质点动力学
质点动力学

a2 b2
可见,质点的运动轨迹是以
a、b 为半轴的椭圆。对运动方
程求二阶导数,得加速度
13
aaxy
x a 2 cost y b 2 sint
2x 2 y
即
a axi ay j 2r
将上式代入公式中,得力在直角坐标轴上的投影
FFxy
max may
m 2x m 2 y
dv dt
积分。
如力是位置的函数,需进行变量置换
d v v d v , 再分离变量积分。 dt ds
16
[例3] 质量为m的质点沿水平x轴运动,加于质点上的水平为
F F0 cos t ,其中 F0, 均是常数,初始时 x0 0,v0 0 。
求质点运动规律。
解 研究质点在水平方向受力作用。建立质点运动微分方程
再积分一次
19
代入初始条件得 :
c1 v0 cos0 , c2 v0 sin 0 , c3 c4 0
则运动方程为:
则轨迹方程为:
xv0tcos0,yv0tsin0
y
xtg
0
1 2
g
v0
2
x02
c os2
0
1 2
gt
2
代入最高点A处值,得: d y dt
v0
sin 0
gt
0,
即
t v0 sin0
即 F Fxi Fy j m 2r
可见,F和点M的位置矢径r方向相反,F始终指向中心,其
大小与r的大小成正比,称之为向心力。
14
第二类问题:已知作用在质点上的力,求质点的运动(积 分问题)。
已知的作用力可能是常力,也可能是变力。变力可能是时 间、位置、速度或者同时是上述几种变量的函数。 解题步骤如下: ① 正确选择研究对象。 ② 正确进行受力分析,画出受力图。判断力是什么性质的力
大学物理课件第二章质点动力学

m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B
A
F
B
m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B
A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。
理论力学第10章 质点动力学

y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。
质点动力学的三个基本定律

质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。
牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。
第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。
第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。
物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。
该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。
角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
质点动力学知识点总结

质点动力学知识点总结1. 引言质点动力学是物理学中研究质点运动规律的分支,它是经典力学的基础。
本文档旨在总结质点动力学的核心知识点,包括牛顿运动定律、动量、动能、势能、功以及守恒定律等。
2. 牛顿运动定律2.1 牛顿第一定律(惯性定律)一个质点若未受外力,将保持静止状态或匀速直线运动。
2.2 牛顿第二定律(动力定律)质点的加速度与作用在其上的合外力成正比,与质点的质量成反比,加速度的方向与合外力的方向相同。
2.3 牛顿第三定律(作用与反作用定律)两个相互作用的质点之间的作用力和反作用力大小相等、方向相反。
3. 动量3.1 定义动量是质点的质量与其速度的乘积,是矢量量,表示为\( \vec{p} = m\vec{v} \)。
3.2 动量守恒定律在一个封闭系统中,若没有外力作用,系统内所有质点的动量之和保持不变。
4. 动能4.1 定义动能是质点由于运动而具有的能量,计算公式为\( K =\frac{1}{2}mv^2 \)。
4.2 动能定理合外力对质点所做的功等于质点动能的变化量。
5. 势能5.1 定义势能是质点由于位置或状态而具有的能量,与参考点的选择有关。
5.2 重力势能在重力场中,质点的重力势能计算公式为\( U = mgh \),其中\( h \)是质点相对于参考点的高度。
6. 功6.1 定义功是力在物体上作用时,由于物体的位移而对物体所做的工作,计算公式为\( W = \vec{F} \cdot \vec{d} \),其中\( \vec{F} \)是力,\( \vec{d} \)是在力的方向上的位移。
6.2 功的守恒在一个封闭系统中,若没有非保守力做功,系统内所有质点的机械能(动能与势能之和)保持不变。
7. 守恒定律7.1 机械能守恒定律在没有非保守力作用的封闭系统中,机械能守恒。
7.2 角动量守恒定律在一个封闭系统中,若没有外力矩作用,系统内所有质点的角动量之和保持不变。
8. 结论质点动力学是理解和描述宏观物体运动的基础。
《理论力学》第九章质点动力学

目
CONTENCT
录
• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω
笫二章质点动力学
F
13
四、力的分类
在目前的宇宙中,存在着四类基本的相互作用,所有的 运动现象的原因都逃不出这四类基本的力,各式各样的力只不 过是这四类基本力在不同情况下的不同表现.
四种力:万有引力,电磁力,强力和弱力
万有引力 电 磁 力
强力
弱力
适用范围 m
相互作用举 例
长程力
长程力
1015
1016
恒星结合在一 电子和原子核 质子和中子结 表征核子
起形成银河系 结合形成原子 合形成原子核 衰变的力
相对强度
1039
102
1
105
14
㈣ 牛顿运动定律应用
一、动力学的典型问题可归结为两类:
笫一类问题:己知作用于物体(质点)上的力,由力 学规律来决定该物体的运动情况或平衡状态.
笫二类问题:己知物体的运动情况或平衡状态,由 力学规律来推究作用于物体上各种力.
d 2
d 2
,
cos
d 2
1
整理以上方程可得:
dT N
1 dTd Td N
2
18
TA TB
dT T
0d
ln TA TB
TB TAe
讨论: 如果 0.25
则: 时, TB 0.46TA
2时, TB 0.21TA
10时, TB 0.00039TA
19
例题2-2 从实验知道,当物体速度不大时,可认为空 气阻力正比于物体的速度,问以初速度竖直向上运动 的物体,其速度将如何变化?
一、万有引力与重力
F
G
m1m2 r2
mr
1
m
2
重力:地球对表面物体的 万有引力mg
g
质点动力学知识点总结
质点动力学知识点总结基本概念:质点:具有质量但没有体积和形状的物体模型。
力:质点动力学研究的核心内容,包括恒力、变力和约束力。
运动方程:描述质点在外力作用下的运动规律的基本方程。
动量:描述质点运动状态的重要物理量,等于质点的质量乘以速度。
动能:描述质点运动状态的另一个重要物理量,等于质点的质量乘以速度的平方再乘以1/2。
势能:描述质点在外力场中的势能状态的物理量,势能的大小与质点所处位置有关。
角动量和角动量定理:与质点的旋转运动相关的物理量和定理。
基本理论:牛顿运动定律:描述了质点在作用力作用下运动的规律,即F=ma,其中F表示合外力,m表示质点的质量,a表示质点的加速度。
动量定理:通过动量的概念揭示了力与运动之间的内在联系,即合外力的冲量等于物体动量的变化量,表达式为Ft=mV-mv。
动能定理:引入动能的概念,建立了力学与能量之间的关系,即合外力做的功等于物体的动能的改变量,表达式为W=1/2mV^2-1/2mv^2。
分析方法:矢量方法:利用矢量运算符对问题进行矢量分析。
微分方程方法:将运动方程化为微分方程,然后求解微分方程获得运动规律。
能量方法:利用能量守恒定律等能量原理分析运动问题。
实际应用:军事方面:应用在导弹、卫星、航天器和飞机等领域,研究其受力情况和运动规律,从而提高军事制式的效率和效果。
经济方面:应用在金融市场和交通运输领域,分析市场变化和流动性,以及货运运输的效益和优化策略。
社会方面:研究城市交通拥堵问题、人口迁移以及城市规律,以提高城市的运作效率和质量。
总的来说,质点动力学涉及到质点的运动规律、动量、动能、势能等基本物理量的研究,以及相关的理论和实际应用。
通过学习和掌握质点动力学的知识,可以更好地理解物体在外力作用下的运动规律,以及如何利用这些规律解决实际问题。
质点动力学知识点总结
质点动力学知识点总结质点动力学是物理学中非常重要的一个分支,它研究的是质点在力的作用下的运动规律。
在质点动力学中,我们通常假设质点的大小可以忽略不计,只考虑它的位置和速度,这样我们就可以用简单的数学模型描述质点的运动。
在本文中,我们将系统地总结质点动力学的一些基本知识点,包括质点的运动方程、牛顿运动定律、动量和能量等。
希望本文可以帮助读者更好地理解质点动力学的基本概念和原理。
一、质点的运动方程质点的运动可以用位置矢量 r(t) 来描述,它随时间 t 的变化可以用速度矢量 v(t) 来表示。
根据牛顿第二定律 F=ma,质点的运动方程可以写成:m*a = F,其中 m 是质点的质量,a 是质点的加速度,F 是作用在质点上的力。
根据牛顿运动定律,我们可以利用力学原理得到质点在外力作用下的运动规律。
二、牛顿运动定律牛顿运动定律是质点动力学的基础,它包括三条定律:1. 第一定律:物体静止或匀速直线运动时,外力平衡。
这是牛顿运动定律中最基本的一条定律,也是质点动力学的基础。
2. 第二定律:力的大小与加速度成正比,方向与加速度的方向相同。
这条定律描述了质点在外力作用下的加速度与力的关系,是质点动力学的重要定律之一。
3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。
这条定律描述了两个物体之间的相互作用,也是质点动力学中不可或缺的定律之一。
三、动量动量是质点运动的另一个重要物理量,它定义为质点的质量 m 乘以它的速度 v,即 p=m*v。
根据牛顿第二定律 F=dp/dt,我们可以推导出动量的变化率与外力的关系,从而得到动量守恒定律。
动量守恒定律是质点动力学中非常重要的一个定律,它描述了在没有外力作用下,质点的动量将保持不变。
根据动量守恒定律,我们可以在实际问题中很方便地利用动量守恒来解决问题。
四、能量能量是质点动力学中另一个重要的物理量,它定义为质点的动能和势能的总和。
动能是质点由于速度而具有的能量,它和质点的质量和速度有关;势能是质点由于位置而具有的能量,它和质点的位置和作用力有关。
20第5章第二十讲 质点动力学
第五章质点动力学动力学的任务•研究物体机械运动一般规律动力学基本线索动力学内容•质点动力学、动力学普遍定理、刚体动力学、动静法、分析力学物体机械运动状态改变量力对物体机械作用量动力学两类问题第一类问题•已知运动,求力第二类问题•已知力,求运动舰载飞机在发动机和弹射器推力作用下从甲板上起飞若已知初速度、飞离甲板的速度,则需要弹射器施加多大推力,或者确定需要多长的跑道。
若已知推力和跑道长度,则需要多大的初速度和多长时间才能达到飞离甲板所需速度。
ABv1v2载人飞船的交会与对接质点动力学(dynamics of a particle)本章研究质点在惯性与非惯性系中的运动微分方程。
1.惯性系质点动力学基本方程2.非惯性系质点动力学基本方程3.地球自转对质点运动的影响1.惯性系质点动力学基本方程质点动力学基本方程(牛顿第二定律)(1683-1727)1. 惯性系质点动力学基本方程•矢量形式•直角坐标形式xy质点运动微分方程∑∑∑===iizi iyi ixF zm F ym F xm1.惯性系质点动力学基本方程•自然坐标形式•极坐标形式?质点运动微分方程∑∑∑===bi ni τi FF sm F s m 02ρ1. 惯性系质点动力学基本方程求解质点动力学问题的过程与步骤大致如下1.确定研究对象,选择适当的坐标系;2.进行受力分析,画受力图;3.进行运动分析,计算运动参数;4.列出质点的运动微分方程,分清是第一类问题还是第二类问题,分别用微分或积分法求解;对第一类问题,需要确定加速度,对第二类问题,加速度方向要和投影轴方向一致,并写出初条件。
5.根据需要对结果进行必要的分析讨论。
【例】圆锥摆。
质量为1kg 的重物,被绳限制在水平面内作圆周运动,成为锥摆形状;绳长l =30cm ,与铅垂线角度θ=60°。
求:速度v 及张力T 的大小。
1. 惯性系质点动力学基本方程G解:以小球为研究的质点,作用力:重力G ,绳子拉力T 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E2 E1 mgh
2-4 势能 机械能守恒定律
第二章
质点动力学
s ' FN Ff
h
P cos
P sin
h 50m , 0.050, s' 500m , Wf mg(s's)
由功能原理 可得
P
Wf E2 E1
代入已知数据有
m g( s' s) mgh s h s' 500m
2-4 势能 机械能守恒定律
第二章
质点动力学
例 有一轻弹簧, 其一端系在铅直放置的圆环的顶点P, 另一端系一质量为m 的小球, 小球穿过圆环并在圆环上 运动(不计摩擦) .开始小球静止于点 A, 弹簧处于自然 状态,其长度为圆环半径R; 当小球运动到圆环的底端点 B时,小球对圆环没有压力. 求弹簧的劲度系数.
2-4 势能 机械能守恒定律 2 ) 弹性力作功
第二章
质点动力学
F
x
o
xA xB
F kxi dA kxi dxi kxdx
A
xB xA
1 2 1 2 kxdx ( kx B kx A ) 2 2
2-4 势能 机械能守恒定律 二 保守力和非保守力
P35 例 6 一质量为m 的小球系在长为 l 细绳下端 , 所 能承受的最大张力为1.5mg。现将绳子拉到水平位置静 止后放手,求何处细绳断裂。 解
v FT mg sin m l 1 2 mgl sin mv 2 FT 1.5mg
1 sin 2
2
l
v
FT
P
又
v kR m g m R
2mg k R
2 B
R
30
o
B
A
所以
Ep 0
A A Eki Eki 0
ex i in i
m1
ex Fi
外力功
内力功
in m i m2 Fi
对质点系,有
A
i
ex i
A Eki Eki 0 Ek Ek0
in i i i
质点系动能定理 注意
A A Ek Ek0
ex
i in
内力可以改质点系的动能
亥姆霍兹 (1821—1894), 德国物理学家和生理学家。
于1874年发表了《论力(现
称能量)守恒》的演讲,首 先系统地以数学方式阐述了 自然界各种运动形式之间都 遵守能量守恒这条规律。所
以说亥姆霍兹是能量守恒定
律的创立者之一 。
2-4 势能 机械能守恒定律
第二章
质点动力学
对与一个与自然界无任何联系的系统来说, 系统
B
非保守力: 力所作的功与路径有关 .(例如摩擦力)
2-4 势能 机械能守恒定律 三 势能 势能 引力功
第二章
质点动力学
与物体间相互作用及相对位置有关的能量 . 引力势能
1 1 A Gm ' m rB rA
m' m Ep G r
弹性势能
弹力功
1 2 1 2 A ( kxB kx A ) 2 2
解 以弹簧、小球和地球为一系统,
P
R
30
A B 只有保守内力做功
系统机械能守恒 EB E A
取图中点 B 为重力势能零点
o
B
A
Ep 0
2-4 势能 机械能守恒定律 系统机械能守恒 EB 即
第二章
质点动力学
E A , 图中B点为重力势能零点
1 1 2 2 mv B kR mgR (2 sin 30) 2 2
§2-4 势能 机械能守恒定律
1 万有引力、弹性力作功的特点 2 保守力和非保守力 3 势能 4 质点系的动能定理 5 质点系的功能原理 6 机械能守恒定律
2-4 势能 机械能守恒定律
第二章
质点动力学
一
万有引力、弹性力作功的特点
m 以m '为参考系, 的位置矢量为 r. m' 对 m 的万有引力为
30
W
2-4 势能 机械能守恒定律
第二章
质点动力学
P36 例7 以初速为 5km/s 由地面垂 直向上发射一物体,求物体能上升 的最大高度。
解: 取抛体和地球为一系统 , 系统的机械能 E 守恒 .
h
``````
1 2 mM mM E mv0 (G ) G 2 R Rh
1) 万有引力作功
m 'm F G 2 er r
A m dr r (t) m' r (t dt )
O
B
m 'm dA F dr G 2 er dr r
2-4 势能 机械能守恒定律
第二章
质点动力学
er dr dr cos dr
m'm A G 2 er dr r
Gm ' m dr rA 1 1 A Gm ' m rB rA
rB
A m r (t) dr m' r (t dt )
O
1 2 r
B
r (t )
dr
r (t dt )
h 1.57 10 km
3
2-4 势能 机械能守恒定律
第二章
质点动力学
例 一雪橇从高度为50m 的山顶上点A沿冰道由静止 下滑,山顶到山下的坡道长为500m . 雪橇滑至山下点B 后,又沿水平冰道继续滑行,滑行若干米后停止在C处 . 若摩擦因数为0.050 . 求此雪橇沿水平冰道滑行的路程 . (点B附近可视为连续弯曲的滑道.忽略空气阻力 .)
内各种形式的能量是可以相互转换的,但是不论如何
转换,能量既不能产生,也不能消灭,这一结论叫做
能量守恒定律 .
1)生产斗争和科学实验的经验总结; 2)能量是系统状态的函数; 3)系统能量不变, 但各种能量形式可以互相转化;
4)能量的变化常用作功和传热来量度 .
2-4 势能 机械能守恒定律
第二章
质点动力学
D
B
2-4 势能 机械能守恒定律
第二章
质点动力学
l
ACB
F dr
ACB
ADB
F dr
F dr
A
C
D
F dr
F dr
B
A
BDA
F dr 0
l
C
D
物体沿闭合路径运动 一周时, 保守力对它所作的功等于零 .
in nc
A A 0
时,有
E E0
机械能守恒定律 只有保守内力作功的情况下, 质点系的机械能保持不变 .
Ek Ep Ek0 Ep0
Ek Ep 恒量
守恒定律的意义 不究过程细节而能对系统的状态下结论,这是 各个守恒定律的特点和优点 .
2-4 势能 机械能守恒定律
第二章
质点动力学
机械能
i
i
E Ek Ep
A A E E0
ex in nc
质点系的功能原理 质点系机械能的增量等于 外力和非保守内力作功之和 .
2-4 势能 机械能守恒定律 六 机械能守恒定律
第二章
质点动力学
功能原理
当
ex
A A ( Ek Ep ) ( Ek0 Ep0 )
ex in nc
2-4 势能 机械能守恒定律 五 质点系的功能原理 质点系动能定理
in in i
ex in
第二章
质点动力学
A A Ek Ek0
in c in nc
A ( Epi Epi 0 ) Ep Ep0
in c
A A A A
i
ex in nc
非保守 力的功
A A ( Ek Ep ) ( Ek0 Ep0 )
令
A ( Ep Ep0 ) Ep
Ep0 0
Ep0 0 Ep ( x, y, z)
( x, y , z )
F dr
2-4 势能 机械能守恒定律
第二章
质点动力学
重力势能
F mgk dr dxi dyj dzk
mg( z A z B )
保守力的功
1 2 Ep kx 2
A ( Ep2 Ep1 ) EP
2-4 势能 机械能守恒定律
第二章
质点动力学
讨论
势能是状态函数
A ( Ep2 Ep1 ) EP
Ep Ep ( x, y, z )
势能具有相对性,势能大小与势能零点的选取有关 .
势能是属于系统的 . 势能计算
第二章
质点动力学
保守力: 力所作的功与路径无关,仅决定于相 互作用质点的始末相对位置 . 引力功
1 1 A Gm ' m rB rA
A
C
1 2 1 2 弹力功 A ( kx B kx A ) 2 2
ACB
F dr
ADB
F dr
Ep ( x, y, z)
Ep0 0
( x, y , z )
F dr
z
zA
A
zB
mg
B
o
zB B Ep ( x , y , z ) A F dr z A mgdz
x
y
2-4 势能 机械能守恒定律 四 质点系的动能定理 对第 i 个质点,有