第九章像质评价与像差公差总结

合集下载

第九章像质评价与像差公差分析

第九章像质评价与像差公差分析
第一暗环半 径对应的出 瞳中心张角
1.22 取555 nm 140 '' D D
入瞳 直径
该评价方法不很完善,存在的缺点: ①像差可降低光学系统的分辨率,但小像差光学系统, 其实际分辨率受像差的影响很小,不宜用分辨率来评价 象质;而在大像差光学系统中,分辨率与系统的像差有 关,常用分辨率作为成像质量指标。 ②用于分辨率检测的鉴别板,由于照明条件和接收器的 不同,其检测结果也不同,有时可能认为像质较好,有 6 时认为较差。
二、利用MTF曲线的积分值来评价像质 理论证明:像点中心点亮度值=MTF曲线所围的面积。 显然MTF所围面积越大,表明光学系统传递的信息量越多, 其成像质量越好,图象越清晰。
两曲线所 围面积 MTF曲线 所围面积
曲线I为光学系统的MTF曲线,曲线II为接收器的分辨率极 值曲线。两曲线所围面积越大,表明系统的成像质量越好, 其交点F为光学系统和接收器共同使用时的极限分辨率。
4
§9-2 分辨率
分辨率是反映光学系统能分辨物体细节的能力,是光学系 统的一个很重要的性能,因此可用其来评价光学系统的成 像质量。 表述为:能分辨的两个等亮度亮点间的距离对应艾里斑的 半径,即一个亮点的衍射图案中心与另一个亮点的衍射图 案的第一个暗环重合时,这两个亮点能被分辨开。
5
能被分辨开的两个衍射图案中的光强极大值与极小值之 比为1:0.735,与接收器能分辨的亮度相当,可分辨 率的大小还与接收器分辨率有关。 由衍射理论知,光学系统的最小分辨角为:
8
利用点列图法来评价像质时,通常是利用集中30%以上的 点或光线所构成的图形区域作为其实际有效弥散斑,其直 径的倒数即为系统的分辨率。 优点:简便易行,形象直观。 缺点:计算量大,需借助计算机。 适用范围:大像差光学系统。

第九章光学系统的像质评价分解

第九章光学系统的像质评价分解

第九章光学系统的像质评价分解光学系统的像质评价是对光学系统成像性能的定量分析和评估。

在光学系统设计和制造中,评价光学系统的像质是非常重要的,可以帮助工程师了解光学系统的成像性能,指导设计优化和制造流程改进。

本文将对光学系统的像质评价进行分解。

首先,光学系统的像质评价包括像散、相对孔径、像场曲率、像场曲率和像场畸变五个方面。

像散是光学系统成像时,由于透镜折射作用,会导致不同波长的光线成像位置不同,从而引起色差。

相对孔径指的是光学系统的数值孔径,是透镜或物镜口径与焦距之比,决定了光线的收集能力和分辨能力。

像场曲率是光学系统成像平面与对象平面之间的位置关系,如果成像平面与对象平面不在同一个位置,就会导致像场曲率,影响成像质量。

像场畸变是指光线通过透镜组成像时,由于透镜非理想的成像性能,使得成像出现畸变,影响成像准确性。

其次,光学系统的像质评价还包括分辨力、像点扩散函数(PSF)和耦合。

分辨力是指光学系统能够分辨的最小物体细节大小,它与光学系统的焦距和数值孔径有关。

像点扩散函数是用来描述光学系统成像效果的函数,它描述了光线通过光学系统后,成像点的形状和分布。

耦合是指光学系统中不同光线之间相互作用和干涉的现象,会导致成像时出现噪声和其他不确定性因素,影响像质。

最后,光学系统的像质评价还包括像偏、像移和畸变。

像偏是指光学系统成像时,成像点相对于理想位置的偏移,可以通过调整光学元件的位置和参数来进行校正。

像移是指光学系统成像时,成像点相对于成像平面的位置偏移,可以通过调整焦距和收集角度来进行校正。

畸变是指光学系统成像时,成像点位置相对于对象点位置的非线性偏差,分为径向畸变和切向畸变两种,可以通过调整透镜组参数和改变光路来进行校正。

综上所述,光学系统的像质评价是一个多方面的指标体系,涉及到像散、相对孔径、像场曲率、像场曲率和像场畸变等多个方面。

对于光学系统设计和制造来说,一个好的像质评价指标体系可以帮助工程师评估和优化光学系统的成像性能,提高光学系统的质量和效率。

像质评价与像差公差分析25页PPT

像质评价与像差公差分析25页PPT
Thank you
像质评价与像差公差分析
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿

像差小结

像差小结

一、评价光学系统成像质量的方法:1、光学系统实际制造完成后对其进行实际测量:分辨率检验、星点检验2、设计阶段的评价方法:几何光学方法:几何像差、波相差、点列图、几何光学传递函数物理光学方法:点扩散函数、相对中心光强、物理光学传递函数二、对几何像差和垂轴像差进行分类和总结1、几何像差(1)光学系统的色差轴向色差:不同颜色光线理想像点位置之差称为近轴位置色差,通常用C和F两种波长光线的理想像平面间的距离来表示近轴位置色差,也称近轴轴向色差。

垂轴色差:不同颜色光线所成的像高不一样,这种像的大小的差异称为垂轴色差。

(2)轴上像点的单色像差(球差):轴上有限远同一物点发出的不同孔径的光线通过系统以后不再交于一点,成像不理想。

用不同孔径光线的聚焦点与理想像点的距离表示。

(3)轴外像点的单色像差:子午像差——子午彗差、轴外子午球差;弧矢像差——弧矢彗差、轴外弧矢像差。

情况分析:对于某些小视场大孔径的光学系统:用彗差与像高的比值来描述系统的成像质量对于小孔径成像的光学系统,用色散来描述系统的成像质量在子午像差和弧矢像差都为零的情况下,对应的像高并不一定和理想像高一致,实际像高与理想像高之差来衡量成像变形的指标,即畸变。

各种像差的校正及消除:球差的校正:加光阑,复合透镜,非球面透镜,变折射率透镜色差的消除:采用不同色散不同折射率玻璃的组合、采用反光镜彗差的校正:加光阑,复合透镜,非球面透镜(4)高级像差:1) 剩余球差2) 子午视场高级球差3) 弧矢视场高级球差4) 全视场0.7071孔径剩余子午彗差5) 全孔径0.7071视场剩余子午彗差6) 剩余细光束子午场曲7) 剩余细光束弧矢场曲8) 色球差9) 剩余垂轴色差2、垂轴像差子午垂轴像差、弧矢垂轴像差。

工程光学第九章 光学系统的像质评价和像差公差

工程光学第九章 光学系统的像质评价和像差公差
在几何光学的成像过程中,由一点发出的许多条光线经光 学系统成像后,由于像差的存在,使其与像面的交点不再 集中于一点,而是形成一个分布在一定范围内的弥散图形, 称为点列图。
二、 适用范围
• 适用于大像差光学系统。
• 照相物镜的像质评价:利用集中30%以上的点或光线所构 成的图形区域作为其实际有效的弥散斑,弥散斑直径的倒 数为系统的分辨率。
光学传递函数能全面地代表光学系统的成像性质。一个 完全没有像差的理想光学系统,它的像点是一个如图8-22所 示的理想衍射图形,对应的理想光学系统的振幅传递函数曲 线如图8-31所示,由于弥散图形对称,所以位相传递函数等 于零。
• 1、 传递函数定义
光学系统看成是线性不变系统,那么物体经 光学系统成像,可视为物体经光学系统传递后, 其传递效果是频率不变的,但其对比度下降,相 位要发生推移,并在某一频率处截止,即对比度 为零。这种对比度的降低和相位推移是随频率不 同而不同的,其函数关系我们称为光学传递函数。
但实际上对于边缘光并不能真的令它=0,其残余的量 值为:
2、 彗差/正弦差公差
3、 色差公差
二、显微目镜、望远目镜像差公差 着重讨论轴外像差,轴上像差并不很大 例如:像散、场曲、彗差、畸变 1、子午彗差及弧矢
5、倍率色差公差
由于光学传递函数能全面反映光学系统的成 像性质,因此,可以用它来评价成像质量。 除了共轴系统的轴上点而外,像点的弥散图 形一般是不对称的,因此,不同方向上的光学传 递函数也不相等。 为了全面表示该像点在不同方向上的光学传 递函数,我们用子午和弧矢两个方向上的光学传 递函数曲线来代表该像点的光学传递函数。实践 证明,决定光学系统成像质量的主要是振幅传递 函数,因此,一般只给出振幅传递函数曲线,而 不考虑位相传递函数。

像差理论与像质评价

像差理论与像质评价

像差基础理论与像质评价2006-03-10实际光学系统中,只有平面反射镜在理论上具有理想光学系统的性质.其它光学系统都不能以一定寛度的光束对一定大小的物体成完善像,即物体上任一点发出的光束通过光学系统后不能会聚为一点,而形成一弥散斑,或者使像不能严格地表现出原物形状,这就是像差.一.像差的分类( 一) 几何像差分为两大类,共七种,如下:1单色像差A.球差B.慧差C.像散D.场曲E.畸变2.色差A.位置色差( 轴向色差)B.倍率色差( 放大率色差或垂轴色差)( 二) 波像差由点光源发出的光应向各方向传播相同的距离,因此,波面应该是中心点与点光源重合的球面,称为球面波.此球面波经光学系统后,由于各个面的折射而改变了曲率.如果光学系统是理想的,那边那么形成一个新的球面波.但是实际上, 光学系统总有剩余像差,使折射以后的波面或多或少地变了形,而不复为球面波.这一变了形的实际波面与理想球面波之间的偏离,称为波像差.( 三) 单色像差又可分为以下两类:1.轴上点像差: A. .球差. B.正弦差.2.轴外点像差: A. 轴外球差. B.慧差 C.像散 D.场曲 E.畸变二.像差的基本概念( 一) 球差δĽ球差δĽ在数值上是轴点发出的不同孔径光线像方截距L’与近轴光截距ℓ’之差值,即:δĽ=L’-ℓ’举例:有一镜头,参数如下:R TC n25.815 4.0 1.5163-25.815-1-垂轴球差: δT'=δL'tgU'由于像平面上的像是由弥散斑组成,所以不能反映物体的细节,球差严重时,像就变得糢糊不清. 所以任何光学系统都必须校正好球差.( 二) 慧差轴外点B发出子午光束,主光线,上光线和下光线不交于一点.在折射前主光线是光束的轴线,而折射后主光线不再是光束的轴线.光线失去了对称性.用上,下光线交点到主光线的垂直光轴方向的偏离来表示这种光束的不对称, 称为子午慧差. K’T=1/2(Y’a+Y'b)-Y'zY’a---上光线在高斯像面上的交点高度.Y'b---下光线在高斯像面上的交点高度Y'z---主光线在高斯像面上的交点高度-2-( 三) 像散当轴外物点B通过有像散的光学系统成像时,使一屏沿光轴移动,在不同位置时,B点的像就会发生很大的变化.在位置1时,为一长轴垂直于子午面的椭圆;移到位置2时为一垂直于子午面的短线;在位置3时又成为一长轴和子午面垂直的椭圆;在位置4时形成一个原斑;在位置5时形成一长轴在子午面内的椭圆;位置6时形成一子午面内的短线;位置7时又扩散成为椭圆。

第八章光学系统的像质评价和像差公差

第八章光学系统的像质评价和像差公差

第八章光学系统的像质评价和像差公差光学系统的像质评价和像差公差是光学设计中非常重要的内容,对于确保光学系统的成像效果和减小像差具有重要意义。

本文将从像质评价和像差公差两个方面进行详细介绍。

第一部分:像质评价在光学系统设计中,像质评价是衡量系统成像效果好坏的一项重要指标。

像质评价可以通过不同的参数来进行,如分辨率、畸变、像场曲率等。

1.分辨率:分辨率是指系统能够分辨出最小细节的能力。

在光学系统中,分辨率受到折射率、孔径、波长等因素的影响。

分辨率的提高可以通过增加系统的孔径、减小像散等方法来实现。

2.畸变:畸变是指光学系统成像时图像相对于参考图像的形变情况。

主要分为径向畸变和切向畸变两种。

径向畸变是指图像中心与边缘的变形情况,切向畸变是指图像的扭曲情况。

畸变的产生主要是由于光学元件的形状和定位误差导致的,可以通过优化元件设计和加强装配精度来减小畸变。

3.像场曲率:像场曲率是指光学系统各个像点的焦距随着物距的变化情况。

如果像场曲率过大,会导致成像不清晰,失去焦点。

可以通过调整透镜曲率半径、引入焦点平面等方法来改善像场曲率。

第二部分:像差公差像差是指光学系统成像时图像与理想像之间的差异,它是光学系统中不可避免的问题。

为了减小像差,需要对光学系统进行像差公差的设计和控制。

1.球面像差:球面像差是由于透镜表面的曲率或者抛物率与光线的入射角度不匹配导致的成像失真。

可以通过优化透镜表面形状和选择合适的材料来减小球面像差。

2.形状像差:形状像差是光学元件的形状不规则或者安装位置偏差导致的成像失真。

可以通过优化元件设计和加强装配精度来减小形状像差。

3.色差:色差是指透镜对不同波长的光具有不同的折射率,从而导致颜色偏差。

色差主要分为色散和像散两种。

色散是指透镜对不同波长的光具有不同的聚焦效果,像散是指不同波长的光成像位置不一致。

可以通过使用多片透镜组合、引入补偿透镜等方法来减小色差。

在光学系统设计中,像质评价和像差公差是重要的内容,对于确保系统的成像效果和减小像差具有重要意义。

像质评价与像差公差分析共25页

像质评价与像差公差分析共25页
像质评价与像差公差分析
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚பைடு நூலகம்
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一暗环半 径对应的出 瞳中心张角
1.22 取555 nm 140 '' D D
入瞳 直径
该评价方法不很完善,存在的缺点: ①像差可降低光学系统的分辨率,但小像差光学系统, 其实际分辨率受像差的影响很小,不宜用分辨率来评价 象质;而在大像差光学系统中,分辨率与系统的像差有 关,常用分辨率作为成像质量指标。 ②用于分辨率检测的鉴别板,由于照明条件和接收器的 不同,其检测结果也不同,有时可能认为像质较好,有 6 时认为较差。
③对照相物镜等作分辨检测时,有时会出现“伪分辨现 象”,即在某一组条纹时已不能被分辨,但对更密一组 的条纹反而可以分辨,这是因为对比度反转造成的。因 此分辨率作为像质评价方法也不是一种严格而可靠的评 价方法。 优点:指标单一。便于测量,在像质检测中得到广泛应 用。 适用范围: 大像差光学系统。
7
§9-3 点列图
12
§9-5 其他像质评价方法
瑞利判断和中心点亮度由于要求严格,仅适用于小像差系统; 分辨率和点列图法,由于主要考虑像差对成像质量的影响,仅 适用于大像差系统,不适用于像差校正到衍射极限的小像差系 统;光学传递函数虽同时适用于大像差系统和小像差系统,但 仅考虑系统对物体不同频率成分的传递能力,也不能全面评价 一个成像系统的所有性能。因此,对任何光学系统进行像质评 价需要使用多种评价方法。但这些方法都可以归结为基于几何 光学和基于衍射理论的方法两类。
依据:光学系统存在像差时,其成像衍射斑的中心亮度和 不存在像差时衍射斑的中心亮度之比来表示光学系统的成 像质量的。即斯托列尔准则:S.D≥0.8时,认为像质是完 善的。 缺点:计算复杂,不便实际应用。
3
优点:在评价成像质量上和瑞利判断一致。 适用范围:也是一种高质量的像质评价方法,只适用于 小像差光学系统。
优点:便于实际应用。只要计算出几何像差曲线,再对其 积分就可得到波像差,即可判断成像的优劣。同时还可用 它求出几何像差的公差。 缺点:不够严密,没有考虑局部缺陷在整个波面面积中的 分量。 适用范围:是一种较为严格的像质评价方法,适用于小像 差光学系统,如显微镜、望远镜等对像质要求较高的系统。
二、中心点亮度
在几何光学中,由一点发出的许多光线经光学系统成像后, 由于像差的存在,使其与像面不再集中于一点,而是形成 一个分布在一定范围内的弥散斑,称为点列图。 利用点的密集程度来衡量光学系统的成像质量的方法,称 为点列图法。
利用光线追迹法可精确表示出点物体的成像情况,即将入 瞳的一半分成大量的等面积小单元,并把发自物点且穿过 每一个小面元中心的光线,认为是代表通过光瞳的光能量。 利用光线追迹就可求出在像面上的点子分布密度。因此光 线越多,像面上点子数越多,越能反映出像面上的光强度 分布情况。
二、利用MTF曲线的积分值来评价像质 理论证明:像点中心点亮度值=MTF曲线所围的面积。 显然MTF所围面积越大,表明光学系统传递的信息量越多, 其成像质量越好,图象越清晰。
两曲线所 围面积 MTF曲线 所围面积
曲线I为光学系统的MTF曲线,曲线II为接收器的分辨率极 值曲线。两曲线所围面积越大,表明系统的成像质量越好, 其交点F为光学系统和接收器共同使用时的极限分辨率。
第九章 光学系统的像质评价和像差公差
• §9-1 瑞利判断和中心点亮度 • §9-2 分辨率 • §9-3 点列图 • §9-4 光学传递函数 • §9-5 其他像质评价方法 • §9-6 光学系统的像差公差
1
§9-1 瑞利判断和中心点亮度
由前面知识,在不考虑衍射现象影响时,光学系统的成像质 量主要与系统的像差大小有关,因此设计任何光学系统时都 必须考虑像差的校正。 但任何光学系统都不可能也没必要把所有像差都校正掉,因 此存在剩余像差及其公差,有必要提出光学系统成像质量的 评价方法。 一、瑞利判断 瑞利认为“实际波面与参考球面波之间的最大波像差不超过 λ/4时,此波面可看作是无缺陷的”,即瑞利判断。 它依据成像波面相对理想球面波的变形程度来判断光学系统 的成像质量的。 2 并给出最大波像差公差:W< λ/4时,成像质量是良好的。
8

利用点列图法来评价像质时,通常是利用集中30%以上的 点或光线所构成的图形区域作为其实际有效弥散斑,其直 径的倒数即为系统的分辨率。 优点:简便易行,形象直观。 缺点:计算量大,需借助计算机。 适用范围:大像差光学系统。
光瞳面上 面元选取 方法
9
§9-4 光学传递函数
不管是瑞利判断、中心点亮度还是分辨率、点列图法来评价 像质,都是基于将物体看作是发光点,并以一点成像时的能 量集中程度来表征光学系统的成像质量。 利用光学传递函数来评价像质,是基于把物体看作是由各种 频率的谱组成的,即把物体的光场分布函数分解为付氏级数 或付氏积分的形式。 物体经光学系统成像,可认为物体传递效果是频率不变,但 对比度和相位发生改变。这种对比度的降低和相位推移是随 频率不同而不同的,其函数关系称为光学传递函数。 该函数既与光学系统的像差有关,又与光学系统的衍射效果 有关,因此用该法来评价像质更客观、更可靠。
4
§9-2 分辨率
分辨率是反映光学系统能分辨物体细节的能力,是光学系 统的一个很重要的性能,因此可用其来评价光学系统的成 像质量。 表述为:能分辨的两个等亮度亮点间的距离对应艾里斑的 半径,即一个亮点的衍射图案中心与另一个亮点的衍射图 案的第一个暗环重合时,这两个亮点能被分辨开。
5
能被分辨开的两个衍射图案中的光强极大值与极小值之 比为1:0.735,与接收器能分辨的亮度相当,可见分辨 率的大小还与接收器分辨率有关。 由衍射理论知,光学系统的最小分辨角为:
一般来说光学传递函数是由不同频率的分量组成,高频反映 10 物体的细节传递情况,低频反映物体的轮廓传递情况。
一、利用MTF(调制传递函数)曲线来评价像质 MTF是表示各种不同频率的正弦强度分布函数经光学系统 成像后,其对比度(或振幅)的衰减程度。 当某一频率的对比度下降为0时,表明该频率的光强分布 无亮度变化,表明频率被截止。 显然I的截止频率较小,但 曲线I在低频部分的值较曲 线II大很多。 表明:在低频部分,曲线I 的MTF值大于曲线II,即 光学系统I具有较高的分辨 率,且有较高的对比度。 但在高频部分,光学系统 II具有较高的分辨率。 11
相关文档
最新文档