,20a >或20a =”的否定形式是( ) A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <4.命题“x R ∀∈,24cos 0x x +>”的否定为( ) A .x R ∀∈,24cos 0x x +< B .x R ∀∈,24cos 0x x +≤ C .x R ∃∈,24cos 0x x +<D .x R ∃∈,24cos 0x x +≤5.设有两个命题:①关于x 的不等式2240x ax ++>对一切R x ∈恒成立;②函数()(52)x f x a =--是减函数.若命题中有且只有一个是真命题,则实数a 的取值范围是( ) A .(,2]-∞-B .(,2)-∞C .[2,)+∞D .(2,2)-6.设a 、b ∈R ,则“a b >”是“()20a b b ->”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.已知条件p :12x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .](,1-∞B .](,3-∞-C .[)1,-+∞D .[)1,+∞8.设x ∈R ,则“20x -=”是“24x =”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.下列说法正确的个数为( )①命题“若3,x <则2x <”的逆命题为真命题;②命题“若2x ≠且5y ≠,则10xy ≠”的否命题为真命题; ③存在0x R ∈,使得00x <; ④若正数a 、b 满足1a b +=,则41493a b +≥恒成立. A .1B .2C .3D .410.设非空集合,M N 满足M N N =,则( )A .0,x N ∃∈ 有x M ∉B .,x N ∀∉有x M ∈C .0,x M ∃∉ 有0x N ∈D .,x N ∀∈有x M ∈11.已知x ∈R ,则“21x>”是“2x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不必要也不充分条件12.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -二、填空题13.命题“若0x >,则220x y +≠”的逆否命题为___________. 14.命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为_________. 15.命题“如果22x a b <+,那么2x ab <”,请写出它的逆否命题____________. 16.命题“,sin 3x x π∀∈>R ”的否定是________.17.已知命题2:(2,),4p x x ∀∈+∞>,则p ⌝为_______. 18.已知命题“x R ∀∈,240x x a -+>”的否定是______.19.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.20.命题“若a A ∉,则b B ∈”的逆否命题是______.三、解答题21.已知命题p :2680x x -+<,命题q :21m x m -<<+. (1)若p 为假命题,求实数x 的取值范围;(2)若p 是q 的充分条件,求实数m 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围.23.给定两个命题,:P 对任意实数x 都有210ax ax ++>恒成立;:Q 关于x 的方程20x x a -+=有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.24.已知命题P :[1,2]x ∀∈,20x a -≥;命题Q :0x R ∃∈,使得200(1)10x a x +-+<.若“P或Q ”为真,“P 且Q ”为假,求实数a 的取值范围.25.已知条件22:114x y p m m -=--表示双曲线,条件22:124x y q m m+=--表示椭圆.(1)若条件p 与条件q 同时正确,求m 的取值范围.(2)若条件p 和条件q 中有且只有一个正确,求实数m 的取值范围.26.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥. (1)当3a =时,求AB ;(2)若>0a ,且“x A ∈”是“Rx B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据全称命题的否定是特称命题即可得正确答案. 【详解】命题“x R ∀∈,210x x +-<”的否定是x R ∃∈,210x x +-≥ 故选:B2.B解析:B 【分析】不等式20x x m -+>在R 上恒成立转化为14m >,根据充分条件、必要条件可求解. 【详解】不等式20x x m -+>在R 上恒成立,等价于=140m ∆-<, 即14m >当0m >时推不出14m >,104m m >⇒>成立,故“0m >”是“不等式20x x m -+>在R 上恒成立”的必要不充分条件, 故选:B3.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.4.D【分析】全称命题的否定为特称命题,即可选出答案. 【详解】全称命题的否定为特称命题,故“x R ∀∈,24cos 0x x +>”的否定为“x R ∃∈,24cos 0x x +≤”,故选:D5.A解析:A 【分析】先根据①为真得22a -<<,②为真得2a <,再根据只有一个真命题分类讨论求解即可. 【详解】解:若①为真,则24160a ∆=-<,即22a -<<. 若②为真,则521a ->,即2a <.所以当①真②假时,无解;当①假②真时,2a ≤-. 故选:A. 【点睛】本题考查根据命题的真假求参数范围,解题的关键在于根据已知条件求解两个命题均为真命题的时候的取值范围,在分类讨论求解,是中档题.6.C解析:C 【分析】利用充分条件、必要条件的定义结合不等式的基本性质、特殊值法判断可得出结论. 【详解】充分性:取0b =,由0a b >=,则()20a b b -=,充分性不成立;必要性:()20a b b ->,则0b ≠,且0a b ->,则a b >,必要性成立.因此,“a b >”是“()20a b b ->”的必要不充分条件.故选:C.7.D解析:D 【分析】根据充分不必要条件的定义及集合包含的关系求解. 【详解】123x x +>⇔<-或1x >,p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件,所以1a ≥, 故选:D .命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.8.A解析:A 【分析】根据充分必要条件的定义判断. 【详解】20x -=,即2x =时,一定有24x =,充分的,但24x =时,2x =±, 不一定是2x =,不必要,因此应为充分不必要条件. 故选:A . 9.B解析:B 【分析】直接写出原命题的逆命题判断①;利用否命题的真假判断②;绝对值的几何意义判断③;基本不等式求解最值判断④. 【详解】①命题“若3x <,则2x <”的逆命题为“若2x <,则3x <”显然逆命题是真命题; 所以①正确②命题“若2x ≠且5y ≠,则10x y ⋅≠”的否命题为 “若2x =或5y =,则10x y ⋅=”是假命题;所以②不正确;③存在0x R ∈,使得00x <;不满足绝对值的几何意义,所以③不正确; ④若正数a 、b 满足1a b +=,()4144131342519999939b a a b a b a b ⎛⎫++=+++≥+=+= ⎪⎝⎭, 当且仅当35=b ,25a =时成立,则41254993a b +≥>恒成立.所以④正确. 故选:B .10.D解析:D 【分析】根据交集的结果可得N M ⊆,分析选项,即可得答案. 【详解】 因为MN N =,所以N M ⊆,所以,x N ∀∈有x M ∈. 故选:D11.A解析:A 【分析】 解不等式21x>,利用集合的包含关系判断可得出结论. 【详解】 解不等式21x >,可得2210x x x--=<,解得02x <<, {}02x x << {}2x x <,因此,“21x>”是“2x <”的充分不必要条件. 故选:A.12.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A二、填空题13.若则【分析】直接根据逆否命题的概念即可得结果【详解】依题意原命题的逆否命题为若则故答案为:若则解析:若220x y +=,则0x ≤ 【分析】直接根据逆否命题的概念即可得结果. 【详解】依题意,原命题的逆否命题为“若220x y +=,则0x ≤”, 故答案为:若220x y +=,则0x ≤.14.【分析】直接利用存在量词命题的定义求解【详解】命题存在实数使得大于用符号语言可表示为:故答案为: 解析:00,23x x x R ∃∈>直接利用存在量词命题的定义求解. 【详解】命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为:000,23x x x R ∃∈>, 故答案为:000,23x x x R ∃∈>15.如果那么【分析】根据逆否命题的概念即可写出它的逆否命题【详解】原命题的逆否命题为:如果那么解析:如果2x ab ≥,那么22x a b ≥+. 【分析】根据逆否命题的概念,即可写出它的逆否命题 【详解】原命题的逆否命题为:如果2x ab ≥,那么22x a b ≥+.16.【分析】利用含有一个量词的命题的否定的定义求解【详解】因为命题是全称量词命题所以其否定是存在量词命题即为:故答案为: 解析:,sin 3x x π∃∈≤R【分析】利用含有一个量词的命题的否定的定义求解. 【详解】因为命题“,sin 3x x π∀∈>R ”是全称量词命题,所以其否定是存在量词命题,即为:,sin 3x x π∃∈≤R ,故答案为:,sin 3x x π∃∈≤R17.【分析】根据全称命题的否定可直接得出结果【详解】命题的否定为:故答案为:解析:2(2,),4x x ∃∈+∞≤【分析】根据全称命题的否定,可直接得出结果. 【详解】命题2:(2,),4p x x ∀∈+∞>的否定为p ⌝:2(2,),4x x ∃∈+∞≤. 故答案为:2(2,),4x x ∃∈+∞≤18.【分析】由全称命题的否定即可得解【详解】因为命题为全称命题所以该命题的否定为故答案为:解析:x R ∃∈,240x x a -+≤由全称命题的否定即可得解. 【详解】因为命题“x R ∀∈,240x x a -+>”为全称命题, 所以该命题的否定为“x R ∃∈,240x x a -+≤”. 故答案为:x R ∃∈,240x x a -+≤.19.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.20.若则【分析】直接利用逆否命题求解【详解】因为命题若则所以其逆否命题是若则故答案为:若则【点睛】本题主要考查四种命题及其关系属于基础题解析:若b B ∉,则a A ∈ 【分析】直接利用逆否命题求解. 【详解】因为命题“若a A ∉,则b B ∈”, 所以其逆否命题是“若b B ∉,则a A ∈” 故答案为:若b B ∉,则a A ∈ 【点睛】本题主要考查四种命题及其关系,属于基础题.三、解答题21.(1)(][),24,-∞-⋃+∞;(2){}34m m ≤≤. 【分析】(1)求解一元二次不等式即可求出实数x 的取值范围;(2)把p 是q 的充分条件,转化为集合的包含关系,列不等式组求解. 【详解】解:(1)∵p 为假命题,则2680x x -+≥成立, 解2680x x -+≥得2x ≤或4x ≥, ∴实数x 的取值范围是(][),24,-∞-⋃+∞. (2)∵p 是q 的充分条件,又∵p :24x <<,q :21m x m -<<+, ∴{}{}2421x x x m x m <<⊆-<<+,∴2241m m -≤⎧⎨≤+⎩.解得34m ≤≤.∴实数m 的取值范围是{}34m m ≤≤. 【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<; (2)若x ∈A 是x ∈B 的充分不必要条件,则A B ,1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】先根据,P Q 命题均为真命题时,求出对应a 的取值范围,再根据P 与Q 一真一假讨论即可得答案. 【详解】解:对于P 命题,若0a =,显然满足,若0a ≠,则240a a ∆=-<且0a >,即04a <<所以当P 命题为真命题时,实数a 的取值范围为[)0,4;对于Q 命题,根据题意得140a ∆=-≥,解得14a ≤, 所以当Q 命题为真命题时,实数a 的取值范围为1,4⎛⎤-∞ ⎥⎝⎦.由于P 与Q 中有且仅有一个为真命题, 所以当P 真Q 假时,实数a 的取值范围为1,44⎛⎫⎪⎝⎭; 当P 假Q 真时,实数a 的取值范围为(),0-∞. 综上,实数a 的取值范围是()1,0,44⎛⎫-∞ ⎪⎝⎭【点睛】本题考查根据命题真假求参数的求值范围,涉及一元二次不等式恒成立等,考查分类讨论思想和运算能力,是中档题. 24.3a >或11a -≤≤. 【分析】分别判断出P ,Q 为真时的a 的范围,通过讨论P ,Q 的真假,得到关于a 的不等式组,解出即可. 【详解】11a -≤≤或3a >由条件知,2a x ≤对[]1,2x ∀∈成立,∴1a ≤; ∵0x R ∃∈,使得()200110x a x +-+<成立.∴不等式()200110x a x +-+<有解,∴()2140a ∆=-->,解得3a >或1a <-;∵P 或Q 为真,P 且Q 为假, ∴P 与Q 一真一假.①P 真Q 假时,11a -≤≤;②P 假Q 真时,3a >.∴实数a 的取值范围是3a >或11a -≤≤.【点睛】本题借助考查了复合命题的真假判定,考查了特称命题与全称命题,解决此类问题应该先求出简单命题为真时参数的范围.25.(1)24m <<;(2)12m <≤【分析】(1)根据双曲线与椭圆的标准方程可得()()()()140240m m m m ⎧-->⎪⎨-->⎪⎩,解不等式组即可. (2)分情况讨论:当条件p 正确、条件q 错误或条件p 错误、条件q 正确,分别取交集,再取并集即可.【详解】(1)22:114x y p m m-=--表示双曲线,则()()140m m -->,解得14m <<, 22:124x y q m m+=--表示椭圆,则()()240m m -->,解得24m <<, 所以条件p 与条件q 同时正确,求m 的取值范围为24m <<.(2)当条件p 正确、条件q 错误:1442m m m <<⎧⎨≥≤⎩或,解得12m <≤, 当条件p 错误、条件q 正确:4124m m m ≥≤⎧⎨<<⎩或,此时无解. 综上所述,12m <≤【点睛】本题考查了根据条件的真假求参数的取值范围,同时考查了椭圆与双曲线的标准方程,属于基础题.26.(1){11A B x x ⋂=-≤≤或}45x ≤≤;(2)01a <<.【分析】(1)求出集合{}15A x x =-≤≤,即可得解;(2)根据题意A 是B R 的真子集,且A ≠∅,根据集合的关系求解参数的取值范围. 【详解】(1)∵当3a =时,{}15A x x =-≤≤, {1B x x =≤或}4x ≥, ∴{11A B x x ⋂=-≤≤或}45x ≤≤; (2)∵{1B x x =≤或}4x ≥,∴{}14R B x x =<<, 由“x A ∈”是“R x B ∈”的充分不必要条件,得A 是B R 的真子集,且A ≠∅,又{}()22>0A x a x a a =-≤≤+,∴2>1,012+4a a a -⎧∴<<⎨<⎩. 【点睛】此题考查集合的基本运算,根据充分不必要条件求参数的取值范围,关键在于根据集合的包含关系求参数的取值范围,属于基础题.。
苏教版高中数学选修1-1第1章常用逻辑用语章末检测题(含解析)

苏教版高中数学选修1-1第1章常用逻辑用语章末检测题(含解析)一、填空题.给出命题:若函数y=f是幂函数,则函数y=f的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是________.解析:易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.答案:1.下列命题中,真命题是________.①∃x0∈R,ex0≤0;②∀x∈R,2x>x2;③a+b=0的充要条件是ab=-1;④a>1,b>1是ab>1的充分条件.解析:因为∀x∈R,ex>0,故排除①;取x=2,则22=22,故排除②;a+b=0,取a=b=0,则不能推出ab=-1,故排除③;应填④.答案:④.命题“若x2≥1,则x≥1或x≤-1”的逆否命题是________.解析:命题的条件为“x2≥1”,结论为“x≥1或x≤-1”,否定结论作条件,否定条件作结论,即为其逆否命题.答案:若-10;④函数y=sinx+sin|x|的值域是[-2,2].其中正确命题的序号是________.解析:当G=ab时,有G2=ab,所以a,G,b成等比数列,但当a,G,b成等比数列时,还可以有G=-ab,所以G=ab是a,G,b成等比数列的充分不必要条件,故①正确;当cosαcosβ=1时,有cosα=cosβ=-1或cosα=cosβ=1,即α=21π+π,β=22π+π或α=23π,β=24π,这时α+β=2π+2π或α+β=2π,必有sin =0,故②正确;由于|x-4|的最小值等于0,所以当a≤0时,不等式|x -4|0,故③正确;函数y=sinx+sin|x|=2sinx,x≥00,xx2;④∀x∈R,有x2+4>0.其中的真命题是________.解析:方程x2=2的解只有无理数x=±2,所以不存在有理数x使得方程x2=2成立,故②为假命题;比如存在x =0,使得03=02,故③为假命题,①④显然正确.答案:①④.若非空集合A,B,c满足A∪B=c,且B不是A的子集,则“x∈c”是“x∈A”的________条件.解析:x∈A⇒x∈c,但是x∈c不能推出x∈A.答案:必要不充分.“a=18”是“对任意的正数x,2x+ax≥1”的________条件.解析:a=18⇒2x+ax=2x+18x≥22x×18x=1,另一方面对任意正数x,2x+ax≥1只要2x+ax≥22x×ax=22a ≥1⇒a≥18.答案:充分不必要.已知命题p:关于x的不等式x2+2ax+4>0对∀x∈R 恒成立;命题q:函数y=-x是R上的减函数.若“p∨q”为真命题,“p∧q”为假命题,则实数a的取值范围是________.解析:由x2+2ax+4>0对∀x∈R恒成立,得Δ=2-4×41,解得a1,则α必定是锐角.其中真命题的序号是________.解析:①“若xy=1,则x,y互为倒数”的逆命题为“若x,y互为倒数,则xy=1”,是真命题;②“相似三角形的周长相等”的否命题为“两个三角形不相似,则周长不相等”,显然是假命题;③∵b≤-1,∴Δ=4b2-4=-4b≥4>0,∴“若b≤-1,则x2-2bx+b2+b=0有实数根”为真命题,∴其逆否命题也是真命题;④∵当α=7π3时,sinα+cosα>1成立,∴此命题是假命题.答案:①③3.已知命题p:x2-x≥6,q:x∈Z,则使得x∈时,“p且q”与“綈q”同时为假命题的x组成的集合=________.解析:x∈时,“p且q”与“綈q”同时为假命题,即x∈时,p假且q真.故令x2-x0,∴原不等式化为x2-ax +20.∵∀x∈R时,2x2+x+1>0恒成立,∴Δ=2-8,s:x2+x+1>0.如果对∀x∈R,r与s有且仅有一个是真命题.求实数的取值范围.解:∵sinx+cosx=2sinx+π4≥-2,∴当r是真命题时,0恒成立,有Δ=2-40,即x>0,y>0或x0,y>0时,|x+y|=x +y=|x|+|y|,当x2},P={x|x<3},则“x∈或x∈P”是“x∈”的什么条件?求使不等式4x2-2x-1<0恒成立的充要条件.解:x∈或x∈P⇒x∈R,x∈⇔x∈,因为x∈或x∈Px∈,但x∈⇒x∈或x∈P.故“x∈或x∈P”是“x∈”的必要不充分条件.当≠0时,不等式4x2-2x-1<0恒成立⇒4<0,Δ=42+16<0,⇔-4<<0.又当=0时,不等式4x2-2x-1<0,对x ∈R恒成立.故使不等式4x2-2x-1<0恒成立的充要条件是-4<≤0.。
(好题)高中数学选修1-1第一章《常用逻辑用语》检测(有答案解析)(2)

一、选择题1.已知命题:p “2,20x x x ∀∈-+≥R ”,则p ⌝是( ) A .2,20x x x ∀∉-+>R B .2000,20x x x ∃∈-+≤RC .2000,20x x x ∃∈-+<RD .2000,20x x x ∃∉-+≤R2.已知命题3:0,0,p x x x ∀>+>则命题p 的否定为( ) A .30,0x x x ∀≤+≤ B .30000,0x x x ≤+≤∃ C .30,0x x x ∀>+≤D .30000,0x x x >+≤∃3.命题“1x ∀≥,使得2270x x -+>”的否定是( )A .01x ∃≥,使得200270x x -+≤B .01x ∃<,使得200270x x -+≤C .1x ∀<,使得2270x x -+≤D .1x ∀≥,使得2270x x -+≤4.设有两个命题:①关于x 的不等式2240x ax ++>对一切R x ∈恒成立;②函数()(52)x f x a =--是减函数.若命题中有且只有一个是真命题,则实数a 的取值范围是( ) A .(,2]-∞-B .(,2)-∞C .[2,)+∞D .(2,2)-5.命题“210x x x ∀>->,”的否定是( ) A .21,0x x x ∃≤-> B .21,0x x x ∀>-≤ C .21,0x x x ∃>-≤D .21,0x x x ∀≤->6.“a b >”是“||||a a b b >”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件 D .充要条件 7.若命题:“x R ∃∈,220ax ax -->”为假命题,则实数a 的取值范围是( )A .(][),80,-∞-+∞B .()8,0-C .(],0-∞D .[]8,0-8.已知函数y =f (x )的定义域为A ,则“x A ∀∈,都有f (x )≥4”是“函数y =f (x )最小值为4”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.若0a >,0b >,则“1a b +≥”是“1≥”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件10.命题:p “0,,sin cos 2x x x π⎛⎫∀∈< ⎪⎝⎭”的否定p ⌝为( )A .0,,sin cos 2x x x π⎛⎫∀∈≥ ⎪⎝⎭B .0,,sin cos 2x x x π⎛⎫∀∈> ⎪⎝⎭C .0000,,sin cos 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin cos 2x x x π⎛⎫∃∉≥ ⎪⎝⎭11.已知命题p :对任意1x >,都有21x >,则p ⌝为( )A .对任意1x >,都有21x ≤B .不存在1x <,使得21x ≤C .存在1x ≤,使得21x >D .存在1x >,使得21x ≤ 12.已知α,R β∈,则“αβ=”是“sin sin αβ=”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.若命题“x R ∃∈,220x x a -+≤”是假命题,则实数a 的取值范围是________. 14.命题“2,0x R x x ∀∈+≤”的否定是__________.15.命题“200,4x R x ∃∈>”的否定是_______.16.在下列四个命题中:①把函数sin 2y x =的图象向左平移3π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合;②曲线32y x x =-在点()1,1-处的切线方程为20x y --=;③圆()()22339x y -+-=上到直线34110x y +-=的距离等于1的点的个数有3个; ④在区间[]1,1-内随机取两个实数x 、y ,则满足1y x ≥-的概率为18. 正确命题的序号是_______17.命题“2,230x R x x ∀∈-+>”的否定是________ 18.给出下列命题:①命题“x R ∃∈,20x x -≤”的非命题是“x R ∃∈,20x x ->”;②命题“已知x ,y R ∈,若3x y +≠,则2x ≠或1y ≠”的逆否命题是真命题; ③命题“若1a =-,则函数()221f x ax x =+-只有一个零点”的逆命题是真命题;④命题“p q ∨为真”是命题“p q ∧为真”的充分不必要条件; ⑤若n 组数据()11,x y ,,(),n n x y 的散点都在21y x =-+上,则相关系数1γ=-;其中是真命题的有______.(把你认为正确的命题序号都填上)19.若命题“x R ∃∈,使得2kx x k >+成立”是假命题,则实数k 的取值范围是________. 20.命题“0,21x x ∀>>”的否定____________.三、解答题21.已知集合{}1A x a x a =-≤≤,{}2430B x x x =-+≤.若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.22.设命题p :实数x 满足()()130x x --<,命题q :实数x 满足302x x -≤-.若p q ∧为真,求实数x 的取值范围.23.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.24.给定两个命题,:P 对任意实数x 都有210ax ax ++>恒成立;:Q 关于x 的方程20x x a -+=有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.25.已知:集合2{|320},M x R x x =∈-+≤集合{|132}N x R m x m =∈+≤≤- (1)若“”x M ∈是“”x N ∈的充分不必要条件,求m 的取值范围. (2)若M N M ⋃=,求m 的取值范围.26.已知集合{}()(){}2|680,|30A x x x B x x a x a =-+<=--<.(1)若x A ∈是x B ∈的充分条件,求a 的取值范围. (2)若AB =∅,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题,即可求出. 【详解】因为全称命题的否定是特称命题,所以命题:p “2,20x x x ∀∈-+≥R ”,则p ⌝是2000,20x x x ∃∈-+<R .故选:C .2.D解析:D 【分析】利用全程命题的否定直接写出答案. 【详解】由于“∀”的否定为“∃”,则排除A 与C 选项;命题的否定是对该命题的真值取否定. 故选:D全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.3.A解析:A 【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果. 【详解】因为全称命题的否定是特称命题,否定全称命题时, 一是要将全称量词改写为存在量词,二是否定结论,所以,命题1x ∀≥,使得2270x x -+>的否定为01x ∃≥,使得200270x x -+≤,故选:A4.A解析:A 【分析】先根据①为真得22a -<<,②为真得2a <,再根据只有一个真命题分类讨论求解即可. 【详解】解:若①为真,则24160a ∆=-<,即22a -<<. 若②为真,则521a ->,即2a <.所以当①真②假时,无解;当①假②真时,2a ≤-. 故选:A. 【点睛】本题考查根据命题的真假求参数范围,解题的关键在于根据已知条件求解两个命题均为真命题的时候的取值范围,在分类讨论求解,是中档题.5.C解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题的定义可知,命题“210x x x ∀>->,”的否定是: 21,0x x x ∃>-≤故选:C6.D解析:D 【分析】构造函数()||f x x x =,知函数在R 上单调递增,利用增函数的定义可知||||a a a b b b ⇔>>,再利用充分必要的定义可得答案.令()||f x x x =,则22,0(),0x x f x x x ⎧≥=⎨-<⎩,作出函数()f x 的图像,由图可知,()f x 在R 上为单调递增函数,利用单调增函数定义可知,()()a b f a f b >⇔>即||||a a a b b b ⇔>>,故“a b >”是“||||a a b b >”的充要条件. 故选:D. 【点睛】关键点点睛:本题考查充分必要性的定义,解题的关键是构造函数()||f x x x =,并研究函数的单调性,利用单调性定义解题,考查学生的转化能力与数形结合思想,属于中档题.7.D解析:D 【分析】原命题若为假命题,则其否定必为真,即220ax ax --恒成立,由二次函数的图象和性质,解不等式可得答案. 【详解】 解:命题2,20x R ax ax ∃∈-->”为假命题,命题“x R ∀∈,220ax ax --”为真命题, 当0a =时,20-成立,当0a ≠时,0a <,故方程220ax ax --=的△280a a =+解得:80a -<, 故a 的取值范围是:[]8,0- 故选:D .8.B解析:B 【分析】根据充分必要条件,函数最值可判断必要性,利用特殊函数形式,可判断充分性,即可得解. 【详解】若“()f x 在A 上的最小值为4”则“x A ∀∈,()4f x ≥”成立,即必要性成立;函数()254f x x =+≥恒成立,但()f x 在A 上的最小值不是4,即充分性不成立,“x A ∀∈,()4f x ≥”是“()f x 在A 上的最小值为4”的必要不充分条件. 故选:B.9.A解析:A 【分析】根据充分必要条件的定义判断,注意基本不等式的应用即在0,0a b >>的情况下,判断两个命题11a b +≥⇒≥和11a b ≥⇒+≥..【详解】解:取1a =,19b =,满足1a b +≥,但213=<,充分性不满足;反过来,1a b +≥≥成立,故必要性成立.故选:A .10.C解析:C 【分析】根据命题否定的定义写出命题的否定,然后判断. 【详解】根据命题否定的概念知,p ⌝为002x π⎛⎫∃∈ ⎪⎝⎭,,00sin cos x x ≥,故选:C .11.D解析:D 【分析】根据全称量词命题的否定是存在量词命题,写出结果即可. 【详解】因为全称量词命题的否定时存在量词命题,所以命题“对任意1x >,都有21x >”的否定是:“存在1x >,使21x ≤”, 故选:D.12.A解析:A 【分析】由条件推结论可判断充分性,由结论推条件可判断必要性. 【详解】若“αβ=”,则“sin sin αβ=”必成立;但是“sin sin αβ=”,未必有“αβ=”,例如0,αβπ==.所以“αβ=”是“sin sin αβ=”成立的充分不必要条件. 故选:A.二、填空题13.【分析】首先根据题意得到恒成立从而得到即可得到答案【详解】因为是假命题所以恒成立所以解得故答案为: 解析:1a >【分析】首先根据题意得到x R ∀∈,22>0x x a -+恒成立,从而得到440a -<,即可得到答案. 【详解】因为“x R ∃∈,220x x a -+≤”是假命题,所以x R ∀∈,22>0x x a -+恒成立. 所以440a -<,解得>1a . 故答案为:1a >.14.【分析】利用全称命题的否定是特称命题解答【详解】因为全称命题的否定是特称命题命题是全称命题所以命题的否定是故答案为:解析:2000,0x R x x ∃∈+>【分析】利用全称命题的否定是特称命题解答. 【详解】因为全称命题的否定是特称命题,命题“2,0x R x x ∀∈+≤”是全称命题, 所以命题“2,0x R x x ∀∈+≤”的否定是“2000,0x R x x ∃∈+>”. 故答案为:2000,0x R x x ∃∈+>.15.【分析】根据特称命题的否定是全称命题即可求解【详解】的否定是故答案为:解析:2,4x R x ∀∈≤【分析】根据特称命题的否定是全称命题即可求解. 【详解】“200,4x R x ∃∈>”的否定是2,4x R x ∀∈≤,故答案为:2,4x R x ∀∈≤16.②③【分析】对于①由三角函数图像的平移变化规律判断;对于②由导数的几何意义求解即可;对于③求出圆心到直线的距离判断;对于④分别表示满足条件的面积和整个区域的面积然后利用概率公求解即可【详解】解:对于解析:②③【分析】对于①,由三角函数图像的平移变化规律判断;对于②,由导数的几何意义求解即可;对于③,求出圆心到直线的距离判断;对于④,分别表示满足条件的面积和整个区域的面积,然后利用概率公求解即可 【详解】解:对于①,把函数sin 2y x =的图象向左平移3π个单位后,可得2sin 2()sin(2)33y x x ππ=+=+,所以①错误;对于②,由32y x x =-,得'232y x =-,所以切线的斜率为1,所以所求的切线方程为11y x +=-,即20x y --=,所以②正确;对于③,圆()()22339x y -+-=的圆心为(3,3),半径为3,所以圆心到直线34110x y +-=的距离为22334311102534d ⨯+⨯-===+,而圆的半径为3,所以在圆的劣弧上有1个点到直线的距离为1,在优弧上有2个点到直线的距离为1,所以③正确; 对于④,由题意可得,1111x y -≤≤⎧⎨-≤≤⎩的区域为边长为2的正方形,面积为4 ,满足1y x ≥-的区域为图中阴影部分,面积为72,所以满足1y x ≥-的概率为77248=,所以④错误故答案为:②③17.【分析】全称命题的否定是特称命题【详解】解:全称命题的否定为特称命题所以否定为故答案为:解析:2000,230x R x x ∃∈-+≤【分析】全称命题的否定是特称命题. 【详解】解:全称命题的否定为特称命题,所以否定为2000,230x R x x ∃∈-+≤, 故答案为: 2000,230x R x x ∃∈-+≤18.②④⑤【分析】根据四种命题的相互转化即可判断②③真假判断利用特称命题的否定即可判断①利用充分必要条件的定义即可判断④利用相关系数的概念即可判断⑤【详解】①命题的非命题是;不正确②命题已知x 若则或的逆解析:②④⑤ 【分析】根据四种命题的相互转化即可判断②、③真假判断.利用特称命题的否定,即可判断①,利用充分必要条件的定义即可判断④,利用相关系数的概念即可判断⑤. 【详解】①命题“x ∃∈R ,20x x -≤”的非命题是“x ∀∈R ,20x x ->”;不正确②命题“已知x ,y ∈R ,若3x y +≠,则2x ≠或7y ≠”的逆否命题是“已知x ,y ∈R ,若2x =且7y =,则3x y +=”正确③命题“若1a =-,则函数()221f x ax x =+-只有一个零点”的逆命题是“若函数()221f x ax x =+-只有一个零点,则1a =-”a 有可能是零,不正确④命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,正确⑤若n 组数据()11,x y ,…,(),n n x y 的散点都在21y x =-+上,则x ,y 成负相关相关系数1r =-,正确 故答案为:②④⑤ 【点睛】本题主要考查了四大命题的转化,以及特称命题的否定,考查了充分必要条件的判断,以及相关系数的判断,属于综合类题目,属于中档题.19.【分析】由题意可知命题是真命题可得出由此可解得实数的取值范围【详解】由于命题使得成立是假命题则命题是真命题所以解得因此实数的取值范围是故答案为:【点睛】本题考查利用特称命题的真假求参数同时也考查了一 解析:[]0,4【分析】由题意可知,命题“x R ∀∈,20x kx k -+≥”是真命题,可得出0∆≤,由此可解得实数k 的取值范围. 【详解】由于命题“x R ∃∈,使得2kx x k >+成立”是假命题,则命题“x R ∀∈,20x kx k -+≥” 是真命题.所以,240k k ∆=-≤,解得04k ≤≤. 因此,实数k 的取值范围是[]0,4.故答案为:[]0,4. 【点睛】本题考查利用特称命题的真假求参数,同时也考查了一元二次不等式恒成立问题的求解,考查计算能力,属于基础题.20.【解析】试题分析:命题的否定是:考点:命题的否定 解析:0,21x x ∃>≤【解析】试题分析:命题“0,21x x ∀>>”的否定是:0,21xx ∃>≤.考点:命题的否定.三、解答题21.[]2,3. 【分析】首先求出集合B ,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,即可得到不等式组,解得即可; 【详解】解:由题意知,{}1A x a x a =-≤≤不为空集,{}2|430{|13}B x x x x x =-+≤=≤≤,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,则113a a -≥⎧⎨≤⎩,解得23a ≤≤.所以实数a 的取值范围是[]2,3. 22.(2,3). 【分析】先利用一元二次不等式的解法化简两个命题,再根据若p q ∧为真,则p ,q 同时为真求解. 【详解】由()()130x x --<,则p :13x <<,由302x x -≤-解得23x <≤.即q :23x <≤. 若p q ∧为真,则p ,q 同时为真,即2313x x <≤⎧⎨<<⎩,解得23x <<, ∴实数x 的取值范围(2,3). 23.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式 22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解.【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤.因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假.当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈;当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-. 故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件, 所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥; 当0a <时,:3q a x a ≤≤-,则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞.【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.24.()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】先根据,P Q 命题均为真命题时,求出对应a 的取值范围,再根据P 与Q 一真一假讨论即可得答案.【详解】解:对于P 命题,若0a =,显然满足,若0a ≠,则240a a ∆=-<且0a >,即04a <<所以当P 命题为真命题时,实数a 的取值范围为[)0,4;对于Q 命题,根据题意得140a ∆=-≥,解得14a ≤, 所以当Q 命题为真命题时,实数a 的取值范围为1,4⎛⎤-∞ ⎥⎝⎦. 由于P 与Q 中有且仅有一个为真命题,所以当P 真Q 假时,实数a 的取值范围为1,44⎛⎫ ⎪⎝⎭; 当P 假Q 真时,实数a 的取值范围为(),0-∞.综上,实数a 的取值范围是()1,0,44⎛⎫-∞ ⎪⎝⎭ 【点睛】本题考查根据命题真假求参数的求值范围,涉及一元二次不等式恒成立等,考查分类讨论思想和运算能力,是中档题.25.(1){|0}m m ≤;(2)1{|}2m m ≥.【分析】 (1)首先解出集合{|12}M x x =≤≤,由条件可知M N ≠⊂,列不等式求m 的取值范围;(2)由条件可知N M ⊆,再分N =∅和N ≠∅两种情况列式求m 的取值范围.【详解】解:(1){|12}M x x =≤≤,因为“”x M ∈是“”x N ∈的充分不必要条件,所以M N ≠⊂. 即:01113222m m m m ≤⎧+≤⎧⎪⇒⎨⎨-≥≤⎩⎪⎩,(等号不能同时取)0m ∴≤ 故m 的范围为{|0}m m ≤(2)因为,M N M =所以N M ⊆①当N =∅时:132m m +>-,23m >所以 ②当N ≠∅时:2132311032212m m m m m m m ⎧≤⎪+≤-⎧⎪⎪+≥⇒≥⎨⎨⎪⎪-≤⎩⎪≥⎩, 即1223m ≤≤ 综上可得:m 的范围为1{|}2m m ≥【点睛】本题考查根据充分必要条件,以及集合的包含关系求参数的取值范围,重点考查转化与化归思想,计算能力,属于基础题型.26.(1)4,23⎡⎤⎢⎥⎣⎦;(2)[)2,4,3⎛⎤-∞+∞ ⎥⎝⎦.【分析】 求解二次不等式化简集合A .(1)对a 分类求解集合B ,然后把x A ∈是x B ∈的充分条件转化为含有a 的不等式组,即可求解a 的范围;(2)由A B =∅,借助于集合A ,B 的端点值间的关系列不等式求解a 的范围.【详解】A ={x |x 2-6x +8<0}={x |2<x <4},B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意,则234a a ≤⎧⎨≥⎩,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题意,则3234a a ≤⎧⎨≥⎩,无解. 综上,a 的取值范围为4,23⎡⎤⎢⎥⎣⎦. (2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a }则a ≥4或3a ≤2,即0<a ≤23或a ≥4. 当a <0时,B ={x |3a <x <a }, 则a ≤2或a ≥43,即a <0. 当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为[)2,4,3⎛⎤-∞+∞ ⎥⎝⎦.【点睛】 根据充要条件求解参数的范围时,可把充分条件、必要条件或充要条件转化为集合间的关系,由此得到不等式(组)后再求范围.解题时要注意,在利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.。
数学选修1-1第一章 常用逻辑用语测试题

第一章 常用逻辑用语一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是b a 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个3.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真4.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数; ③梯形不是矩形;④方程21x =的解1x =±。
其中使用逻辑联结词的命题有( )A .1个B .2个C .3个D .4个7.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题8.设集合{}{}|2,|3M x x P x x =>=<,那么“x M ∈,或x P ∈”是“x M P ∈ ”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件9.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假10.下列命题中的真命题是( )11.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题; 其中真命题为( )A .①②B .②③C .①③D .③④12.设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件13.命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是( )A.若0(,)a b a b R ≠≠∈,则220a b +≠B.若0(,)a b a b R =≠∈,则220a b +≠C.若0,0(,)a b a b R ≠≠∈且,则220a b +≠D.若0,0(,)a b a b R ≠≠∈或,则220a b +≠二、填空题14.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
2020-2021年高二数学选修1-1“常用逻辑用语”:第1章阶段质量检测常用逻辑用语

1.命题 p: ? x∈R , x> 1 的否定是 ________________ . 答案: ? x∈ R, x≤ 1 2.命题“ ? x∈ R, x2- 2x+ 1≥ 0”的否定是 ________________. 答案: ? x∈ R, x2- 2x+ 1<0
3.设 a∈ R,则“ a= 1”是“直线 l 1:ax+ 2y- 1=0 与直线 l 2:x +(a+ 1)y+ 4= 0 平行” 的 ________ 条件.
解析: 由题意得 p 假 q 真,所以 x2- x<6 且 x∈ Z取值集合为 { - 1,0,1,2} .
答案: { - 1,0,1,2}
精品资源·备学备考
2<x<- 1,则 a 的取值范围
解析: 不等式变形为 (x+ 1)(x+ a)< 0,因当- 2< x<- 1 时不等式成立,所以不等式的
解为- a< x<- 1.由题意有 (- 2,- 1) (- a,- 1) ,所以- 2>- a,即 a> 2.
答案: (2,+∞ )
9.下面是关于公差 d>0 的等差数列 { an} 的四个命题:
p1:数列 { an} 是递增数列; p2:数列 { nan} 是递增数列;
p3:数列
an n
是递增数列;
p4:数列 { an+3nd} 是递增数列.
其中的真命题为 ________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末检测
一、填空题
1.下列语句中,是命题的是________(填序号).
①|x +2|;②-5∈Z ;③π∉R ;④{0}∈N .
2.命题“若a >b ,则2a >2b -1”的否命题为_________________________________.
3.已知命题p :∀x ∈R ,x 2+2x -a >0.若p 为真命题,则实数a 的取值范围是__________.
4.等比数列{a n }的公比为q ,则“a 1>0且q >1”是“∀n ∈N +,都有a n +1>a n ”的
____________条件.
5.与命题“若x ∈A ,则y ∉A ”等价的命题是________(填序号).
①若x ∉A ,则y ∉A ;②若y ∉A ,则x ∈A ;
③若x ∉A ,则y ∈A ;④若y ∈A ,则x ∉A .
6.已知p :x =3或x =2,q :x -3=3-x ,则p 是q ______________条件.
7.已知α、β、γ为互不重合的三个平面,命题p :若α⊥β,β⊥γ,则α∥γ;命题q :
若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是________(填序号).
①命题“p 且q ”为真;②命题“p 或綈q ”为真;
③命题“p 或q ”为假;④命题“綈p 且綈q ”为假.
8.下列命题,其中说法正确的序号为____________.
①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” ②“x 2-3x -4=0”是“x =4”的必要不充分条件
③若p ∧q 是假命题,则p ,q 都是假命题
④命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,都有x 2+x +1≥0
9.设n ∈N +,一元二次方程x 2-4x +n =0有整数..
根的充要条件是n =________. 10.一元二次方程ax 2+4x +3=0 (a ≠0)有一个正根和一个负根的充要条件是________.
11.在下列四个命题中,真命题的个数是________.
①∀x ∈R ,x 2+x +3>0;
②∀x ∈Q ,13x 2+12
x +1是有理数; ③∃α,β∈R ,使sin(α+β)=sin α+sin β;
④∃x 0,y 0∈Z ,使3x 0-2y 0=10.
12.在下列四个结论中,正确的有________(填序号).
①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件;
②已知a 、b ∈R ,则“|a +b |=|a |+|b |”的充要条件为ab >0;
③“⎩⎪⎨⎪⎧
a >0,Δ=
b 2-4a
c ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集是R ”的充要条件;
④“x ≠1”是“x 2≠1”的充分不必要条件;
⑤“x ≠0”是“x +|x |>0”的必要不充分条件.
二、解答题
13.写出命题“若x -2+(y +1)2=0,则x =2且y =-1”的逆命题、否命题、逆否命
题,并判断它们的真假.
14.写出下列命题的“綈p ”命题,并判断它们的真假.
(1)p :∀x ,x 2+4x +4≥0.
(2)p :∃x ,x 2-4=0.
15.求证:“a +2b =0”是“直线ax +2y +3=0和直线x +by +2=0互相垂直”的充
要条件.
16.设p :关于x 的不等式a x >1 (a >0且a ≠1)的解集为{x |x <0},q :函数y =lg(ax 2-x
+a )的定义域为R .如果p 和q 有且仅有一个正确,求a 的取值范围.
17.(1)设集合M ={x |x >2},P ={x |x <3},则“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的什么
条件?
(2)求使不等式4mx 2-2mx -1<0恒成立的充要条件.
18.命题:在等比数列{a n }中,前n 项和为S n ,若S m ,S m +2,S m +1成等差数列,则a m ,
a m +2,a m +1成等差数列.
(1)写出该命题的逆命题;
(2)判断逆命题是否为真,并给出证明.
答案
1.②③④ 2.若a ≤b ,则2a ≤2b -1
3.a <-1
4.充分不必要
5.④
6.必要不充分
7.②③
8.①②④
9.3或4
10.a <0
11.4
12.①③⑤
13.解 逆命题:若x =2且y =-1, 则x -2+(y +1)2=0,真命题. 否命题:若
x -2+(y +1)2≠0, 则x ≠2或y ≠-1,真命题.
逆否命题:若x ≠2或y ≠-1, 则x -2+(y +1)2≠0,真命题.
14.解 (1)綈p :∃x ,x 2+4x +4<0是假命题.
(2)綈p :∀x ,x 2-4≠0是假命题.
15.证明 充分性:
当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜
率k 1=-a 2,直线x +by +2=0的斜率k 2=-1b
,如果a +2b =0,那么k 1k 2=⎝⎛⎭⎫-a 2×⎝⎛⎭
⎫-1b =-1,两直线互相垂直. 必要性:
如果两条直线互相垂直且斜率都存在,
那么k 1k 2=⎝⎛⎭⎫-a 2×⎝⎛⎭
⎫-1b =-1,所以a +2b =0; 若两直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0.
所以,a +2b =0.
综上,“a +2b =0”是“直线ax +2y +3=0和直线x +by +2=0互相垂直”的充要条件.”
16.解 当p 真时,0<a <1,
当q 真时,⎩⎪⎨⎪⎧
a >0,1-4a 2<0,
即a >12, ∴p 假时,a >1,q 假时,a ≤12
. 又p 和q 有且仅有一个正确.
当p 真q 假时,0<a ≤12
, 当p 假q 真时,a >1.
综上得,a ∈⎝⎛⎦
⎤0,12∪(1,+∞). 17.解 (1)“x ∈M 或x ∈P ”⇒x ∈R ,x ∈(M ∩P )⇔x ∈(2,3).
因为“x ∈M 或x ∈P ”D ⇒/x ∈(M ∩P ),
但x ∈(M ∩P )⇒x ∈M 或x ∈P .
故“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的必要不充分条件.
(2)当m ≠0时,不等式4mx 2-2mx -1<0恒成立 ⇔⎩
⎨⎧
4m <0
Δ=4m 2+16m <0⇔-4<m <0. 又m =0时,不等式4mx 2-2mx -1<0对x ∈R 恒成立.
故使不等式4mx 2-2mx -1<0恒成立的充要条件是-4<m ≤0.
18.解 (1)逆命题:在等比数列{a n }中,前n 项和为S n ,若a m ,a m +2,a m +1成等差数
列,则S m ,S m +2,S m +1成等差数列.
(2)命题当q =1时为假,当q =-12
时为真.证明如下:
设数列{a n }的首项为a ,公比为q , 由已知,得2a m +2=a m +a m +1, ∴2a 1q m +1=a 1q m -1+a 1q m .
∵a 1≠0,q ≠0,∴2q 2-q -1=0,
∴q =1或q =-12
. ①当q =1时,
∵S m =ma 1,S m +2=(m +2)a 1, S m +1=(m +1)a 1,
∴S m +S m +1≠2S m +2,
∴S m ,S m +2,S m +1不成等差数列.
②当q =-12
时, ∵S m +S m +1=a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m 1+12+a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +11+12
=43a 1⎣⎡⎦
⎤1-⎝⎛⎭⎫-12m +2, 而2S m +2=2a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +21+12
=43a 1⎣⎡⎦
⎤1-⎝⎛⎭⎫-12m +2, ∴S m +S m +1=2S m +2,
∴S m ,S m +2,S m +1成等差数列. 综上可得:
当公比q =1时,逆命题为假命题,
当公比q =-12
时,逆命题为真命题.。