二次根式勾股定理平行四边形综合试卷

合集下载

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为()A.10B.C.15D.10或2、如图,在△ABC中,BC=C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB的长为()A.2B C D.5 23、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm5、下列各组数中,是勾股数的是( )A .0.3,0.4,0.5B .52,6,132 C 2 D .9,12,156、如图,数轴上点A 所表示的数是( )A B C D 17、如图,在Rt △ABC 中,AB =6,BC =8,AD 为∠BAC 的平分线,将△ADC 沿直线AD 翻折得△ADE ,则DE 的长为( )A .4B .5C .6D .78、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要( )A .8 cmB .10 cmC .12 cmD .15 cm9、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .2、3、4 BC .5、12、13D .30、50、6010、满足下列条件的△ABC ,不是直角三角形的是( )A .∠A :∠B :∠C =5:12:13B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么_____.2、△ABC 的三条边长a 、b 、c 满足8c =60b -=,则△ABC ____直角三角形(填“是”或“不是”)3、已知:点A 的坐标为()3,4,点B 坐标为()1,1-,那么点A 和点B 两点间的距离是______.4、如图,已知△ABO 为等腰三角形,且OA =AB =5,B (﹣6,0),则点A 的坐标为_____.5、如图,△ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,当DF 的长度最小时,CE 的长度为______.三、解答题(5小题,每小题10分,共计50分)1、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.2、如图,正方形网格中,每个小正方形的边长为1,求网格上的三角形ABC 的面积和周长.3、如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =5,点D 是边AB 上的一个动点,连接CD ,过C 点在上方作CE ⊥CD ,且CE =CD ,点P 是DE 的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.4、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做“格点”,以格点为顶点分别按下列要求画三角形:(1)在图①中画出一个钝角三角形,使它的面积为4,并求出该三角形的三边长;(2)在图②中画出一个面积为10的正方形.5、如图,在4×4的正方形网格中,每个小正方形的边长均为1.(1(2)此三角形的面积是.---------参考答案-----------一、单选题1、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解: ∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A .【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.2、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=,∴AE =DE =121233AC AC ⨯==CD ,∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】设该直角三角形的两条直角边分别为a、b,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab 的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a 、b ,根据题意可得:22251257a b a b ⎧+=⎨+=-=⎩①② 将②两边平方-①,得224ab =∴12ab = ∴该直角三角形的面积为2126ab cm = 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.5、D【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A 、不是勾股数,因为0.3,0.4,0.5不是正整数,故此选项不符合题意;B 、不是勾股数,因为52,132不是正整数,故此选项不符合题意;CD 、是勾股数,因为222912=15+,故此选项符合题意;故选D .【点睛】本题考查勾股数的概念,勾股数是指:①三个数均为正整数;②其中两个较小的数的平方和等于最大的数的平方.6、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.7、B【分析】在Rt ABC∆中利用勾股定理求出AC长,利用折叠性质:得到ADE ADC∆∆≌,求出对应相等的边,设DE=x,在Rt BDE∆中利用勾股定理,列出关于x的方程,求解方程即可得到答案.【详解】解:∵AB=6,BC=8,∠ABC=90°,∴AC2222BC,6810∵AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,≌,∴∆∆ADE ADC∴A、B、E共线,AC=AE=10,DC=DE,∴BE=AE﹣AB=10﹣6=4,在Rt△BDE中,设DE=x,则BD=8﹣x,∵BD2+BE2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴DE=5,故选:B.【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.8、B【分析】立体图形展开后,利用勾股定理求解.【详解】解:将长方体沿着AB边侧面展开,并连接'AB,如下图所示:由题意及图可知:'13138AB cm=,=+++=,''6AA cm两点之间,线段最短,故'AB的长即是细线最短的长度,''∆中,由勾股定理可知:'10Rt AAB===,AB cm故所用细线最短需要10cm.故选:B.【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键.9、C【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【详解】解:A、22+32≠42,不能构成直角三角形,故此选项不符合题意;B、2+22,不能构成直角三角形,故此选项不符合题意;C、52+122=132,能构成直角三角形,故此选项符合题意;D、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.二、填空题1、222+=a b c【分析】利用勾股定理:两条直角边长的平方和等于斜边长的平方和,即可得到答案.【详解】解:在直角三角形中,由勾股定理可知:222+=a b c .故答案为:222+=a b c .【点睛】本题主要是考查了直角三角形的勾股定理,熟练掌握勾股定理的内容,注意区分好直角边和斜边,这是解决该类问题的关键.2、不是【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可.【详解】60b -=,∴40a -=,60b -=,∴4,6a b ==,则22246528+=≠,∴222a b c +≠,∴△ABC 不是直角三角形,故答案为:不是.【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.3、5【分析】根据两点间距离公式求解即可.【详解】∵点A 的坐标为()3,4,点B 坐标为(1,1)-,∴点A 和点B 5=.故答案为:5.【点睛】本题考查两点间距离,若11(,)A x y ,22(,)B x y ,则两点间的距离是AB 距离公式是解题的关键.4、(﹣3,4)【分析】过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,根据AB =AO ,AC ⊥BO ,得OC =132OB =,在Rt △AOC 中,由勾股定理得:AC =4,即可求出点A 的坐标.【详解】解:如图,过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,∵B(﹣6,0),∴OB=6,∵AB=AO,AC⊥BO,∴OC=132OB=,在Rt△AOC中,由勾股定理得:AC4=,∴A(﹣3,4).故答案为:(﹣3,4)【点睛】本题主要考查了坐标与图形,等腰三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.5、【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD CG=以及FCD ECG,由旋转的性质可得出EC FC=,由此即可利用全等三角形的判定定理SAS证出ΔΔFCD ECG≅,进而即可得出DF GE=,再根据点G为AC的中点,求出AD和DE的长,由勾股定理可得出答案.【详解】取线段AC的中点G,连接EG,如图所示.ABC ∆为等边三角形,且AD 为ABC ∆的对称轴,162CD CG AB ∴===,60ACD ∠=︒, 60ECF =︒∠,FCD ECG .在ΔFCD 和ECG ∆中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ΔΔ()FCD ECG SAS ∴≅,DF GE ∴=.当//EG BC 时,EG 最小,此时E 为AD 的中点,12AB BC ==,6DC =,AD ∴==12DE AD ∴==CE ∴==故答案为【点睛】本题考查了勾股定理,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF GE =.三、解答题1、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ;定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.2、面积是7【分析】利用面积和差和勾股定理求解即可.【详解】解:△ABC 的面积=111441432247222⨯-⨯⨯-⨯⨯-⨯⨯=;由勾股定理得:ABBC =AC ==所以△ABC【点睛】本题考查了勾股定理,解题关键是熟练运用勾股定理求线段长.3、(1)AP =12DE ,理由见解析;(2)BD =56或4514【分析】(1)连接AE ,首先根据∠ACB =∠ECD =90°,得到∠ECA =∠DCB ,然后证明△BCD ≌△ACE (SAS ),根据全等三角形对应角相等得到∠EAC =∠B =45°,进一步得出∠EAD =90°,最后根据直角三角形斜边上的中线等于斜边的一半即可得出AP =12DE ;(2)分两种情况讨论:当Q 在线段AB 上时和当Q 在线段BA 延长线上时,连接AE ,EQ ,根据题意得出CQ 垂直平分DE ,进而根据垂直平分线的性质得到EQ =DQ ,设BD =AE =x ,在Rt △AEQ 中根据勾股定理列方程求解即可;【详解】解:(1)AP =12DE ,理由:连接AE ,如图,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBA =45°.∵∠ACB =∠ECD =90°,∴∠ECA =∠DCB .在△BCD 和△ACE 中,CE CD ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCD ≌△ACE (SAS ).∴∠EAC =∠B =45°.∴∠EAD=∠EAC+∠BAC=90°.又∵P为DE中点,∴AP=12DE.(2)情况(一),当Q在线段AB上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,EQ=DQ=AB﹣AQ﹣BD=3﹣x,由(1)知:∠EAB=90°,∴EA2+AQ2=EQ2.∴x2+22=(3﹣x)2,解得x=56,即BD=56;情况(二),当Q在线段BA延长线上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,同理可得方程:x2+22=(7﹣x)2,解得x=45 14.综上:BD=56或4514.【点睛】此题考查了全等三角形的性质和判定,勾股定理的运用,垂直平分线的性质,直角三角形斜边中线的性质等知识,解题的关键是根据题意正确作出辅助线.4、 (1)三角形如图①所示,三边长分别为2、(2)正方形如图②所示.【分析】(1)画一个底边长是2,高为4的钝角三角形即可,然后利用勾股定理可以求出各边长.(2【详解】(1)如图①所示:很明显,12442EMFS=⨯⨯=,且FM=2,又由题意可得:EM=,EF=(2)如图②所示,由题意可得:AB=BC=CD=DA【点睛】本题考查的是勾股定理的综合应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、(1)画图见解析;(2)5.5【分析】(1)利用勾股定理在网格中确定2222223110,2313,1417,AB AC BC再顺次连接,,A B C即可;(2)利用长方形的面积减去周围三个三角形的面积即可. 【详解】解:(1)如图,ABC即为所求作的三角形,其中:2222223110,2313,1417, AB AC BC(2)11134132314 5.5,222ABCS故答案为:5.5【点睛】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.。

(完整版)二次根式勾股定理四边形与一次函数综合测试题(一)8.docx

(完整版)二次根式勾股定理四边形与一次函数综合测试题(一)8.docx

二次根式勾股定理四边形与一次函数综合测试题(一)一、选择题: ( 每题 3 分 , 共 36 分 )1、使代数式 有意义的 x 的取值范围是( )A .x ≥0B.C.x ≥0且D.一切实数2、下列等式一定成立的是()A . B.C .D .=93、若 与 |x ﹣ y ﹣3| 互为相反数,则 x+y 的值为( )A . 3B. 9C. 12 D. 274、若三角形三个内角的度数比为 1:2:3 ,则此三角形的三个内角的对边长度的比为()A.1:2:3B.3:2:1C.1: 3 : 2D.1:4:922( )5、若 △ ABC 的三边长分别为 m -1,2m, m +1(m>1) ,那么A. △ ABC 为直角三角形,且斜边长为 2B. △ ABC 为直角三角形,且斜边长为2mm -1C. △ ABC 为直角三角形,且斜边长为 2D. △ABC 不是直角三角形。

m +1 6、已知:如图在 △ABC ,△ ADE 中, ∠ BAC= ∠ DAE=90 °, AB=AC ,AD=AE ,点 C , D , E 三点在同一条直线上,连接 BD ,BE .以下四个结论: ① BD=CE ; ② BD ⊥ CE ; ③ ∠ACE+ ∠DBC=45 °;④ BE 2=2( AD 2+AB 2),其中结论正确的个数是( ) A . 1 B . 2 C . 3 D .4 7、菱形、矩形、正方形都具有的性质是( ) A .对角线相等且互相平分 ;B .对角线相等且互相垂直平分C .对角线互相平分D .四条边相等,四个角相等8、如图, E,F,G,H 分别是四边形 ABCD 的四边中点,要使四边形 EFGH 是菱形,四边形 ABCD 应具备的条件是( )A. 只有一组对边平行B. 对角线相等C. 对角线互相平分D. 对角线互相垂直。

9、如图,在 △ ABC 中, D,E,F 分别是三边中点,下列说法中,不正确的是()1B. 图中有三个平行四边形A.DE ∥ AC ,且 DE = AC21 C.若 S △DEF = 1 ,则 S △ ABC = 4 D. 若 △ DEF 的周长为 L ,则 △ ABC 的周长为L410、下列函数中, y 随 x 的增大而减少的函数是( )A . y=2x+8B . y= ﹣ 2+4xC .y= ﹣ 2x+8D . y=4x11、一条直线 y=kx+b ,其中 k+b= ﹣ 5、 kb=6 ,那么该直线经过()A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限12、把直线 y= ﹣ x+3 向上平移 m 个单位后, 与直线 y=2x+4 的交点在第一象限, 则 m 的取值范围是 ()A . 1<m < 7B . 3< m < 4C .m > 1D . m < 4AAHDEGDFBFCBEC6 题图 8题图9题图二、填空题 : ( 每题 3 分 , 共 15 分 ) 13、计算:=_________ 。

(完整)八年级二次根式综合练习题及答案解析.docx

(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。

【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。

【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。

m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。

【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。

【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。

【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。

2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。

【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。

1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。

八年级上数学试卷质量分析

八年级上数学试卷质量分析

八年级上数学试卷质量分析范文一本次考试内容为人教版八年级数学上册,内容涉及三章:1. 二次根式;2.勾股定理;3. 平行四边形。

本试卷共三道大题,选择、填空、和解答题。

满分120分,时间120分钟。

选择题占32%,填空题占40%,解答题占48%,基本涵盖了所有知识内容。

整套试卷题号、分值分配比例大致为:学生在选择题、作图题得分情况还可以,失分较多的是填空题、计算题和24、26题。

失分原因:(1)要领不太清楚。

(2)审题不清。

(3)灵活性不强。

(4)计算能力比较差。

(5)多数同学做题的规范性比较差。

(6)数学分析能力较差。

二、考试成绩分析:1.全班各分数段人数分布如下:我班本次考试,参加考试的学生共计62人,平均分40.1分,及格率5.2%,优秀率为0。

最高分94分,最低分18分。

从上面的比较不难看出,我们的平均分、及格率、优秀率都比较低,总体数学水平处于底层,并且数学的两极分化问题较为严重,因此需要我们好好反思我们的教学,寻找差距,努力提高我们的教学质量。

三、教与学存在的问题①学生层面:1.学生的基础差,严重影响了学生的学习积极性。

2.学生的基础知识掌握不牢,综合分析问题、解决问题的能力差。

3. 整体素质偏低。

学生的优秀率、及格率整体偏低。

尖子生不突出,后进生数量多,严重影响教学质量。

4. 学生整体学习风气不浓,不能做到主动学习和提前学习,大部分同学都是在教师的监督下进行,并且个别同学缺乏数学学习的兴趣。

无心向学的学生较多,马虎应付学习的学生多,导致学习成绩不好。

一部分学生不仅自己不好好学习,而且还影响其他人,严重影响了良好班风和学风的形成。

5.学生的学习习惯较差。

具体表现在:时间抓得不紧,不会合理安排和利用;布置的作业好多学生不认真写,有的抄作业应付;课后没有养成及时复习的习惯,对课堂知识的理解和掌握不到位,直接影响到后续知识的学习,导致知识漏洞越来越大。

②教师层面:1.结合平时课堂的反映及考试成绩比较,在课堂上有以下几个问题:一是课堂无计划性,包括知识目标、能力目标、时间搭配、教学进度、学生的个体差异不能很好的规划。

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题
①求y关于n的函数关系式;
②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
24.某初中在“读书共享月”活动中.学生都从家中带了图书到学校给大家共享阅读.经过抽样调查得知,初一人均带了2册;初二人均带了3.5册:初三人均带了2.5册.已知各年级学生人数的扇形统计图如图所示,其中初三共有210名学生.请根据以上信息解答下列问题:
(1)扇形统计图中,初三年级学生数所对应的圆心角为°;
28.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于 BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
22.随着”互联网+“时代的到来,利用网络呼叫专车的打车方式深受大众欢迎.据了解,在非高峰期时,某种专车所收取的费用y(元)与行驶里程x(km)的函数图象如图所示.请根据图象,回答下列问题:
(1)当x≥5时,求y与x之间的函数关系式;
(2)若王女士有一次在非高峰期乘坐这种专车外出,共付费47元,求王女士乘坐这种专车的行驶里程.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,

二次根式勾股定理平行四边形

二次根式勾股定理平行四边形

数 学 前三章复习 试 题(试题范围:二次根式、勾股定理、平行四边形)一、选择题(共12小题,每小题4分,共48分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1、 计算()24-- 38 的结果是( ).A.2 B.±2 C.-2或0 D.0.2、如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠= ,则AEF ∠=( ) A .110° B .115°C .120°D .130° 3、已知Rt △ABC 中,∠C=90°,若a+b=14cm,c=10cm , 则Rt △ABC 的面积是( )A.24cm 2B.36cm 2C.48cm 2D.60cm 24、下列各式不是最简二次根式的是( )A. 21a +B. 21x +C. 24bD. 0.1y5、 已知:如图,菱形ABCD 中,对角线AC 与BD相交于点O,OE ∥DC 交BC 于点E,AD=6cm,则OE 的长为( ).A.6 cmB.4 cmC.3 cmD.2 cm6、给出下列几组数:①6,7,8;②8,15,6;③n 2-1 ,2n ,n 2+1;④21+,21-,6 .其中能组成直角三角形三条边长的是( )A .①③B .②④C .①②D .③④7、 如图,正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠FAB 等于( )A .22.5°B .45°C .30° D.135°第2题C AB1A 0-1-218、若0<x<1,则(x -1x )2+4 -(x+1x)2-4 等于( ) A. 2x B. - 2xC. -2xD. 2x 9、如图,在平行四边形ABCD 中(AB ≠BC),直 线EF 经过其对角线的交点O,且分别交AD 、BC 于点M 、N , 交BA 、DC 的延长线于点E 、F ,下列结论: ①AO=BO ;②OE=OF ;③△EAM ≌△CFN ; ④△EAO ≌△CNO ,其中正确的是( )A. ①②B. ②③C. ②④D.③④ 10、小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ).A.2mB.2.5cmC.2.25mD.3m11、如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为( ) A .2-10 B .-2-10 C .2 D .-2 12、已知:如图,在正方形ABCD 外取一点E , 连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤二、填空题(共6小题,每小题4分,共24分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.13、(-4)2的算术平方根是______,25的平方根是______.14、函数y= x+2x -1中自变量x 的取值范围是 。

2023-2024学年重庆市开州区文峰初中教育集团九年级(上)开学数学试卷(含解析)

2023-2024学年重庆市开州区文峰初中教育集团九年级(上)开学数学试卷(含解析)

2023-2024学年重庆市开州区文峰初中教育集团九年级(上)开学数学试卷一、选择题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各式中最简二次根式是( )A. 9B. 4aC. x2D. a2. 把5米长的梯子斜靠在墙上,若梯子底端离墙4米,则梯子顶端到离地面( )A. 2米B. 3米C. 4米D. 4.5米3. 下列算式中正确的是( )A. 4÷2=2B. 3+2=5C. 3−2=1D. (−2)2=−24. 将字母“a”,“b”按照如图所示得规律摆放,依次下去,则第④个图形中字母“b”的个数是( )A. 10B. 11C. 12D. 135. 估计61−2的值应该在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间6. 八年级1班班主任从全班选出15名同学参加合唱训练,已知15名同学组成的合唱队成员的身高如下:身高(cm)158160163165168170人数235221则该合唱队15名同学的身高的众数和中位数分别是( )A. 160,163B. 163,163C. 163,164D. 165,1647. 已知M(x1,y1),N(x2,y2)是一次函数y=kx+2(k>0)图象上的点,若x1<0<x2,则y1,y2的大小关系是( )A. y1<2<y2B. y2<2<y1C. y1<y2<2D. 2<y1<y28. 如图,四边形ABCD是矩形,有一动点P从点B出发,沿B→C→D→A路线绕矩形的边匀速运动,当点P到达点A时停止运动.在点P的运动过程中,△ABP的面积S随时间t变化的函数图象大致是( )A. B. C. D.9. 如图,在正方形ABCD中,点E在BC上,点F在CD的延长线上.满足BE=DF,连接AE.AF,取AE的中点G,连接BG,FG,若BG=2,则FG=( )A. 5B. 25C. 10D. 21010. 有n个依次排列的整式:第1项是(x+1),用第1项乘(x−1),所得之积记为a1,将第1项加上(a1+1)得到第2项,再将第2项乘(x−1)得到a2,将第2项加上(a2+1)得到第3项……以此类推,某数学兴趣小组对此展开研究,得到下列4个结论:①第4项为x4+x3+x2+x+1;②a5=x5−1;③若第2023项的值为0,则x2024=1.以上结论正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共8小题,共32.0分)11. 若二次根式2x−2有意义,则x的取值范围为______.12. 如图,O是菱形ABCD的对角线AC、BD的交点,E是BC的中点,连接OE.若OE=1,则AB =______ .13. 若y=(m−1)x|m|+2m+1是关于x的一次函数,则实数m=______ .14. 某校招募校园活动主持人,甲候选人的综合素质、普通话、才艺展示成绩如表所示.测试项目综合素质普通话才艺展示测试成绩908691根据实际需求,该校规定综合素质、普通话和才艺展示三项测试得分按5:3:2的比例确定最终成绩,则甲候选人的最终成绩为______ 分.15. 如图,在四边形ABCD中,DE⊥AB于点E,且点E为AB的中点.若AB=8,DE=22,BC =1,CD=5,则四边形ABCD的面积为______ .16. 已知关于x的分式方程1−ax2−x −1x−2+1=0有整数解,且一次函数y=ax+a图象经过第一、二、三象限,则整数a的值为______ .17. 如图,∠ABC=90°,四边形ACDE是正方形,若AB=1,BC=2,则△BCE的面积等于______ .18. 一个四位正整数A满足百位上的数字比千位上的数字小5,个位上的数字比十位上的数字小3则称A为“三五律数”,将“三五律数”A的千位和十位数字组成的两位数与百位和个位数字组成的两位数的和记为F(A),将“三五律数”A的千位和百位数字组成的两位数与十位和个位数字组成的两位数的差记为G(A)例如:四位正整数7241,∵7−2=5,4−1=3,∴7241是“三五律数”,此时F(A)=74+21=95,G(A)=72−41=31.(1)四位正整数6130是“三五律数”,则F(6130)=______ .(2)若A是“三五律数”,且满足F(A)−G(A)是一个正整数的4次方,则符合条件的A为______ .三、解答题(本大题共8小题,共78.0分。

勾股定理及二次根式综合复习(含答案)

勾股定理及二次根式综合复习(含答案)

勾股定理及⼆次根式综合复习(含答案)勾股定理及⼆次根式复习⼀、知识梳理:(⼀)勾股定理:1、勾股定理定义:如果直⾓三⾓形的两直⾓边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅勾:直⾓三⾓形较短的直⾓边股:直⾓三⾓形较长的直⾓边弦:斜边勾股定理的逆定理:如果三⾓形的三边长a ,b ,c 有下⾯关系:a 2+b 2=c 2,那么这个三⾓形是直⾓三⾓形。

2. 勾股数:满⾜a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15;5,12,13 3. 判断直⾓三⾓形:如果三⾓形的三边长a 、b 、c 满⾜a 2+b 2=c 2 ,那么这个三⾓形是直⾓三⾓形。

(经典直⾓三⾓形:勾三、股四、弦五)其他⽅法:(1)有⼀个⾓为90°的三⾓形是直⾓三⾓形;(2)有两个⾓互余的三⾓形是直⾓三⾓形。

⽤它判断三⾓形是否为直⾓三⾓形的⼀般步骤是:(1)确定最⼤边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直⾓的三⾓形;若a 2+b 2<c 2,则此三⾓形为钝⾓三⾓形(其中c 为最⼤边);若a 2+b 2>c 2,则此三⾓形为锐⾓三⾓形(其中c 为最⼤边)4.注意:(1)直⾓三⾓形斜边上的中线等于斜边的⼀半(2)在直⾓三⾓形中,如果⼀个锐⾓等于30°,那么它所对的直⾓边等于斜边的⼀半。

(3)在直⾓三⾓形中,如果⼀条直⾓边等于斜边的⼀半,那么这条直⾓边所对的⾓等于30°。

5. 勾股定理的作⽤:(1)已知直⾓三⾓形的两边求第三边;(2)已知直⾓三⾓形的⼀边,求另两边的关系;(3)⽤于证明线段平⽅关系的问题;(4)利⽤勾股定理,作出长为n 的线段. (⼆)⼆次根式:1.⼆次根式的概念:形如a (a≥0)的式⼦叫做⼆次根式(⼆次根式中,被开⽅数⼀定是⾮负数,否则就没有意义,并且根式a ≥0)2.最简⼆次根式:同时满⾜:①被开⽅数的因数是整数,因式是整式(分母中不含根号);②被开⽅数中不含能开得尽⽅的因数或因式.这样的⼆次根式叫做最简⼆次根式. 3. 同类⼆次根式:⼏个⼆次根式化成最简⼆次根式后,如果被开⽅数相同,这⼏个⼆次根式就叫同类⼆次根式. 4.⼆次根式的性质:①a a ≥≥00()②()a a a 20=≥()③a aa aaa a200==>=-<||()()()④ab a b a b=?≥≥(,)00⑤babaa b=>≥(,)005.分母有理化及有理化因式:把分母中的根号化去,叫做分母有理化;两个含有⼆次根式的代数式相乘,?若它们的积不含⼆次根式,则称这两个代数式互为有理化因式.6.⼆次根式的运算(1)因式的外移和内移:如果被开⽅数中有的因式能够开得尽⽅,那么,就可以⽤它的算术根代替⽽移到根号外⾯;如果被开⽅数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外⾯,反之也可以将根号外⾯的正因式平⽅后移到根号⾥⾯.(2)⼆次根式的加减法:先把⼆次根式化成最简⼆次根式再合并同类⼆次根式.(3)⼆次根式的乘除法:⼆次根式相乘(除),将被开⽅数相乘(除),所得的积(商)仍作积(商)的被开⽅数并将运算结果化为最简⼆次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适⽤于⼆次根式的运算.7.使分母不带根号(分母有理化)常⽤⽅法:①化去分母中的根号关键是确定与分母相乘后,其结果不再含根号的因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绵竹实验学校第一次统一考试八年级(上) 数学试卷 一、选择题(每题3分,共30分) 1.21-的绝对值等于 ( ) A.2 B.-2 C.22 D.-22 2.三个正方形的面积如图(1),正方形A 的面积为( )
A. 6
B. 36
C. 64
D. 8 3. 在式子()()()230,2,12,20,3,1,2x x y y x x x x y +=--++中,二次根式有( ) A. 2个 B. 3个 C. 4个 D. 5个 4.一个三角形的三边长分别是3,4,5,则这个三角形最长边上的高是( )
A. 4
B. 310
C. 25
D. 512 3、函数y=112x x -+-中,自变量x 的取值范围是( ). A .x ≥-1 B .x>2 C .x>-1且x ≠2 D .x ≥-1且x ≠2 6、下列各组根式中,是可以合并的根式是( ) A 、318和 B 、133和 C 、22a b ab 和 D 、11a a +-和 7..一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ) A.6秒 B.5秒 C.4秒 D.3秒 8..如图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( ) A.3 B.32 C.33 D.34 学校:____________ 班级:____________
姓名:____________
考号:___________ ……………………………………………………………………………………………………………………………………
…………………………………………………
密封线内不得答题 __
__
__
__
__
__
__
__
__
__
__
______
____
__
__
__
__
__
__
__
______
__
__
__
__
__
__
__
__
__
____
____
__
__
__
____________ …










……………
……





………
……







……
……







………




…………………………………………______________________________________________ 图(1 A 100 64
9能使等式22x x x x =--成立的的x 的取值范围是( ) A 、2x > B 、0x ≥ C 、02x ≤≤ D 、无解
10.下列运算正确的是( )
A.235=-
B.312914=
C.822-=
D.()52522-=-
11. 已知四边形ABCD 中,AC 、BD 交于点O ,给出条件①AD ∥BC 且AB=CD ,②AB=CD 且OA=OC ,③∠DAB=∠DCB 且OA=OC ,④∠DAB=∠DCB 且OB=OD ,其中能判定四边形ABCD 是平行四边形的有( )
A .0个
B .1个
C .2个
D .3个
12.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )
A.6cm 2
B.8cm 2
C.10cm 2
D.12cm 2
二、填空(每小题3分,共30分)
1.在ABCD 中,∠A=︒50,则∠B= 度,∠C= 度,∠D= 度.
2.如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm
3. 若23a ,则()()2223a a ---等于_______。

4. 已知0xy ,化简二次根式2y x x
-的结果为_______。

5.如果,则=_______。

6.若等边三角形的边长为2,则它的面积为______.
7..若直角三角形的两条直角边分别是1和3,则它的斜边上的高为_______ 。

三、计算题
1.131********-+-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--; 2 . 22 (212 +418 -348 )。

3.已知321
+=a ,求a a a a a a a -+---+-22212121的值;
四.解答题
1..如图所示,在四边形ABCD 中,已知:AB:BC:CD:DA=2:2:3:1,且∠B=900,求∠DAB 的度数。

2..(共10分)如图,在△ABC 中,AD ⊥BC ,垂足为D ,∠B=60°,∠C=45°.
(1)求∠BAC 的度数。

(2)若AC=2,求AD 的长。

3.、如图7,平行四边形ABCD 的对角线AC 、BD 相交于点O,E 、F 是直线AC 上的
两点,并且AE=CF,求证:四边形BFDE 是平行四边形.
4.有一艘渔轮在海上C 处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A 处和B 处,B 在A 的正东方向,且相距100里,测得地点C 在A 的南偏东60°,在B 的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C 处救援?(3≈1.7)
5.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C 移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.
(1)该城市是否会受到这交台风的影响?请说明理由.
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?
图7O F E D C B A。

相关文档
最新文档