第三章扭转

合集下载

第三章 扭转

第三章 扭转
46
三、切应变 剪切胡克定律 1、切应变 l
a
´
c
´
b
d t
为扭转角 r0 l
r0 即
l
纵轴 T——
T
2r02t
纯剪切单元体的相对两侧面 发生微小的相对错动,
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
横轴
r0
l
47
2、剪切虎克定律
做薄壁圆筒的扭转试验可得
在弹性范围内切应力 与切应变成正比关系。
切应力与扭矩同向的顺流
51
切应变的变化规律:
Me
pq
Me
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
_ 扭转角(rad)
x
d _ dx微段两截面的
相对扭转角
边缘上a点的错动距离:
aa' Rd dx
边缘上a点的切应变:
R d
dx
发生在垂直于半径的平面内。
52
p
q
d
ae
d
c
a ' e′O b
③ 结论:①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相对转动。
②各纵向线均倾斜了同一微小角度 ,仍为直线。
③所有矩形网格均歪斜成同样大小的平行四边形。
40
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
41
2、切应力分布规律假设
Me2
Me1
n
Me3
从动轮
主动轮
从动轮
求: 作用在该轮上的外力偶矩Me。

材料力学第三章 扭转

材料力学第三章 扭转

n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2

结构力学第三章-扭转

结构力学第三章-扭转
就可以推算出来。
(推导详见后面章节):
可见,在三个弹性常数中,只要知道任意两个,第三个量
§ 3–3
传动轴的外力偶矩 ·扭矩及扭矩图
一、传动轴的外力偶矩
传递轴的传递功率、转速与外力偶矩的关系:
P M 9.55 (KN m) n P M 7.024 (KN m) n
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm) 其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
45 max , 45 0
90 0 , 90 max
´
由此可见:圆轴扭转时,在横截 45° 面和纵截面上的切应力为最大值;在 方向角 = 45的斜截面上作用有最 大压应力和最大拉应力。根据这一结 论,就可解释前述的破坏现象。
1PS=735.5N· m/s ,
1kW=1.36PS
二、扭矩及扭矩图 1 2 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。 截面法求扭矩
M
x
0
T M 0 T M
3 扭矩的符号规定:
M
M
M
T
x
“T”的转向与截面外法线方向满足右手螺旋规则为正,
反之为负。
4 扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。 目 的 ①扭矩变化规律; ②|T|max值及其截面位置 强度计算(危险截面)。
d G G dx
代入上式得:
d G dx
3. 静力学关系:
dA
T A dA d A G dA dx d 2 G A dA dx
2

O

I p A 2dA

材料力学-第三章扭转

材料力学-第三章扭转

3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件

0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析




圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16


强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3

4
3
d 0.886 d
2
Mn
a
2

Mn 0.208 0.886 d
b
6.913

材料力学第3章扭转

材料力学第3章扭转

试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。

材料力学第3章扭转

材料力学第3章扭转

τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx

dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy

τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理

第三章扭转

第三章扭转

T=Fs×r
材料力学
0
Fs=2 r
0
扭转/圆轴扭转时的应力
一.圆轴扭转时的应力分布规律
T
T
材料力学
扭转/圆轴扭转时的应力
1. 单元格的变化
A
B
C
A B
C
D
D
现象一: 方格的左右两边发生相对错动
横截面上存在切应力
方格的左右两边距离没有发生改变 现象二:
材料力学
横截面上没有正应力
2. 半径的变化
材料力学
扭转/纯剪切
§3.3 纯剪切
材料力学
相关概念
纯剪切:单元体各个面上只承受切应力而没有正应力。
单元体:是指围绕受力物体内一点截取一边长为无限小 的正立方体,以表示几何上的一点。


材料力学
扭转/纯剪切
一.薄壁圆筒扭转时的切应力
纯剪切的变形规律通过薄壁圆筒的纯扭转进 行研究。 受扭前,在薄壁圆筒的表面上用圆周线和 纵向线画成方格。
扭转/圆轴扭转时的变形
两横截面间相对扭转角的计算:
=TL/GIP
T:扭矩;
L:两横截面间的距离; G:切变模量; IP:极惯性矩。
材料力学
扭转/圆轴扭转时的变形
=TL/GIP
GIP越大,则越小。 GIP称为抗扭刚度。
材料力学
扭转/圆轴扭转时的变形
`=/L
`:单位长度扭转角(rad/m)。
思路:
最大扭矩
最大切应力
max
校核强度
相等
强度相同,则两轴的最大切应力 求出实心轴直径
材料力学
两轴面积比即为重量比
扭转/圆轴扭转时的应力
计算Wt:
3 Wt=D

第三章 扭 转

第三章    扭 转

第三章 扭 转 1 扭转的力学模型①构件特征——构件为圆截面直杆。

②受力特征——外力偶矩的作用面与杆件轴线相垂直。

③变形特征——杆件各横截面绕杆轴作相对转动。

2圆轴扭转时,横截面上的内力偶矩——扭矩 ①传动轴的速度、传递的功率与外力偶矩之间的关系为{}{}{}minr n KW P M mN e 9950=∙ ②扭矩——构件受扭时,横截面上的内力偶矩,以T 表示。

③扭矩的正负号规定——用右手螺旋法则,扭矩矢量的方向指向截面的为负,背离截面的为正。

④扭矩图——表示圆杆各截面上的扭矩沿杆轴线方向变化规律的图线。

3圆轴扭转时,横截面上的应力、强度条件 (1)横截面上的切应力①分布规律——一点的切应力的大小与该点到圆心的距离成正比,其方向与该点的半径相垂直。

②计算公式 ρτP I T =PP max W TR I T ==τ (2)极惯性矩与扭转截面系数, ①实心圆截面 432D I P π= , 316D W P π=②空心圆截面 ()()444413232αππ-=-=D dDI P ,()44116απ-=D WP式中, Dd =α (3)圆轴扭转的强度条件 []ττ≤=Pmax W T(4)强度计算的三类问题①强度校核 []ττ≤=Pmax W T②截面设计 []τTW P ≥,由P W 计算D⑧许可荷载计算 []P e W M τ≤,由T 计算e M 4.圆轴扭转时的变形,刚度条件 (1)圆轴扭转时的变形小变形时,圆轴的二任意横截面之间仅产生相对的角位移,称为相对扭转角。

① 相对扭转角 ()rad GI TLP=ϕ ②单位长度扭转角 ()m rad GI Tdx d P'==ϕϕ 计算相对扭转角ϕ的公式,应在长度L 范围内,T ,G 和P I 均为常数,若其中任意参数T 或G 或P I 不为常数,则应分段计算ϕ,然后叠加。

2)圆轴扭转时的刚度条件 []()()m GI max T max 'P '0180ϕπϕ≤⨯=5.矩形截面杆扭转的主要结果 (1)横截面上的最大切应力横截面上的最大切应力发生在矩形截面的长边中点处;即 3b Tmax βτ=式中,β为与比值h 有关的系数,可查文献1中表3—1获得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:①计算外力偶矩
m2
m3
m1
m4
m1 9.55Pn1 9.55 530000
15.9(kN m)
A
n
B
C
D
m 2 m 3 9 .5P n 2 5 9.1 3 55 0 5 4 .7 0 0(8 k m N) m 4 9 .5P n 5 4 9.3 2 50 0 5 6 .0 0 3(7 km N)
13
5 薄壁圆筒切应力
因为筒壁很薄,假定: 1)沿筒壁厚度切应力不变,为常数; 2)力臂采用圆筒的平均半径:
A rdA T
r0 AdA r0 2 r0 t T
T
2 r02
t
得到薄壁圆筒的应力与扭矩之间的关系!
14
平衡吗?
15
二 切应力互等(双生)定理
Mz 0
tdy dx tdx dy
②施加一对外力偶 m。
11
2 实验后:
①圆周线不变;
②纵向线变成斜直线。
3 结论:①圆筒表面的各圆周线的形状、大小和间距均未改
变,只是绕轴线作了相对转动。
②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
12
4 抽象假设 ① 圆周线沿轴向无平移,无轴向变形,假设无轴向正应力 ② 圆周线不变,假设无径向正应力 ③ 纵向线倾斜角度相同,假设各截面都有切应力,环向均布 ④ 壁很薄,切应力径向也是均匀分布的
8
②求扭矩
m 1 1 .9 ,5 m 2 m 3 4 .7 ,m 8 4 6 .3
m2 1 m3 2 m1 3 m4
T 1 m 2 4 .7k 8N m
x
n
A 1B 2C 3 D
T 2 m 2 m 3 9 .5k 6 N m
T 3m 46.3k 7N m
9
③扭矩图
T 9.56kN m max
10MPa
10MPa
20MPa
50MPa
30MPa
50MPa
20MPa
30MPa
30MPa
17
1 与 的关系
l R
Rl
T与 成正比, 与 成正比;
实验表明:T与 成正比;
由此可知:与 成正比
2 剪切胡克定律 当τ ≤τp ,切应力与切应变成正比关系
G
剪切弹性模量 Pa
l
T
18
剪切弹性模量、弹性模量和泊松比是表明材料弹性性质的三个 常数。对各向同性材料,这三个弹性常数之间存在下列关系
´ a b
dy
´
c
z
dx d t
3 剪切胡克定律 当τ ≤τp ,切应力与切应变成正比关系
G
剪切弹性模量
23
以上讲述了薄壁圆筒应力、变形情况; 并总结了纯剪切状态的一般性公式; 那么,对于圆轴杆件情况是怎么样的呢?
24
§3–4 等直圆杆扭转时的应力和变形
一 等直圆杆横截面应力
①变形几何方面 ②物理关系方面 ③静力学方面

a
dy ´
c
z
dx
´
b
dt
在单元体相互垂直的两个平面上,切应力必然成对出现,且 数值相等,两者都垂直于两平面的交线,其方向则共同指向 或共同背离该交线。
单元体的四个侧面上只有切应力而无正应力作用,这种应 力状态称为纯剪切应力状态。
16
试根据切应力互等定理,判断图中所示的各单元体上的
切应力是否正确。
BC段为危险截面。
m2
m3
m1
m4
n
A
B
C
D
T

4.78

6.37
x
9.56
10
§3–3 纯剪切—薄壁圆筒的扭转
在讨论圆轴扭转的应力和变形之前,为了研究切应力和切应 变的规律以及两者之间的关系,先考察薄壁筒扭转。
薄壁圆筒:壁厚
t
1 10
r0
(r0:为平均半径)
一 实验:
1 实验前:
①绘纵向线,圆周线;
Me
右手螺旋规则:与外法线方向一致为正
m Me
x
Me
T
5
I
I
T
T

矩 符
I
T
I
号 规
I
I

T
T
T
I
I
6
三 扭矩图
扭矩图表示沿杆件轴线各横截面上扭矩变化规律的图线。
意 1 直观表示扭矩变化规律;
义 2 |T|max值及其截面位置
强度计算(危险截面)。
T

x
7
[例1] 已知一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试画扭矩图。
25
无数薄壁圆筒套在一起


26
等直圆杆扭转实验观察: 1. 横截面平面假设; 2. 轴向无伸缩; 3. 纵向线变形后仍平行。 即:横截面就像刚性平面一样绕轴线转了一个角度。 以上结果与薄壁圆筒相似。
第三章 扭 转
§3–1 扭转的概念和实例 §3–2 外力偶矩 扭矩及扭矩图 §3–3 薄壁圆筒的扭转 纯剪切 §3–4 等直圆杆扭转时的应力和变形 §3–5 等直圆杆扭转时的强度和刚度计算 §3–7* 非圆截面杆扭转的概念
1
§3–1 扭转的概念和实例
一 工程实例
A: 攻丝手柄 B : 联轴器
P P
二 受力特点 在垂直于轴线的两个平面内受到 两力偶作用,两力偶大小相等, 转向相反。
2
四轴 工程中以扭转为主要变形的构件。如:机器中的传动轴、 石油钻机中的钻杆等。
传动轴
3
§3–2 外力偶矩 扭矩及扭矩图
一 传动轴的外力偶矩 工程中一般给出:传送功率P (kW)和轴的转速n (r/min)
1kW=1000Nm/s, 则一秒钟内的功能转化表示为:
2 符号规定:
Me
右手螺旋规则:与外法线方向一致为正
3 扭矩计算
Me
截面法
x
m Me
x T
简便算法:扭矩等于截面一侧所有外力偶矩的代数和。
21
三 薄壁圆筒的扭转 1 实验结论 ① 无轴向正应力 ② 无径向正应力 ③ 切应力环向均布 ④ 切应力径向均布
T 2 r02 t
纯剪切应力状态
22
2 切应力互等(双生)定理 在单元体相互垂直的两个平面 上,剪应力必成对出现,且数 值相等,其方向则共同指向或 共同背离该交线。
G E
2 (1 )
19
一 受力特点 构件两端受到两个在垂直于轴线平面内的力偶作用,两力 偶大小相等,转向相反。
二 变形特点 各横截面绕轴线发生相对转动
扭转角(AB):B截面绕轴线相对A截面转动的角位移。
切应变():直角的改变量。
AB
A
OBMM源自20三 扭转时的内力
m
1 扭矩:横截面上的内力偶矩,“T”。
P100026n0Me
其中:Me—轴的扭矩 (Nm) P — 功率,千瓦(kW) n — 转速,转/分(r/min)
进一步整理得到外力偶矩计算公式:
Me
9549P n
单位是:Nm
4
二 扭转内力——扭矩
1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。
2 截面法求扭矩
m
Mx 0 TM
3 扭矩的符号规定
相关文档
最新文档