等式的基本性质1(公开课)

合集下载

人教版数学五年级上册等式的性质公开课教案(精选3篇)

人教版数学五年级上册等式的性质公开课教案(精选3篇)

人教版数学五年级上册等式的性质公开课教案(精选3篇)〖人教版数学五年级上册等式的性质公开课教案第【1】篇〗一、学情分析:作为初一学生〔132班和137班〕在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。

二、说教材1、教材所处的地位和作用新课标对本节课的要求是:掌握等式的性质。

在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。

本节内容借助于等式的性质这一工具来解一元一次方程。

首先,通过天平的实验操作,使学生学会观察。

尝试分析归纳等式的性质。

然后,利用等式的性质解一元一次方程。

通过解方程的学习提高学生的观察问题、解决问题的能力。

2、教育教学目标。

根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:〔1〕知识与技能:探究等式的性质,并能利用等式的性质进行等式变形、解简单的一元一次方程.〔2〕过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。

〔3〕情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论确实定性,建立学生学好数学的信心。

3、教学重、难点为了使学生能比拟顺利地到达教学目标,我确定了本节课的教学重、难点:教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程.教学难点:利用等式的性质把简单的一元一次方程变形为某=a 〔常数〕的形式;正确理解等式性质2中除数不能为0.4、教学准备:多媒体课件、小黑板三、说教学策略〔一〕教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟方案进行如下操作:1.读〔看〕――议――讲结合法。

2.图表分析法。

3.读图讨论法。

4.教学过程中坚持启发式教学的原那么。

〔二〕教学学法分析实际上,青少年好动,注意力易分散,爱发表见解。

希望得到老师的表扬所以在教学中应抓住学生这一生理特点。

《等式的基本性质》PPT课件 (公开课获奖)2022年浙教版 (3)

《等式的基本性质》PPT课件 (公开课获奖)2022年浙教版 (3)

分析:设每天平均一个人告诉了x个人.
开始有一人知道消息 ,第|一轮的消息源就是这个人 ,他告知了x个人 ,用代数式表示 ,第|一天后共
有_______人知道了这那么消息;
x 1
第二天中 ,这些人中的每个人又告知了x个人 ,用代数式示 ,第二天有_______人知道这那么消
息. xx 1
列方程
1+x +x(1 +x) =121
1.
2a3〕 b2,.求 0 :
⑴说明2a = -3b成立的理由;
等式两边都减去3b ,得2a = -3b.
⑵ a与b的比为多少 ? ⑵在等式2a = -3b的两边同除以2b ba,得 32 .
2.将等式 2a =2b 的两边都减去 a +b ,可得a -b =b -a ,再两边都除以(a -b) ,得 1 = 1.这个结果显然是错误的 !你知道错在哪里吗 ?
4利用等式的性质解以下方程.
8-2x10 2 x 3
32
5 8x
作业:P119 3. 4.
同学们 ,再见 !
1.解一元二次方程有哪些方法 ?
直接开平方法、配方法、公式法、因式分解法 .
3.列一元二次方程方程解应用题的步骤 ? ①审题 ②找等量关系 ③列方程 ④解方程 ⑤检验 ⑥答
用一元二次方程解决实际问题的一般步骤是什么 ?
教学目标:
1.经历等式的根本性质的发现过程. 2.掌握等式的根本性质. 3.会利用等式的根本性质将等式变形. 4.会依据等式的根本性质将方程变形 ,求出方程的解. 教学重难点:
1.本节教学的重点是等式的根本性质. 2.例2第〔2〕小题 ,方程两边都含有未知数 ,而且需两次 运用等式的性质才能将原方程变形成x=a〔a为数〕的 形式 ,是本节教学中的难点.

5.2 第1课时 等式的基本性质 课件(共20张PPT) 北师大版数学七年级上册

5.2 第1课时 等式的基本性质   课件(共20张PPT) 北师大版数学七年级上册
x = 2。
典例精析
例2 解方程:
(1) x + 2 = 5;
(2) 3 = x - 5;
解:(1) 方程两边都减 2,得
x+2-2=5-2。
于是
x=3。
(2) 方程两边都加 5,得
3+5=x-5+5。
于是
8=x。

x=8。
方程的解,最 后结果要写成 x = a 的形式!
例3 解方程:(1) -3x = 15;
七年级上册数学(北师版)
第五章 一元一次方程
2 一元一次方程的解法
第1课时 等式的基本性质
教学目标
1. 理解等式的基本性质,并能用它们来解方程。 2. 运用等式的基本性质解方程,逐步展现求解方程的一般
顺序,通过观察、操作、归纳等数学活动,感受数学思 考过程的条理性和数学结论的严密性。
重点:理解等式的基本性质,并能利用其解一元一次方程。 难点:能熟练运用等式的基本性质对方程进行变形。
m = 3 m + (-1) = 3 + (-1) → m - 1 = 3 - 1
知识总结
请用自己的语言精炼归纳出等式的基本性质:
等式的基本性质1: 等式的两边都加 (或减) 同一个代__数__式___,所得结果仍 是等式。
如果 a=b,那么__a_±___c_=__b__±__c____.
合作探究
据等式的基本性质_2__.
3. 应用等式的基本性质解下列方程并检验:
(1) x + 3 = 6; (3) -2x + 4 = 0;
(2) 0.2x = 4;
(4)1 1 x 3. 2
解: (1) x = 3. (2) x = 20.
(3) x 2. (4) x =-4.

等式的基本性质课件(微课配套)

等式的基本性质课件(微课配套)

小结提升
等式的基本性质1:
等式两边同时加(或减)同一个 代数式,所得结果仍是等式.
符号语言:若a=b,则 a±c=__b_±__c_
等式的基本性质2:
等式两边同时乘同一个数(或除以同一 个不为零的数),所得结果仍是等式.
符号语言: 若a=b,则ac=__b_c___
若a=b(c≠0),则
a
__c_
等式的性质
问题思考
思考:要让天平平衡应该满足什么条件?
问题思考
1.对比天平与等式,你有什么发现?
等式左边
等式右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平 两边的砝码,则等号成立就可看作是天平保持两边平衡.
问题思考
2.观察天平有什么特性? 天平两边同时加入相同质量的砝码
天平仍然平衡
天平两边同时拿去相同质量的砝码
a
a
则ax=b.下列说法正确的是( B )
A.①正确
B.②正确
C.①②都正确
D.①②都不正确
[解析] 由于等式两边乘同一个式子,结果仍相等,故②正 确;在等式两边除以同一个式子,只有当这个式子 不等于0时,等式两边才相等,而a可能为0,故①错 误,因此选B.
应用拓展
下列各式变形正确的是( A )
A.由3 x - 1 = 2x + 1 得3 x - 2 x = 1 + 1 B. 由5 + 1 = 6得5 = 6 + 1 C.由2( x + 1) = 2 y + 1得x + 1 = y + 1 D. 由2a + 3b = c - 6得2a = c - 18b
问题思考
问题思考
问题思考

安徽省七年级数学上册第3章一次方程与方程组3-1方程第2课时等式的基本性质新版沪科版

安徽省七年级数学上册第3章一次方程与方程组3-1方程第2课时等式的基本性质新版沪科版
第3章
一次方程与方程组
3.1
第2课时
方程
等式的基本性质
CONTENTS


01
核心必知
02
1星题
基础练
03
2星题
中档练
等式的基本性质:
性质1:等式的两边都加上(或减去)
同一个整式
,所得结
果仍是等式.
性质2:等式的两边都乘以(或除以)
0)
同一个数(除数不能为
,所得结果仍是等式.
性质3:如果 a = b ,那么 b =
B.


若 = ,则 a = b


注意 c =0的情况
C. 若 a2= b2,则 a = b


D. 若- x =6,则 x =-2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
11. 已知 x =-2是方程 mx + n =2的解,则代数式2 025+2 m
- n 的值是
1
2 023 .

2
3
4
5
6
7
(10- x )

支,HB型铅笔用了0.3 x 元,2B型铅笔用了0.5(10- x )
元,依题意,得0.3 x +0.5(10- x )=
4-0.2
.

这里 x >0且 x 为整数,列表如下:
x
1
0.3 x +
2
3
4
5
4.8 4.6 4.4 4.2
0.5(10- x )
从表中可看出 x =
1
2
3

《等式的基本性质》PPT课件 (公开课获奖)2022年青岛版 (4)

《等式的基本性质》PPT课件 (公开课获奖)2022年青岛版 (4)

x o
所以:a(0 +1)(0 -1) =1
得: a = -1
故所求的抛物线表达式为 y = - (x+ 1即):(xy -=1-) x2 +1
封面 例题
小组探究
1、二次函数对称轴为x =2 ,且过〔3 ,2〕、〔 1,10〕两点 ,求二次函数的表达式 .
解:设y =a(x -2)2 -k
2、二次函数极值为2 ,且过〔3 ,1〕、 〔 -1,1〕两点 ,求二次函数的表达式 .
(4)
2 1 x 3 4
五、强化训练
解:〔1〕x =6
+5
x =11
把x =11代入方程的左 边 ,得6 ,等于右边 ,所以 x =11是方程的解 .
〔2〕
x =150 把x =150代入方程的左边 , 得45 ,等于右边 ,所以x =150 是方程的解 .
五、强化训练
〔3〕5x = -4
x4 5
课堂小结
求二次函数表达式的一般方法:
▪ 图象上三点或三对的对应值 ,
▪ 通常选择一般式
y
▪ 图象的顶点坐标、对称轴或和最||值
▪ 通常选择顶点式
▪ 图象与x轴的两个交点的横x1、x2 ,
x▪ 通常选择交点式 . o
确定二次函数的表达式时 ,应该根据条件的特点 , 恰当地选用一种函数表达式 .
封面
封面 例题
例题选讲
例2
已知点A(-1,6)、B(2,3)和C(2,7), 求经过这三点的二次函数表达式。
解: 设所求的二次函数为 y =ax2 +bx +c y
将A、B、C三点坐标代入得:
a -b +c =6
16a +4b +c =6 9a +3b +c =2

《求解一元一次方程》第1课时》示范公开课教学设计【北师大版七年级数学上册】

《求解一元一次方程》第1课时》示范公开课教学设计【北师大版七年级数学上册】

第五章一元一次方程5.2 求解一元一次方程第1课时教学设计一、教学目标1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能.2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.3.体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.二、教学重点及难点重点:理解移项法则,会解简单的一元一次方程难点:用移项法则解方程,注意移项要变号.三、教学准备多媒体课件四、相关资源微课《利用“移项”解一元一次方程》,知识卡片《解一元一次方程(一)--移项》五、教学过程【复习回顾】复习回顾,引入新课1.利用等式的性质解下列方程(1)x-2=8;(2)3x=2x+1.解:(1)利用等式的性质1,两边都加上2得:x-2+2=8+2.即x=10.(2)利用等式的性质1,两边都减去2x得:3x-2x=2x+1-2x.即x=10.2.比较原方程3x=2x+1与变形后的方程3x-2x=1,你又发现了什么?解:通过变形,可以简化方程,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式.设计意图:本节直接用复习上节所学重点知识的方式导入新课,一是可以反馈学生对知识点的落实情况,二是其中的等式基本性质1就是新课中移项法则的理论依据,有一举两得的功效.【新知讲解】合作交流,探求新知探究:移项的定义及法则活动1.阅读解方程的过程:解:(1)5x-2=8,方程两边都加上2,得5x-2+2=8+2,即5x=10,即x=2.(2)7x=6x-4,方程两边都减去6x,得7x-6x=6x-6x-4,即7x-6x=-4,即x=-4.活动2.观察归纳,解答问题问题(1):分别将变化前后的两组方程进行对比,方程中哪些项改变了原来的位置?怎样变的?(可以用下图进行演示)学生很容易找到:一是项的位置发生变化(从方程的一边移到了另一边);二是项的符号发生变化(移动前后符号相反).问题(2):归纳出规律,说出这个规律产生的依据和法则.(在学生回答的基础上,投影显示以下内容)移项定义:将方程中的一项改变符号后,从方程的一边移到另一边.变形依据:等式的基本性质1.法则:移项时必须要变号.注意:所移动的是方程中的项,并且是从方程的一边移到另一边,而不是从方程的一边交换两项的位置.设计意图:通过“探索练习——观察归纳”的逻辑顺序,让学生经历自主观察发现规律并进行描述的过程,从而提升抽象问题的能力.活动三3:解一元一次方程的步骤:设计意图:教师通过书写解方程的过程,可以提高学生解题的规范性.而采用框图表示解方程的过程,是为使解法中各步骤的先后顺序清晰,渗透算法程序的思想.教学中不要求学生也画框图.【典型例题】例1.解下列方程:(1)3x +3=2x +7;(2)2x +6=1.解:(1)移项,得3x -2x =7-3.合并同类项,得x =4.(2)移项,得2x =1-6.合并同类项,得2x =-5.方程两边同除以2,得x =-52. 例2.判断下列移项是否正确,正确的在题后的括号里打“√”,错误的打“×”.(1)从135x -=-得到135x -=; ( ×) (2)从173132x x -+=--得到131732x x -=--. ( √ )例3.下列方程的变形是移项的是( D ).(A )由240x +=得24x = (B )由21x x =+得21x x =+(C )由21x =-得12x =- (D )由321x x -=+得231x x -=+ 本题可以采用学生口述,教师板演的方法,因为这是解方程一节安排的第一组例题,教学时必须强调解题的规范步骤和格式,同时教师还应及时纠正学生可能出现的错误,适时组织学生交流改错.例4.解方程:14x =-12x +3. 解:移项,得14x +12x =3. 合并同类项,得34x =3. 方程两边同除以34(或同乘以43),得x =4. 本题建议首先放手让学生去做.学生可能采取多种方法解答,教学时不应拘泥于教材提供的解法,只要合理都应该给予鼓励.设计意图:进一步巩固利用移项、合并同类项解方程的方法.【随堂练习】1.把下列方程进行移项变换2x -5=12移项2x =12+7x =-x +2移项7x + =24x =-x +10移项4x + =108x -5=3x +1移项8x + =1+-x +3=-9x +7移项-x + =7+2.解方程:(1)3x +5=4x +1;(2)9-3y =5y +5.解: (1)移项,得:3x -4x =1-5.合并同类项,得:-x =-4.系数化为1,得:x =4.(2)移项,得:-3y -5y =5-9.合并同类项,得:-8y =-4.系数化为1,得:y =12. (3)6745x x -=-移项,得6475x x -=-合并同类项,得:22x =系数化为1,得:x=1.(4)移项,得13624x y -= 合并同类项,得:164x -= 系数化为1,得:24x =-.3.下列移项对不对?如果不对,错在哪里?应当怎样改正?(1)从3x +6=0得3x =6;(2)从2x =x -1得到2x -x =1;(3)从2+x -3=2x +1得到2-3-1=2x -x ;解:(1)不对,移项要变号;应该得:3x =-6;(2)不对,不移项的部分不用变号;应该得:2x -x =-1;(3)对.4.根据下列条件列出方程,然后求出某数:(1)某数的19等于32;(2)某数的2倍比某数的5倍小24.解:(1)设某数为x,则1329x .解得x=288.(2)设某数为x,则5x-2x=24.解得x=8.设计意图:通过练习,及时巩固新知识,加深对化归思想的理解.六、课堂小结1.谈谈你对解方程的认识.2.谈谈你本节课还有什么收获.设计意图:教师引导学生归纳本节课的知识要点和思想方法,使学生对列方程和解方程有一个整体全面的认识,同时也帮助学生养成良好的学习习惯.七、板书设计。

北师大版七年级上册数学:等式的基本性质(公开课课件)

北师大版七年级上册数学:等式的基本性质(公开课课件)

第三环节 师友合作 探究性质
等式性质
活动一: 《天平平衡中的数学》 活动要求:看视频,写等式,探性质 1.师友讨论:
(1)观看视频,由组长组织讨论:观察质 量为a的茶壶和质量为b的水杯,它们数量的 变化,写出等式;
(2)总结等式性质,并与小学所学的等式 性质比较异同点。 2.请师友讲解本组讨论过程及结论。
(2)从x=y能否得到
x 9
=
y 9
?为什么?
(3)从a+2=b+2能否得到a=b?为什么?
(4)从-3a= -3b能否得到a=b?为什么?
(5)从6x= 6能否得到x=1?为什么?
活动二 应用探究 质疑解析
x+2=5
-3x=15
x=a
根据等式的基本性质解方程,并检验:
(1)x 2 = 5
化为x=a
=
=
5
6
1
两边都乘-3,得
x (3) = 6 (3) 3
x = 18
北师大版七年级上册数学
5.1.2用等式性质解一元一次方程
甘肃省酒泉市金塔县第四中学 他志俊
第一环节 学习目标展示
1.知识目标:理解和掌握等式性质,会运 用等式的性质,能规范的解一元一次方程, 即把方程化为“x=a”的形式。
2.能力目标:通过自学与师友活动相结合, 培养学生思维能力和和谐互助的意识。
本节课师友各有什么收获?
大家评选最优师友搭档。
第六环节 作业布置 1.解下列方程:
(1) x+7=0;
(2) x-10 =-3;
(3) 3x=-2x-6; (4)0.2x+1.8=3-1.8x. 上交本:P134 1,3,7.
示范备选
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档