高压架空输电线路防雷措施综述论文
10kV架空配电线路防雷措施

10kV架空配电线路防雷措施摘要:针对10KV架空配电线路常发生雷击断线事故,从而进行防范措施探讨,以求提高10KV 配电网安全运行水平。
目前10KV架空配电线路上,现在都已广泛地应用了绝缘导线。
可以说,配电网架空导线的绝缘化,已是一项成熟的技术。
但是,绝缘导线在应用过程中,也出现了一些新的问题。
其中,最为突出的问题,是遭受雷击时,容易发生断线事故。
据有关资料的统计,南昌经开区2008至2009年两年内,一个30平方公里的供电区域内,雷击断线事故与雷击跳闸事故约为35次,直接损失电量约为30万千瓦时,严重降低了供电可靠性,给社会带来了不良的效果。
这两年里雷击断线事故率占76.2%。
以上一些统计资料表明:雷击断线事故,是应用绝缘导线中最突出的一个严重问题,这引起我们的广泛注意,并积极开展对等试验研究工作,并找到许多有效的防范措施。
一、雷击断线与跳闸机理1电弧放电规律①电网雷电过电压闪络,亦即大气压或高于大气压中大电流放电,为电弧放电形式。
②雷电过电压闪络时,瞬间电弧电流很大、但时间很短。
③当雷电过电压闪络,特别是在两相或三相(不一定是在同一电杆上)之间闪络而形成金属性短路通道,引起数千安培工频续流,电弧能量将骤增。
2 架空绝缘导线断线当雷击架空绝缘线路产生巨大雷电过电压,当它超过导线绝缘层的耐压水平时(一般大于139KV)就会沿导线寻找电场最薄弱点将导线的绝缘层击穿(通常在绝缘子两端30公分范围内),形成针孔大小的击穿点,然后对绝缘子沿面放电形成闪络,最后工频电弧向绝缘子根部的金属发展后形成金属性短路通道,工频电弧固定在一点燃烧后熔断导线。
3 架空裸导线的断线率低但跳闸事故频繁当雷击架空裸导线产生巨大雷电过电压时,就会沿导线寻找电场最薄弱点的绝缘子沿面放电形成闪络,最后工频电弧向绝缘子根部的金属发展后形成金属性短路通道,引发线路跳闸事故。
由于接续的工频短路电流电弧在电磁力的作用下沿着导线向背离电源方向移动,一般不会烧断导线。
论高压架空输电线路的防雷措施

论高压架空输电线路的防雷措施摘要:高压架空输电线路因雷击跳闸一直是困扰安全供电的一个难题,雷害事故几乎占线路全部跳闸故障的1/3或更多。
因此,寻求更有效的线路防雷保护措施,一直是世界各国电力工作者关注的课题。
本文从分析高压架空输电线路雷击跳闸故障的经验和有关研究入手,重点对综合防雷措施做了一些探讨。
关键词:高压;架空;输电线路;防雷措施近年来,我国社会主义建设各方面都取得了长足的发展。
输电线路的在我国建设中的作用是不容忽视,而防雷器在输电线路中的应用可以良好的解决这一问题,因此,要重视防雷器在高压架空线路中应用,保障我国高压架空线路成为社会主义现代化的助推器。
一、架空输电线路雷害形成的四个阶段架空输电线路是电力网及电力系统的重要组成部分。
由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。
架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。
架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。
针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即:①防直击,就是使输电线路不受直击雷。
②防闪络,就是使输电线路受雷后绝缘不发生闪络。
③防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。
④防停电,就是使输电线路建立工频电弧后不中断电力供应。
二、雷击跳闸率对架空输电线路而言,防雷保护工作的目的是尽量避免导线不受雷击或雷击之后尽量使绝缘子不闪络,从而避免因产生工频电弧造成跳闸。
也就是说线路遭受雷击而不跳闸,不影响系统的正常供电就是架空输电线路防雷的根本目的。
而架空线路地处旷野,绵延成百上千公里,而在雷电多发区经常遭受雷击的线路,即使加装了各种防雷措施也做不到完全不跳闸,目前衡量某条线路雷击跳闸情况采用雷击跳闸率(定义:架空输电线路在规定长度和规定雷暴日下因雷击引起的事故跳闸次数),防雷设计就是要求出某条线路的雷击跳闸率,尽量降低雷击跳闸率。
电力系统高压电力装置的防雷技术范文(二篇)

电力系统高压电力装置的防雷技术范文电力系统的高压电力装置是电力系统中非常重要且不可或缺的设备。
在安装和运行过程中,其防雷保护技术至关重要。
本文将重点讨论高压电力装置的防雷技术,涵盖防雷设备的选择、接地系统的设计、绝缘保护措施以及实际操作中的注意事项等方面。
1.防雷设备的选择在高压电力装置的防雷技术中,选择适当的防雷设备是至关重要的。
防雷设备主要包括避雷针、避雷器、避雷网等。
在选择避雷针时,应考虑其高度和布置位置。
避雷针应尽可能高于设备,并且应在高压电力装置上方合适的位置进行布置,以最大限度地提供保护。
此外,选择合适的避雷器也是必不可少的。
避雷器应能够承受高压电力装置的工作电压,并能够在遭受雷击时提供可靠的保护。
避雷网也应根据高压电力装置的布置和周围环境的特点进行选择,以形成一个完整的保护系统。
2.接地系统的设计接地系统是高压电力装置防雷的一个重要组成部分。
良好的接地系统可以将雷电能量有效地引散到地下,从而减轻电力装置所承受的雷击压力。
在接地系统的设计中,应注意以下几个方面:2.1 接地电阻的控制:接地电阻应尽量保持低阻值,以确保接地系统能够有效引散雷电能量。
在实际操作中,可以通过增大接地体的面积、增加接地材料的导电性以及加深接地体的埋深等方式来降低接地电阻。
2.2 接地体的布置:接地体的布置应根据高压电力装置的型号和布置要求来确定。
一般来说,接地体应均匀地分布在高压电力装置周围,并与装置的金属外壳连接。
此外,如果设备周围环境较复杂或地质条件较差,还可以采用井式接地体或混合接地体以增加接地效果。
2.3 地网的设计:地网是指将接地体通过地线相互连接起来的网状结构。
地网的设计应考虑高压电力装置的外壳和其他金属部件,以确保它们与接地系统之间有良好的联系。
地网的设计应符合国家相关标准,并进行必要的接地电阻测试,以确保其性能。
3.绝缘保护措施除了防雷设备和接地系统外,绝缘保护措施也是高压电力装置防雷的重要环节。
浅谈高压架空输电线路防雷的措施

浅谈高压架空输电线路防雷的措施摘要:高压架空输电线路是电力系统中的重要组成部分,对于我国的电力事业发展有着重要的意义。
但是,高压架空输电线路经常会受到雷击的困扰,影响整个电力事业的发展,影响供电安全与可靠性,造成较大的经济损失和社会影响。
所以,我们应当采取有效的措施,做好防雷工作,提高输电线路的抗雷击水平,保护输电线路的安全,保障电网的安全及稳定运行。
关键词:输电线路;雷击原因;防雷措施一高压架空输电线路防雷的目的高压架空输电线路的目的首先是使雷击发生的可能性降到最低。
而在无法避免雷击时,就应当尽可能的使外绝缘上承受的过电压降低到最低点。
安装线路避雷器能够限制线路上电压的升高,并且在防止雷击导线方面,或者是在雷击塔顶或者是架空地线时的反击力一面都非常有效果。
另外,输电线路是电力系统的重要环节,并将巨大的电能输送到各个地方,也是连接各个变电站和各重要用户的纽带。
高压架空输电线路的安全运行直接的影响到了电网的稳定性和可靠性,所以,高压架空输电线路的安全运行在电网中占据着非常重要的位置。
二雷电对高压架空输电线路的危害雷电在放电过程中,对输电线路有很大的危害性,主要的危害有一下几点:(1)雷云对地放电时,位于雷击点附近的导线上,将产生感应过电压,会使输电线路的绝缘发生击穿或闪络;(2)雷电流通过导体时,会产生很大的热量,使输电线路的避雷线发生断股;(3)雷云对地放电时,强大的雷电流会劈裂输电线路的电杆和横担甚至击毁杆塔等。
三高压架空输电线路遭受雷击事故的原因高压输电线路遭受雷击的事故主要有线路绝缘子的百分之五十的放电电压,有无架空地线,雷电流强度,杆塔的接地电阻这几个原因。
在进行高压输电线路设计时,要先明确高压输电线路遭雷击跳闸的原因,然后有针对性选择防雷方式。
所以说要制定完善的防雷保护方案,首先要求我们对雷击活动的规律进行研究,要搞清楚它是因何原因而发生的,从而有针对性的进行防雷保护(1)通常雷击大多发生在地形复杂或者山谷风口等地方,在这种特殊地理环境中,雷击的频率是非常高的。
高压输电线路综合防雷措施的分析与探讨

高压输电线路综合防雷措施的分析与探讨高压输电线路是城市或乡镇用电必不可少的设施之一,其工作稳定性和可靠性对于能源供应的保障至关重要。
然而,雷电等自然灾害也常常给高压输电线路造成巨大的影响,如直接击中导致设备事故、影响输电线路稳定运行等。
因此,对高压输电线路加强防雷措施十分必要,下面将分析和探讨高压输电线路综合防雷措施。
一、防雷原理在防雷措施中,可以基于金属导体对雷电具有良好的电场屏蔽作用。
当导体与外部电场相遇时,电场会产生感应电流,以至于抵消或减小外部电场,以保护导体不受到雷击的风险。
所以,高压输电线路的防雷措施应该以强调金属电场屏蔽的防雷原理为前提。
二、综合防雷措施1. 架空线路防雷措施由于高压输电线路采用架空的方式进行传输,因此需要对架空线路开展相应的防雷措施。
针对架空线路进行加线屏蔽或者地线屏蔽是一种十分有效的防雷手段。
屏蔽线可以有效减小工频电场或者灵敏部位加设避雷装置,起到防雷如手套般的作用,以保证线路的性能。
除了架空线路,地线作为高压输电线路的重要组成部分,在一定程度上也具备避雷的特点。
因此,对于地线的防雷措施,可以将地线的电势提升到一定的高度,以减少对设备的影响。
同时,在地线与耐张线之间加设避雷针也是提高地线防雷能力的有效手段。
3. 避雷装置保护避雷装置来自于低压线路的伸出部分,通常被认为是高压输电线路上最重要的部分。
避雷装置是用电力谱仪等电气设备处理电流和电压的专门装置,通过电气技术而实现对雷击的保护和避免。
在进行避雷装置的设施时,可以考虑通过改善避雷针的节能效益与成本之比,以及避雷装置的周围设计等多种方式,来提高避雷装置的思想性和工作效率。
三、防雷措施的实际应用在实际运用中,主要考虑到安全、高效、环保等因素,可以将综合的防雷措施分成以下三种类型。
一种是高压输电线路综合防雷的基础性防雷措施,包括架空线路的加线屏蔽、地线的保护与维护、避雷装置的安装与防雷针的布置。
最后一种是高压输电线路综合防雷的专业性防雷措施,采用较为先进的避雷技术,如-雷击预警系统、布有安全发现机制的雷击探测系统等。
高压架空输电线路防雷措施综述

高压架空输电线路防雷措施综述[摘要] 在电力系统中,高压架空输电线路是保障电网输电的重要环节。
由于线路分布范围广、线路长度长等特点,遭受雷击导致电路跳闸停电的比例较高,严重的影响了高压架空输电线路的安全性与应用性。
因此,供电网采取有效的防雷保护措施是保证电网安全可靠运行的关键,寻求有效的线路防雷保护措施,一直是电力工作者讨论的课题。
[关键词] 输电线路;装设避雷线;防雷措施由于受雷击的影响给输电线路带来了很大的危害,因此,加强输电线路雷害保护措施的研究与改善势在必行。
为了保证输电线路安全供电,采取有效的防雷保护措施是保证电网安全可靠运行的关键。
本文对高压输电线路防雷保护中的装设避雷线降低接地电阻、减少雷击跳闸等方法进行了阐述。
1.雷害原因分析输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。
雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。
输电线路感应雷过电压最大可达到400KV左右,它对35KV 及以下线路绝缘威胁很大,但对于110KV及以上线路绝缘威胁很小,110kV 及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。
直击雷又分为反击和绕击,都严重危害线路安全运行。
在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。
反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。
绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式,杆塔高度,特殊地形有关,主要发生在两边相。
高压输电线路综合防雷措施的分析与探讨

高压输电线路综合防雷措施的分析与探讨高压输电线路作为电力系统的重要组成部分,其安全稳定运行对整个电网系统的正常运行至关重要。
在雷电活动频繁的地区,高压输电线路常常面临雷击的威胁,给输电线路的安全稳定运行带来了不小的影响。
针对高压输电线路的雷击防护工作显得尤为重要。
一、高压输电线路雷击危害分析雷击对高压输电线路的危害主要表现在以下几个方面:1. 直接损坏设备:雷电直击导线或杆塔,造成设备的直接烧毁或破坏,严重影响输电线路的正常运行。
2. 间接损坏设备:雷电感应电压和感应电流,可能导致设备绝缘击穿或损坏,从而影响设备的安全运行。
3. 造成瞬时过电压:雷击产生的电磁感应影响输电线路,产生瞬时过电压,可能对设备产生冲击,影响设备的长期稳定运行。
4. 影响系统安全稳定运行:雷击造成的设备损坏或瞬时过电压,可能导致系统设备的短路、故障,影响系统的安全稳定运行。
二、高压输电线路综合防雷措施针对高压输电线路雷击的危害,需要采取一系列的综合防雷措施,以保障输电线路的安全稳定运行。
1. 设备选型:在高压输电线路的设计和建设中,应选择具有良好防雷性能的设备,比如带有避雷针的杆塔、抗雷击能力强的导线等。
2. 避雷装置安装:为了减少雷电对输电线路的危害,应在输电线路的关键部位安装避雷设备,如避雷针、避雷带等。
3. 接地装置设置:合理设置输电线路的接地装置,可以减小雷电对设备的损害,提高设备的安全性。
4. 防护罩安装:对于一些重要的设备和关键的部位,可以考虑安装防护罩,以防止雷击对设备的直接损害。
5. 绝缘设计:合理的绝缘设计可以减小雷击对设备的影响,提高设备的抗雷击能力。
7. 定期检测维护:定期对输电线路的防雷设施进行检测和维护,及时发现问题、解决问题,以保障输电线路的正常运行。
1. 成本较高:综合防雷措施需要投入大量的资金和人力,增加了输电线路的建设和维护成本。
2. 对环境的影响:一些防雷措施如避雷针的设置可能对自然环境产生一定的影响,增加了环境保护方面的工作量。
有关输电线路防雷保护技术与措施论文

有关输电线路的防雷保护技术与措施探讨摘要:实践中因施工建设的客观需要,输电线路及相关设备经常安装在露天的环境中,所以受所处环境的影响非常的大。
从输电线路的运行实践来看,最常见到而且是影响较大的问题是雷击事件。
雷击现象产生时会产生非常强的电流,很可能会导致输电线路毁坏,严重影响整个电力系统的运行作业,甚至可能户造成严重的火灾事故,危机人生安全。
本文将对雷电伤害的原因及防雷作用进行分析,并在此基础上就如何采取有效的防雷保护技术与措施提出谈一下自己的观点,以供参考。
关键词:输电线路;雷击;防护措施;研究中图分类号: u463.62文章标识码:a文章编号:所谓输电线路,实际上就是指日常生产生活中常见的架空输电线路,它可以将不同地区的变电站、发电站等负荷点有机地连接在一起,通过输送、交换电力资源,构成不同电压差的配电网。
通常情况下,该输电线路的长度能达到数百公里之多,因此引起输电线路跳闸或其他故障的原因也非常的多,比如因雷击而造成的跳闸事故居跳闸之首位,因此加强对输电线路防雷措施的研究具有非常重大的现实意义。
1、雷害原因及防雷保护作用(1)原因分析从实践来看,输电线路遭受雷击主要是由雷云放电引发的过电压,经过线路塔杆后形成一个放电通道,导致输电线路的绝缘层被击穿,在此过程中形成的过电压又被称为是大气过电压,通常可分为直击雷与感应雷两种过电压。
其中,雷击是通过形成的放电通道,使大地感应电荷与雷云异电荷相遇产生的,因此雷击与接地设备的性能和完好性具有非常密切的关系。
输电线路受到雷电之影响,在直击雷的反击与绕击作用下,导致输电线路安全运行受到严重影响。
防雷措施和技术制定前,应当对主要的雷击类型实施全方位的把握,只有这样才能使制定的各种防雷措施得到合理有效的落实。
需要注意的是反击雷现象也非常的普遍,它与绝缘强度、杆塔的接地电阻具有非常密切的关系,通常发生在绝缘弱相区域,没有固定的闪络相别,因此对反击雷过电压应当及时采取降低接地电阻等策略,提高防雷水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高压架空输电线路防雷措施综述[摘要] 在电力系统中,高压架空输电线路是保障电网输电的重要环节。
由于线路分布范围广、线路长度长等特点,遭受雷击导致电路跳闸停电的比例较高,严重的影响了高压架空输电线路的安全性与应用性。
因此,供电网采取有效的防雷保护措施是保证电网安全可靠运行的关键,寻求有效的线路防雷保护措施,一直是电力工作者讨论的课题。
[关键词] 输电线路;装设避雷线;防雷措施
由于受雷击的影响给输电线路带来了很大的危害,因此,加强输电线路雷害保护措施的研究与改善势在必行。
为了保证输电线路安全供电,采取有效的防雷保护措施是保证电网安全可靠运行的关键。
本文对高压输电线路防雷保护中的装设避雷线降低接地电阻、减少雷击跳闸等方法进行了阐述。
1.雷害原因分析
输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。
雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。
输电线路感应雷过电压最大可达到400kv左右,它对35kv 及以下线路绝缘威胁很大,但对于110kv及以上线路绝缘威胁很小,110kv 及以上输电线路雷击故障多由直击雷引起,并且同接地装置
的完好性有直接的关系。
直击雷又分为反击和绕击,都严重危害线路安全运行。
在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。
反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。
绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式,杆塔高度,特殊地形有关,主要发生在两边相。
目前对绕击雷过电压采取的主要措施是减少避雷线保护角,安装避雷器等。
实际运行经验表明:山区线路由于地形因素的影响和有效高度的增加,绕击率较高;平原,丘陵地区的线路则以反击为主。
山区线路选择良好的防雷走廊,减小避雷线保护角,加强绝缘是最有效的防雷措施。
对于平原,丘陵地区的线路降低接地电阻是最有效的防雷措施。
2.输电线路防雷的几个方面
一是在架空输电线路中可采用避雷线、避雷针或将架空线路改为地下电缆的方式,来保护线路导线不遭受直接雷击。
二是需改善避雷线的接地或适当加强线路绝缘,使杆塔或避雷线在遭受到雷击后不使线路绝缘发生闪路。
三是将电网中性点采用非直接接地方式,使绝缘受到冲击发生闪络也不会转变为两相短路故障,避免导
致线路跳闸。
四是对输电线路可采取自动重合闸装置或用双回路式环网供电的形式,使线路即使跳闸也不中断供电。
3.装设避雷线,降低接地电阻
架空输电路装设避雷线,可防止雷电直击导线,在导线上产生过电压危及线路绝缘。
装设避雷线后,当线路被雷击时,雷电流即沿避雷线经接地引下线进入大地。
雷电流经杆塔接地电阻流入大地时,会产生压降,当接地电阻数小时,反击电压也小,从而可保证线路安全运行。
对于装设避雷线的输电线路,在一般土壤电阻率地区,其耐雷水平不宜低于表1中数据。
表1 有避雷线的架空线路杆塔的工频接地电阻
3.1 降低接地电阻方法
为了降低杆塔接地电阻,首先应尽可能用杆塔金属基础、钢筋水泥基础、混凝土杆的底拉、卡盘等自然接地。
当接地电阻不能满足需求时,再增加人工接地体。
接地体尽可能埋设土壤电阻率较低的土层内,可以用接地带引接,长度不宜超过60m。
此外,对于土壤电阻率极高处,可考虑采用换土方法,或用化学处理法、用长效降阻剂(长效降阻剂属于有机类降阻剂)及用无机类降阻剂、木质素降阻剂等。
有避雷线的线路,每基杆塔的工频接地电阻在雷雨季干燥时不宜超过表2中的数值.
表2 有避雷线的输电线路的耐雷值
如土壤电阻率很高,接地电阻很难降低到时,可采用6~8根总
长度不超过500m的放射形接地体,或连续伸长接地体,其接地电阻不受限制。
3.2 装设避雷线方式
过电压保护规程规定330~500kv线路应采取双避雷线,220kv 线路也采用双避雷线杆塔上避雷线对边导线的保护角通常采取20°~30°,330kv及220kv双避雷线的保护角通常采取20°左右。
110kv及以上线路,通常应沿全线装设避雷线,在雷电活动特殊强烈的地区,宜装设双避雷线。
66kv线路,当经过地区年平均雷暴月在30日以上时,也宜沿全线装设避雷线,保护角通常应在25°左右对于35kv及以下的水泥杆或铁塔线路,通常不沿全线架设避雷线,但仍然需要逐基杆塔接地。
因为若有一相导线因雷击闪络接地,一定程度可以防止其它两相进一步闪络。
4.减少雷击跳闸的保护措施
4.1 线路交叉跨越时的保护措施
对线路互相交叉跨越电压较低的线路,为保证雷击交叉档距使交叉点不发生闪络,交叉距离应符合规程要求。
对交叉档一般需采取以下保护措施:a.交叉档两端的水泥杆或铁塔,不论有无避雷线,均应将杆塔接地。
b.交叉档两端为木杆或木横担的水泥杆且无避雷线,应在杆上装设管型避雷器或保护间隙。
c.交叉档两端为杆的低压线路或通讯线路时,应在杆上装设保护间隙。
4.2 装设线路自动重合闸
线路绝缘子在雷击闪络后,通常能在线路跳闸后自动恢复绝缘
性能,所以自动重合闸的成功率可达75%~95%,35kv及以下输电线路略低些。
少雷区的110kv线路通常不沿全线架设避雷线,但应装设自动重合闸,以防万一雷击跳闸时停电。
高土壤电阻率地区的输电线路雷击后容易产生绝缘子闪络,因此也必须装设自动重合闸。
在中性点直接接地电网中,绝大多数雷击是单相闪络,若采用单相重合闸,可以减少断路检修工作量,并提高供电可靠性。
4.3 加强线路绝缘
加强线路绝缘可提高耐雷水平和直接降低建弧率,这对于降低线路跳闸率有利的。
对于个别高杆塔,在充分降低接地电阻前提下,再考虑由于高杆塔本身电感增大而使雷击杆塔顶电位升高的因素,适当增加绝缘进行补偿。
设计规程规定,对有避雷线保护的线路,标杆塔高度超过40m,每超过10m高度,应增加1片绝缘子;对无避雷线保护杆塔高度超过40m,若采用保护间隙或管型避雷保护的也应增加片绝缘子。
4.4 采用中性点消弧线圈接地
宜采用电力网中性点经消弧线圈接地或自动重合装置,以减少停电次数。
4.5 增加耦合地线
耦合地线虽然不能减少绕雷率,但在雷击杆顶时能起分流作用和耦合作用。
经验证,增加耦合作用地线的线路,雷击跳闸率约降低1/2。
但目前运行的线路上装设耦合地线时,要验算杆塔强度,
对导线和地面的距离,还应验算平时耦合地线与导线不同摆动后的距离。
因此,在装设单避雷线和双避雷线或降低接地电阻有困难时,才架设耦合地线。
4.6 加装避雷器
线路上装避雷器后,当输电线路遭受雷击时,雷电流的分流将发生变化,一部分雷电流从避雷线传入相临杆塔,一部分经塔体入地,当雷电流超过一定值后,避雷器动作加入分流。
雷电流在流经避雷线和导线时,由于导线间的电磁感应作用,将分别在导线和避雷线上产生耦合分量。
因避雷器的分流远远大于从避雷线中分流的雷电流,这种分流的耦合作用将使导线电位提高,使导线和塔顶之间的电位差小于绝缘子串的闪络电压,绝缘子不会发生闪络。
因此,线路避雷器具有很好的钳电位作用,这也是线路避雷器进行防雷的明显特点。
以往输电线路防雷主要采用降低塔体接地电阻的方法,在平原地带相对较容易,对于山区杆塔,则往往在4个塔角部位采用较长的辐射地线或打深井加降阻剂,以增加地线与土壤的接触面积,降低电阻率,在工频状态下接地电阻会有所下降.但遭受雷击时,因接地线过长会有较大的附加电感值,雷电过电压的暂态分量
l·dl/dt会加在塔体电位上,使塔顶电位大大提高,更容易造成塔体与绝缘子串的闪络,反而使线路的耐雷水平下降。
因线路避雷器具有钳电位作用,对接地电阻要求不严,对山区线路防雷比较容易实现。
加装避雷器前后线路的耐雷水平与杆塔冲击接地电阻的关系
如图1所示。
在图1中不难发现加装线路避雷器对防雷效果是十分明显的。
根据山区杆塔逐年增多的实际情况采用加装避雷器对山区防雷的方法是十分必要的。
5.结束语
架空输电线路防雷是电力系统防雷工作的重要方面,它可以减少雷击的机会,降低线路供电雷击跳闸事故的发生,提高线路耐雷水平是确保线路畅通的主要途径,也是提高线路安全运行的可靠性,从而保证电网连续供电的目的。
解决线路的雷害问题,要从实际出发因地制宜,综合治理。
图1 线路赖雷水平与杆塔冲击接地电阻的关系。