八年级数学代几综合难点题型

合集下载

【经典分类】八年级下学期代几综合问题分类讲解

【经典分类】八年级下学期代几综合问题分类讲解

初二下学期期末数学压轴题解析压轴题中常见的、熟悉的语句:(1)求直线的解析式(求一次函数、反比例函数的解析式);(2)求y关于x的函数关系式,并写出函数的定义域;(3)是否存在……,如果存在,请……;如果不存在,请说明理由.(4)如果将条件改变一下,那么结论是否依然成立?(5)如果……,求点P的坐标.和以上语句相对应,中考数学压轴题共有12个专题,初二可以解决的有10个:专题一等腰三角形的存在性问题专题二相似三角形的存在性问题(初三)专题三直角三角形的存在性问题专题四平行四边形的存在性问题——初二期末热点专题五梯形的存在性问题——初二期末热点专题六面积的存在性问题专题七相切的存在性问题(初三)专题八相等和差最值的存在性问题专题九由线段关系产生的函数关系问题——初二期末热点专题十由面积产生的函数关系问题——初二期末热点专题十一代数计算和说理(寻找规律)专题十二几何计算和说理(图形变换)——初二期末热点解压轴题的点滴经验:尺规必备,三色笔画图,本子宽大;看着图,读着题,自己画一遍图,题意就理解了.这叫磨刀不误砍柴工.没有思路,往往是不会画图;会画图,思路就慢慢有了.图形准确了,答案就在图形中.图形在运动过程中的存在性问题(平行四边形、梯形、全等三角形)例1 2012年浦东新区初二下学期期末第25题如图1,在平面直角坐标系中,函数y=2x+12的图像分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点C,且点C为线段OB的中点.(1)求直线AC的表达式;(2)如果四边形ACPB是平行四边形,求点P的坐标.【拓展】如果以A、C、P、B为顶点的四边形是平行四边形,求点P的坐标.如图1,在平面直角坐标系中,点A的坐标为A(3, 0),点B的坐标为A(0, 4).(1)求直线AB的解析式;(2)点C是线段AB上一点,点O为坐标原点,点D在第二象限,且四边形BCOD为菱形,求点D坐标;(3)在(2)的条件下,点E在x轴上,点P在直线AB上,且以B、D、E、P为顶点的四边形是平行四边形,请写出所有满足条件的点P的坐标.如图1,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)当点P在x轴上运动(P不与O重合)时,求证:∠ABQ=90°;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.如图1,在平面直角坐标系中,点P在直线12y x=上(点P在第一象限),过点P作P A⊥x轴,垂足为A,且OP=(1)求点P的坐标;(2)如果点M和点P都在反比例函数kyx=(k≠0)的图像上,过点M作MN⊥x轴,垂足为N.如果△MNA和△OAP全等(点M、N、A分别和点O、A、P对应),求点M的坐标.图形运动中的函数关系问题(由面积产生、由线段关系产生)例5 2013年长宁区初二下学期期末第27题如图1,梯形ABCD中,AD//BC,∠B=90°,AD=18,BC=21.点P从点A出发沿AD以每秒1个单位的速度向点D匀速运动,点Q从点C沿CB以每秒2个单位的速度向点B匀速运动.点P、Q同时出发,其中一个点到达终点时两点停止运动,设运动的时间为t 秒.(1)当AB=10时,设A、B、Q、P四点构成的图形的面积为S,求S关于t的函数关系式,并写出定义域;(2)设E、F为AB、CD的中点,求四边形PEQF是平行四边形时t的值.图1 备用图已知:在梯形ABCD中,AD//BC,∠B=90°,AB=BC=4,点E在边AB上,CE=CD.(1)如图1,当∠BCD为锐角时,设AD=x,△CDE的面积为y,求y与x之间的函数解析式,并写出函数的定义域;(2)当CD=5时,求△CDE的面积.已知:如图1,梯形ABCD中,AD//BC,∠A=90°,∠C=45°,AB=AD=4.E是直线AD上一点,联结BE,过点E作EF⊥BE交直线CD于点F.联结BF.(1)若点E是线段AD上一点(与点A、D不重合),(如图1所示)①求证:BE=EF.②设DE=x,△BEF的面积为y,求y关于x的函数解析式,并写出此函数的定义域.(2)直线AD上是否存在一点E,使△BEF是△ABE面积的3倍,若存在,直接写出DE的长,若不存在,请说明理由.图1 备用图如图1,在正方形ABCD中,AB=1,E为边AB上一点(点E不与端点A、B重合),F为BC延长线上一点,且AE=CF,联结EF交对角线AC于点G.(1)设AE=x,AG=y,求y关于x的函数解析式及定义域;(2)联结DG,求证:DG⊥EF.如图1,在Rt△ABC中,∠C=90°,AC=BC=9,点Q是边AC上的动点(点Q不与A、C重合),过点Q作QR//AB,交边BC于R,再把△QCR沿着动直线QR翻折得到△QPR,设AQ=x.(1)求∠PRQ的大小;(2)当点P落在斜边AB上时,求x的值;(3)当点P落在Rt△ABC外部时,PR与AB相交于点E,如果BE=y,请直接写出y 关于x的函数关系式及定义域.图1 备用图例10 2013年浦东新区初二下学期期末第26题如图1,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形.A(0, 4),C(5, 0),点D是y轴正半轴上一点,将四边形OABC沿着过点D的直线翻折,使得点O落在线段AB上的点E处.过点E作y轴的平行线与x轴交于点N.折痕与直线EN交于点M,联结DE、OM. 设OD=t,MN=s.(1)试判断四边形EDOM的形状,并证明;(2)当点D在线段OA上时,求s关于t的函数解析式,并写出函数的定义域.(3)用含t的代数式表示四边形EDOM沿折痕翻折后的图形与矩形OABC重叠部分的面积.图1 备用图计算、说理、证明例11 2013年长宁区初二下学期期末第26题已知直角坐标平面内点A(4, 3),过点A作x轴、y轴的垂线,垂足分别是B和C.(1)直线y=kx+6把矩形OBAC分成面积相等的两部分,求直线与矩形的交点坐标;(2)在(1)的条件下,设直线y=kx+6与直线AB的交点为P,联结CP,以C为中心旋转线段CP,点P落在x轴上的点Q处,直接写出BQ的长度.如图1,在平面直角坐标系中,四边形ABCD为菱形,点A的坐标为(0, 1),点D在y 轴上,经过点B的直线y=-x+4与AC相交于横坐标为2的点E.(1)求直线AC的表达式;(2)求点B、C、D的坐标.如图1,平面直角坐标系中点A(4, 0),已知过点A的直线l与y轴正半轴交于点P,且△AOP的面积是8,正方形ABCD的顶点B的坐标是(2, h),其中h>2.(1)求直线l的表达式;(2)求点D的坐标;(用含h的代数式表示);(3)当边BC经过点P时,求直线CD与y轴的交点坐标.已知,在△ABC中,AB=6,AC=5,∠A为锐角,△ABC的面积为9.点P为边AB 上的动点,过点B作BD//AC,交CP的延长线于点D.∠ACP的平分线交AB于点E.(1)如图1,当CD⊥AB时,求PE的长;(2)如图2,当点E为AB的中点时,请猜想并证明:线段AC、CD、DB的数量关系.图1 图2例15 2013年浦东新区初二下学期期末第25题已知:如图1,四边形ABCD是菱形,∠B是锐角,AF⊥BC于点F,CH⊥AD于点H,在AB边上取点E,使得AE=AH,在CD边上取点G,使得CG=CF.联结EF、FG、GH、HE.(1)求证:四边形EFGH是矩形;(2)当∠B为多少度时,四边形EFGH是正方形?并证明.。

八年级数学难点重点知识点

八年级数学难点重点知识点

八年级数学难点重点知识点数学是我们日常生活中必不可少的一部分,也是学生在学习中必须掌握的重要学科之一。

随着学习的不断深入,八年级的数学也变得越来越困难。

本文将介绍八年级数学中的难点和重点知识点。

一、代数表达式代数表达式是八年级数学中的难点。

它们代表了将数学变量和运算符连接起来的表达式。

代数表达式的概念相对简单,但是理解和解决问题时需要进行细致而精确的计算。

特别是,将英语单词转化为数学表达式的过程十分重要。

二、一元一次方程式一元一次方程式也是八年级数学中的难点。

它们是只有一个未知变量的方程式,其中未知变量的最高次数为一。

我们需要通过在方程的两侧进行相等的运算来解决这类方程式。

解决这类方程式需要通过逆向运算,将变量带到一个方程的一侧,并精确确定特定变量的值。

三、半径和直径八年级数学中需要掌握的重要知识点是半径和直径的区分。

正解半径和直径的方法是从圆中确定一条线,并确保这条线从圆的中心走到圆周上。

半径是这条线的一半,而直径则是整条线的长度。

四、利率和复利八年级数学中的重点知识点是利率和复利。

学生需要理解这两个概念之间的差异,掌握计算方法,并了解如何用这些知识计算固定时间内的利息。

定期存款和借款通常涉及到利率和复利的问题,所以学生在数学中理解这些概念,能够帮助他们更好地理解金融学。

五、平行线和垂直线在八年级数学中,平行线和垂直线也是需要掌握的重点知识点。

平行线是在平面图形中与另一条相交线距离相等的两条线。

垂直线则是与平面图形中的另一条线所形成的直角。

掌握这些知识点可以帮助学生在学习中更好地理解平面图形中的几何学。

六、三角形和三角函数在八年级数学中,三角形和三角函数也是难度较大的知识点。

学生需要理解三角形的概念、性质和分类。

三角函数涉及到三角形的边、角和函数之间的关系。

在这方面熟练掌握基本的三角函数如sin, cos, tan等,是学生们理解三角形和三角函数的必要条件。

结论以上是八年级数学的难点和重点知识点的介绍。

【复习专题】中考数学复习:代几综合题—以代数为主的综合

【复习专题】中考数学复习:代几综合题—以代数为主的综合

代几综合题(以代数为主的综合)知识梳理教学重、难点作业完成情况典题探究例1 已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.例2 在平面直角坐标系xOy 中,抛物线2y mx n =++经过(02)P A ,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.例3在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B的左侧..),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移 3个单位长度后恰好经过B 、C 两点.(1) 求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P的坐标;(3)连结CD ,求∠OCA 与∠OCD 两角和的度数.例4在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B(2,n)在这条抛物线上.(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。

延长PE 到点D 。

使得ED=PE. 以PD 为斜边在PD 右侧作等腰直角三角形PCD(当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动)。

初二上册数学试卷难点

初二上册数学试卷难点

一、代数部分1. 分式方程与不等式分式方程与不等式是初二数学的重点内容,也是难点。

学生往往难以理解分式方程的解法,以及如何将分式方程与不等式相结合。

此外,分式方程与不等式的应用题也是难点,需要学生具备较强的分析问题和解决问题的能力。

2. 因式分解因式分解是代数部分的重要知识点,也是难点。

学生往往难以掌握因式分解的方法,如提公因式法、十字相乘法、分组分解法等。

此外,因式分解在实际问题中的应用也是难点,需要学生具备较强的逻辑思维能力。

3. 根的判别式根的判别式是解一元二次方程的关键。

学生往往难以理解根的判别式的意义,以及如何判断一元二次方程的根的情况。

此外,根的判别式在实际问题中的应用也是难点,需要学生具备较强的分析问题和解决问题的能力。

二、几何部分1. 平行四边形与矩形平行四边形与矩形是几何部分的重要知识点,也是难点。

学生往往难以理解平行四边形的性质,以及如何判断一个四边形是否为平行四边形。

此外,矩形在实际问题中的应用也是难点,需要学生具备较强的空间想象能力和逻辑思维能力。

2. 三角形全等与相似三角形全等与相似是几何部分的重要知识点,也是难点。

学生往往难以理解三角形全等的判定方法,如SSS、SAS、ASA、AAS等。

此外,三角形相似在实际问题中的应用也是难点,需要学生具备较强的空间想象能力和逻辑思维能力。

3. 圆与圆的性质圆与圆的性质是几何部分的重要知识点,也是难点。

学生往往难以理解圆的性质,如圆心角、弧、弦、切线等。

此外,圆在实际问题中的应用也是难点,需要学生具备较强的空间想象能力和逻辑思维能力。

三、应用题部分1. 一元二次方程的应用题一元二次方程的应用题是应用题部分的难点。

学生往往难以理解一元二次方程在实际问题中的应用,如面积、体积、行程等问题。

此外,如何将实际问题转化为数学模型也是难点,需要学生具备较强的分析问题和解决问题的能力。

2. 几何图形的应用题几何图形的应用题是应用题部分的难点。

学生往往难以理解几何图形在实际问题中的应用,如建筑、测量、几何构图等问题。

初二数学重难点题型

初二数学重难点题型

初二数学重难点题型
初二数学中的重难点题型,包括一些需要特定技巧和思维方式的题目。

以下是一些常见的重难点题型:
1. 代数方程题:初二数学中的代数方程题主要涉及一元一次方程、一元二次方程和简单的联立方程。

解这些方程需要运用到解方程的基本法则,如去括号、合并同类项、移项等。

2. 平面几何题:平面几何题是初二数学的重点之一,涉及到线段、角、三角形、四边形等图形的性质和计算。

解这些题需要熟练掌握几何定理和相关的计算公式。

3. 分数与整数的运算题:初二数学中常常需要进行分数与整数的加减乘除运算,包括有理数的四则运算和分数的化简、比较大小等。

解这些题需要灵活运用分数的运算法则和化简方法。

4. 百分数与比例题:初二数学中的百分数与比例题主要涉及到百分数的计算和应用,以及比例的计算和应用。

解这些题需要熟悉百分数的转化和计算方法,以及比例的计算和应用思维。

5. 统计与概率题:统计与概率题是初二数学中的难点,包括频数表的制作、频数分布图的绘制,以及概率的计算和应用。

解这些题需要
掌握统计与概率的基本概念和计算方法。

为了提高解题能力,学生可以多做相关的练习题,加强对基本概念和计算方法的理解和掌握。

同时,也可以参加一些数学竞赛和辅导班,通过与他人的交流和讨论,进一步提高解题能力。

八上数学 全册重难点题型 85个必考考点

八上数学 全册重难点题型 85个必考考点

八上数学全册重难点题型 85个必考考点一、长方形和平行四边形1. 长方形和平行四边形的性质2. 长方形和平行四边形的周长和面积计算3. 长方形和平行四边形的应用题二、三角形1. 三角形内角和定理2. 三角形外角和定理3. 三角形边长关系定理4. 三角形面积计算5. 三角形的相似和全等三、直角三角形1. 直角三角形的性质2. 直角三角形的勾股定理3. 直角三角形的应用题四、折线及其特殊角关系1. 折线的特殊角关系2. 折线的性质和应用题五、多边形1. 多边形的性质2. 多边形的周长和面积计算3. 多边形的等腰三角形应用六、圆1. 圆的性质2. 圆的周长和面积计算3. 圆的切线、弦、弧等特殊性质4. 圆的应用题七、空间图形1. 空间图形的性质2. 空间图形的体积和表面积计算3. 空间图形的应用题八、数列1. 等差数列的性质和求和公式2. 等比数列的性质和求和公式3. 数列的应用题九、逻辑推理与证明1. 数学归纳法2. 尝试证明与反证法3. 推理错误定位与分析十、数据统计1. 统计数据的整理和呈现2. 统计数据的分析与应用3. 数据统计的实际问题解决十一、平面直角坐标系1. 平面直角坐标系的性质2. 点、中点、斜率、距离等概念3. 平面直角坐标系中的方程与函数以上为八年级上学期数学全册的重难点题型的必考考点,详细内容涵盖了几何、代数和数学方法等多个知识点,对学生的数学能力和解题思维提出了很高的要求。

希望同学们认真复习,扎实掌握这些必考考点,为学业的成功打下坚实的基础。

八年级数学全册的重难点题型的必考考点涵盖了多个知识点,涉及几何、代数和数学方法等各个方面。

这些考点对学生的数学能力和解题思维提出了很高的要求。

下面我们将继续扩展讨论这些考点,并为同学们提供更详细的学习指导。

十二、解析几何1. 点与直线的位置关系2. 直线与直线的位置关系3. 角平分线、垂直平分线等特殊线段的性质4. 解析几何的应用题在解析几何中,同学们需要理解和熟练掌握点与直线的位置关系,比如点在直线的同侧、异侧和上线段的延长线上等。

中考复习之代几综合问题知识讲解

中考复习之代几综合问题知识讲解

代几综合问题—知识讲解(提高)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.(2015•大庆模拟)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【思路点拨】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理,列出比例式,求解即可;(2)正确把四边形PQCB表示出来,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.【答案与解析】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【总结升华】本题考查了勾股定理,等腰三角形的判定等,综合性较强,难度适中.解答此题时要注意分类讨论,不要漏解;其次运用方程思想是解题的关键.举一反三:【变式】(2016•镇江)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t= 秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y 关于时间t的函数表达式.【答案】解:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∵,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,则AE′=6∴DE′=6+6,DF=BE′=12,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒;(4)y=t﹣12﹣,如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∵,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴MN=CD=6,∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴CN=CG=CD=6,∵tan∠ABC=tan∠CGN=2,∴GN=12,∴GM=6+12,∵GF=DE=t,∴FM=t﹣6﹣12,∵tan∠FMH=tan∠ABC=2,∴FH=(t﹣6﹣12),即y=t﹣12﹣.类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t ,∴AP=t-1, ∴AM=AP ,∵∠PAM=90°,∴∠AMP=45°;(3)72<t<113.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解; ②左边3个好点在抛物线上方,右边3个好点在抛物线下方: 则有-4<y 2<-3,-2<y 3<-1, 即-4<4-2t <-3,-2<9-3t <-1,∴72<t<4且103<t<113,解得72<t<113;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解; ④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解; ⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解; 综上所述,t 的取值范围是:72<t<113.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.类型三、动态几何中的函数问题3. 如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图象与y 轴交于(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B 、C 的坐标代入其中求解即可.(2)先画出相关图示,连接OD 后发现:S △OBD :S 四边形ACDB =2:3,因此直线OM 必须经过线段BD 才有可能符合题干的要求;设直线OM 与线段BD 的交点为E ,根据题干可知:△OBE 、多边形OEDCA 的面积比应该是1:2或2:1,即△OBE 的面积是四边形ACDB 面积的1233或,所以先求出四边形ABDC 的面积,进而得到△OBE 的面积后,可确定点E 的坐标,首先求出直线OE (即直线OM )的解析式,联立抛物线的解析式后即可确定点M 的坐标(注意点M 的位置).(3)此题必须先得到关于△CPB 面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P 坐标;通过图示可发现,△CPB 的面积可由四边形OCPB 的面积减去△OCB 的面积求得,首先设出点P 的坐标,四边形OCPB 的面积可由△OCP 、△OPB 的面积和得出. 【答案与解析】解:(1)由题意,得:3,9-60.c a a c =⎧⎨+=⎩ 解得:-1,3.a c =⎧⎨=⎩所以,二次函数的解析式为:2--23y x x =+ ,顶点D 的坐标为(-1,4). (2)画图由A、B、C、D四点的坐标,易求四边形ACDB 的面积为9.直线BD 的解析式为y=2x+6.设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6.①当1=9=33OBE S ∆⨯时,如图,易得E 点坐标(-2,-2),直线OE 的解析式为y=-x.E M xy O A BCD设M 点坐标(x ,-x ),21223113113,().22x x x x x -=--+---+==舍 ∴113113M ,22--+() ② 当时,同理可得M 点坐标.∴ M 点坐标为(-1,4).(3)如图,连接OP ,设P 点的坐标为(),m n , ∵点P 在抛物线上,∴232n m m =-+-, ∴PB PO OPB OB S S S S =+-△C △C △△C111||222OC m OB n OC OB =⋅-+⋅-⋅ ()339332222m n n m =-+-=--()22333273.2228m m m ⎛⎫=-+=-++ ⎪⎝⎭∵3<0m -<,∴当32m =-时,154n =. △CPB 的面积有最大值27.8∴当点P 的坐标为315(,)24-时,△CPB 的面积有最大值,且最大值为27.8【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M 的位置,以免出现漏解的情况.举一反三:【变式】如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.yxDECOAB【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1.①若直线与折线OAB的交点在OA上时,即1<b≤32,如图1,此时点E(2b,0).∴S=12OE·CO=12×2b×1=b.②若直线与折线OAB的交点在BA上时,即32<b<52,如图2,此时点E(3,32b-),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE+S△DBE)= 3-[12(2b-1)×1+12×(5-2b)•(52b-)+12×3(32b-)](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM 为平行四边形,根据轴对称知,∠MED=∠NED, 又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:222(2)1a a=-+,∴a=5 . 4.∴S四边形DNEM =NE·DH=54.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为54.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F 、P 为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E 、F 、P 为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解. 【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF ,在Rt △EBF 中,∠B=90°,∴EF=5212222=+=+BF EB .设点P 的坐标为(0,n),n >0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a ≠0).①如图1,当EF=PF 时,EF 2=PF 2,∴12+(n-2)2=5,解得n 1=0(舍去),n 2=4. ∴P(0,4),∴4=a(0-1)2+2,解得a=2, ∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP 时,EP 2=FP 2,∴(2-n)2+1=(1-n)2+9,解得n=-25(舍去)③当EF=EP 时,EP=5<3,这种情况不存在. 综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M 、N ,使得四边形MNFE 的周长最小.如图3,作点E 关于x 轴的对称点E′,作点F 关于y 轴的对称点F′,连结E′F′,分别与x 轴、y 轴交于点M 、N ,则点M 、N 就是所求. 连结NF 、ME. ∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3. ∴FN+NM+ME=F′N+NM+ME′=F′E′=2243 =5. 又∵EF=5,∴FN+MN+ME+EF=5+5, 此时四边形MNFE 的周长最小值为5+5.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S= ________(n 为正整数).B 2B 1A 1BOA【思路点拨】本题要先根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n 的表达式.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值. 举一反三:【变式】阅读下面的文字,回答后面的问题.求3+32+33+…+3100的值. 解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2), (2)-(1)得到:2S=3101-3问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350 ①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3)92-2 2-1().。

北师大版2020中考复习:代几综合问题

北师大版2020中考复习:代几综合问题

中考总复习:代几综合问题【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.【思路点拨】过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,即CE的长度.【答案与解析】解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,∴∠AMB=90°,∵AD∥CB,∠DCB=90°,∴∠D=90°,∴∠AMB=∠DCB=∠D=90°,∴四边形BCDM为矩形.∵BC=CD,∴四边形BCDM是正方形,∴BC=BM,且∠ECB=∠GMB,MG=CE,∴Rt△BEC≌Rt△BGM.∴BG=BE,∠CBE=∠GBM,∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°∴∠CBE+∠ABM=45°∴∠ABM+∠GBM=45°∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10.设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE中,AE2=AD2+DE2,∴100=(x+2)2+(12-x)2,即x2-10x+24=0;解得:x1=4,x2=6.故CE的长为4或6.【总结升华】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键.类型二、函数与几何问题2.如图,二次函数y =(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.【思路点拨】(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B的交点坐标可直接求出满足kx+b≥(x-2)2+m的x的取值范围.【答案与解析】解:(1)将点A(1,0)代入y=(x-2)2+m得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1. 当x=0时,y=4-1=3, 故C 点坐标为(0,3),由于C 和B 关于对称轴对称,在设B 点坐标为(x ,3), 令y=3,有(x-2)2-1=3,解得 x=4或x=0.则B 点坐标为(4,3).设一次函数解析式为y=kx+b ,将A (1,0)、B (4,3)代入y=kx+b 中,得,解得,则一次函数解析式为y=x-1; (2)∵A 、B 坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m 时,1≤x≤4.【总结升华】本题考察了待定系数法求二次函数,一次函数函数解析式以及数形结合法解不等式.求出B 点坐标是解题的关键.举一反三:【变式】如图,二次函数的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C (0,5)、D (1,8)在抛物线上,M 为抛物线的顶点. (1)求抛物线的解析式. (2)求△MCB 的面积.2(0)y ax bx c a =++≠【答案】解:(1)设抛物线的解析式为,根据题意,得, 解之,得. ∴所求抛物线的解析式为.(2)∵C 点的坐标为(0,5).∴OC =5.令,则,解得.∴B 点坐标为(5,0).∴OB =5.∵,∴顶点M 坐标为(2,9).过点M 作MN ⊥AB 于点N ,则ON =2,MN =9.∴. 类型三、动态几何中的函数问题2y ax bx c =++058a b c c a b c -+=⎧⎪=⎨⎪++=⎩145a b c =-⎧⎪=⎨⎪=⎩245y x x =-++0y =2450x x -++=121,5x x =-=2245(2)9y xx x =-++=--+11(59)9(52)551522MCB BNM OBC OCMN S S S S ∆∆∆=+-=+⨯⨯--⨯⨯=梯形3.如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B 三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.【思路点拨】(1)把A、B、O的坐标代入到y=ax2+bx+c得到方程组,求出方程组的解即可;(2)根据对称求出点O关于对称轴的对称点B,连接AB,根据勾股定理求出AB的长,就可得到AM+OM 的最小值.(3)①若OB∥AP,根据点A与点P关于直线x=1对称,由A(-2,-4),得出P的坐标;②若OA∥BP,设直线OA的表达式为y=kx,设直线BP的表达式为y=2x+m,由B(2,0)求出直线BP的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB∥OP,设直线AB的表达式为y=kx+m,求出直线AB,得到方程组求出方程组的解即可.【答案与解析】解:(1)由OB=2,可知B(2,0),将A(-2,-4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,得(3)①如图1,若OB∥AP,此时点A与点P关于直线x=1对称,由A(-2,-4),得P(4,-4),则得梯形OAPB.②如图2,若OA∥BP,③如图3,若AB ∥OP ,设直线AB 的表达式为y=kx+m ,则解得综上所述,存在两点P (4,-4)或P (-4,-12),使得以点P 与点O 、A 、B 为顶点的四边形是梯形.【总结升华】本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.举一反三:4202k m k m -=-+⎧⎨=+⎩,.12k m =⎧⎨=-⎩,.【变式】如图,直线与x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在,请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【答案】434+-=x y分为三种情况:I、当∠NOM=90°时,N在y轴上,即此时t=5;II 、当∠NMO=90°时,M 、N 的横坐标相等,即t-2=3-0.6t ,解得:t=3.125, III 、∠MNO 不可能是90°,即在运动过程中,当△MON 为直角三角形时,t 的值是5秒或3.125秒. 类型四、直角坐标系中的几何问题4.已知,如图所示,在平面直角坐标系中,四边形ABC0为梯形,BC ∥A0,四个顶点坐标分别为A (4,0),B (1,4),C (0,4),O (0,O ).一动点P 从O 出发以每秒1个单位长度的速度沿OA 的方向向A 运动;同时,动点Q 从A 出发,以每秒2个单位长度的速度沿A→B→C 的方向向C 运动.两个动点若其中一个到达终点,另一个也随之停止.设其运动时间为t 秒. (1)求过A ,B ,C 三点的抛物线的解析式; (2)当t 为何值时,PB 与AQ 互相平分;(3)连接PQ ,设△PAQ 的面积为S ,探索S 与t 的函数关系式.求t 为何值时,S 有最大值?最大值是多少?【思路点拨】(1)设出抛物线的解析式,运用待定系数法可以直接求出抛物线的解析式.(2)根据PB 与AQ 互相平分可以得出四边形BQPA 是平行四边形,得出QB=PA 建立等量关系可以求出t 值.(3)是一道分段函数,分为Q 点在AB 上和在BC 上讨论,根据三角形的面积公式表示出S 与t 的关系式,就可以求出答案. 【答案与解析】解:(1)设抛物线的解析式为y=ax 2+bx+c (a≠0),代入A 、B 、C 三点的坐标,得16a 4044b c a b c c ++=⎧⎪++=⎨⎪=⎩1(4).2PAQQ p Sy x =-82sin ,5Q p y t t x θ==2184(4)(4255PAQSt t t t =-=-1614(4)82t -=【总结升华】本题是一道二次函数综合题.考察了二次函数的最值,待定系数法求二次函数解析式以及三角形面积的求解等.类型五、几何图形中的探究、归纳、猜想与证明问题5.一个质点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______.【思路点拨】由题目中所给的质点运动的特点找出规律,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,即可得出第35秒时质点所在位置的坐标. 【答案与解析】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0). 【总结升华】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间. 举一反三:x y (01),(00)(01)(11)(10)→→→→,,,, 012 3 xy1 2 3 …【变式】如图,一粒子在区域{(x,y)|x≥0,y≥0}内运动,在第1秒内它从原点运动到点B1(0,1),接着由点B1→C1→A1,然后按图中箭头所示方向在x轴,y轴及其平行线上运动,且每秒移动1个单位长度,求该粒子从原点运动到点P(16,44)时所需要的时间.【答案】解:设粒子从原点到达A n、B n、C n时所用的时间分别为a n、b n、c n,则有:a1=3,a2=a1+1,a3=a1+12=a1+3×4,a4=a3+1,a5=a3+20=a3+5×4,a6=a5+1,a2n-1=a2n-3+(2n-1)×4,a2n=a2n-1+1,∴a2n-1=a1+4[3+5+…+(2n-1)]=4n2-1,a2n=a2n-1+1=4n2,∴b2n-1=a2n-1-2(2n-1)=4n2-4n+1,b2n=a2n+2×2n=4n2+4n,c2n-1=b2n-1+(2n-1)=4n2-2n,c2n=a2n+2n=4n2+2n=(2n)2+2n,∴c n=n2+n,∴粒子到达(16,44)所需时间是到达点c44时所用的时间,再加上44-16=28(s),所以t=442+447+28=2008(s).中考冲刺:代几综合问题—巩固训练(基础)【巩固练习】一、选择题1.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中与矩形重合部分....的面积(S )随时间(t )变化的图象大致是( )2.如图,在半径为1的⊙O 中,直径AB 把⊙O 分成上、下两个半圆,点C 是上半圆上一个动点(C 与点A 、B 不重合),过点C 作弦CD ⊥AB ,垂足为E ,∠OCD 的平分线交⊙O 于点P ,设CE=x ,AP=y ,下列图象中,最能刻画y 与x 的函数关系的图象是( )二、填空题3. 将抛物线y 1=2x 2向右平移2个单位,得到抛物线y2的图象如图所示,P 是抛物线y 2对称轴上的一个动点,直线x =t 平行于y 轴,分别与直线y =x 、抛物线y 2交于点A 、B .若△ABP 是以点A 或点B 为直角顶点的等腰直角三角形,求满足的条件的t 的值,则t = .a b Rt GEF ∥,△GEF △ABCD三、解答题5.一个形如六边形的点阵.它的中心是一个点(算第一层)、第二层每边有两个点,第三层每边有三个点……依次类推.(1)试写出第n层所对应的点数;(2)试写出n层六边形点阵的总点数;(3)如果一个六边形点阵共有169个点,那么它一共有几层?6.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ.设动点运动时间为x秒.(1)用含x的代数式表示BQ、PB的长度;(2)当x为何值时,△PBQ为等腰三角形;(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由.8. 如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为41633y x=-+,点A、D的坐标分别为(-4,0),(0,4). 动点P从A点出发,在AB边上匀速运动. 动点Q从点B出发,在折线BCD上匀速运动,速度均为每秒1个单位长度. 当其中一个动点到达终点时,另一动点也停止运动. 设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ 的动点除外).(1)求出点C的坐标;(2)求S随t变化的函数关系式;(3)当t为何值时,S有最大值?并求出这个最大值.(1)求抛物线的解析式;(2)在抛物线的对称轴上找到点M,使得M到D、B的距离之和最小,求出点M的坐标;(3)如果点P由点A出发沿线段AB以2cm/s的速度向点B运动,同时点Q由点B出发沿线段BC以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①求出S与运动时间t之间的函数关系式,并写出t的取值范围;10.已知:抛物线y =-x 2+2x+m-2交y 轴于点A (0,2m-7).与直线y =x 交于点B 、C (B 在右、C在左). (1)求抛物线的解析式;(2)设抛物线的顶点为E ,在抛物线的对称轴上是否存在一点F ,使得,若存在,求出点F 的坐标,若不存在,说明理由; (3)射线OC 上有两个动点P 、Q 同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC 运动,以PQ 为斜边在直线BC 的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t 秒,若△PMQ 与抛物线y =-x 2+2x +m-2有公共点,求t 的取值范围.11. 在平面直角坐标系中,抛物线经过A (-3,0)、B (4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC ,有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时另一个动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动. (1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;2BFE CFE ∠=∠55xOy 42++=bx ax y(3)该抛物线的对称轴上是否存在一点M ,使MQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.【答案与解析】 一、选择题 1.【答案】B;, ∴是二次函数图象,2.【答案】 A . 21tan tan 2x x EFG x EFG ∠=∠2tan EFG ∠二、填空题3.【答案】1或3或; 【解析】解:∵抛物线y 1=2x 2向右平移2个单位,∴抛物线y 2的函数解析式为y=2(x-2)2=2x 2-8x+8,∴抛物线y 2的对称轴为直线x=2,∵直线x=t 与直线y=x 、抛物线y 2交于点A 、B ,∴点A 的坐标为(t ,t ),点B 的坐标为(t ,2t 2-8t+8),∴AB=|2t 2-8t+8-t|=|2t 2-9t+8|,AP=|t-2|,∵△APB 是以点A 或B 为直角顶点的等腰三角形,∴|2t 2-9t+8|=|t-2|,∴2t 2-9t+8=t-2 ①【解析】∵S 正方形OBAC =OB 2=9,∴OB=AB=3,∴点A 的坐标为(3,3)∵点A 在一次函数y=kx+1的图象上,5522+5.【答案与解析】解:(1)第n层上的点数为6(n -1)(n ≥2).(2)n 层六边形点阵的总点数为=1+6+12+18+…+6(n -1)=1+=3n(n -1)+1.(3)令3n(n -1)+1=169,得n =8.所以,它一共是有8层.6.【答案与解析】7.【答案与解析】 2)1)](1(66[--+n n解:(1)1,2;(2)探索应用:设P (x,),则C (x,0),D (0,), ∴CA =x+3,DB=+4, ∴S 四边形ABCD =CA ×DB=(x+3) ×(+4), 化简得:S=2(x+)+12, ∵x>0, >0,∴x+≥,只有当x=时,即x=3,等号成立.∴S ≥2×6+12=24,∴S 四边形ABCD 有最小值是24.此时,P(3,4),C(3,0),D(0,4),AB=BC=CD=DA=5,∴四边形是菱形.12x 12x12x121212x9x 9x 9x 9x<t≤5时,(如图)①在0<t <41(42OP QN =⨯1(2OP QN t =1(2OP OD t =②在4<t≤5时,对于抛物线S =综合以上三种情况,当t=6时,S 取得最大值,最大值是4.9.【答案与解析】解:(1)据题意可知:A (0,2),B (2,2),C (2,0).∵抛物线y=ax 2+bx+c 经过点A 、B 和D (4,), 28285,225525t t t --=-=⨯当时,∴,∴,∴y=﹣x2+x+2;(2)点B关于抛物线的对称轴x=1的对称点为A.连接AD,与对称轴的交点即为M.∵A(0,2)、D(4,),∴直线AD的解析式为:y=﹣x+2,当x=1时,y=,则M(1,);(3)①由图象知:PB=2﹣2t,BQ=t,AP=2t,∵在Rt△PBQ中,∠B=90°,∴S=PQ2=PB2+BQ2,∴=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).②当S=54时,54=5t2﹣8t+4即20t2﹣32t+11=0,解得:t=,t=>1(舍)∴P(1,2),Q(2,).PB=1.若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,则R的横坐标为3,R的纵坐标为,即R(3,),代入y=﹣x2+x+2,左右两边相等,故这时存在R(3,)满足题意;(ii)假设R在PB的左边时,这时PR=QB,PR∥QB,则R(1,)代入y=﹣x2+x+2,左右两边不相等,则R不在抛物线上综上所述,存点一点R,以点P、B、Q、R为顶点的四边形只能是口PQRB.则R(3,).此时,点R(3,)在抛物线=-x2+x+2上.10.【答案与解析】解:(1)点A(0,2m﹣7)代入y=﹣x2+2x+m﹣2,m﹣2=2m﹣7,解得:m=5故抛物线的解析式为y=﹣x2+2x+3;(2)如图1,由,得,∴B(,2),C(﹣,﹣2)B(,2),关于抛物线对称轴x=1的对称点为B′(2﹣,2),将B′,C代入y=kx+b,得:,解得:,可得直线B'C的解析式为:,由,可得,故当F(1,6)使得∠BFE=∠CFE;(3)如图2,当t秒时,P点横坐标为﹣t,则纵坐标为﹣2t,则M(﹣2t,﹣2t)在抛物线上时,可得﹣(﹣2t) 2﹣4t+3=﹣2t,整理得出:4t2+2t﹣3=0,解得:,当P(﹣t,﹣2t)在抛物线上时,可得﹣t2﹣2t+3=﹣2t,整理得出:t2=3,解得:,舍去负值,所以若△PMQ与抛物线y=﹣x2+2x+m﹣2有公共点t的取值范围是.11.【答案与解析】解:(1)∵抛物线y=ax2+bx+4经过A(﹣3,0),B(4,0)两点,∴,解得,∴所求抛物线的解析式为:y=﹣x2+x+4;(2)如图1,依题意知AP=t,连接DQ,∵A(﹣3,0),B(4,0),C(0,4),∴AC=5,BC=4,AB=7.∵BD=BC,∴AD=AB﹣BD=7﹣4,∵CD垂直平分PQ,∴QD=DP,∠CDQ=∠CDP.∵BD=BC,∴∠DCB=∠CDB.∴∠CDQ=∠DCB.∴DQ∥BC.∴△ADQ∽△ABC.∴=,∴=,∴=,解得DP=4﹣,∴AP=AD+DP=.∴线段PQ被CD垂直平分时,t的值为;(3)如图2,设抛物线y=﹣x2+x+4的对称轴x=与x轴交于点E.点A、B关于对称轴x=对称,连接BQ交该对称轴于点M.则MQ+MA=MQ+MB,即MQ+MA=BQ,∵当BQ⊥AC时,BQ最小,此时,∠EBM=∠ACO,∴tan∠EBM=tan∠ACO=,∴=,∴=,解ME=.∴M(,),即在抛物线y=﹣x2+x+4的对称轴上存在一点M(,),使得MQ+MA的值最小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学代几综合难点题型一次函数综合1、已知直线 $y=kx-2k+6$ 经过定点 $Q$。

1)点 $Q$ 的坐标为 $(2k-6,-2k+6)$;2)设点 $M$ 的坐标为 $(t,t)$,则直线 $QM$ 的解析式为$y=(k+1)x-2k+6-t(k+1)$;3)设点 $E$ 的坐标为 $(m,n)$,则点 $A$ 的坐标为$(t,0)$,点 $B$ 的坐标为 $(0,-2k+6-t)$,线段 $CE$ 的长度为$\sqrt{(m-t)^2+(n+t-2k+6)^2}$。

由 $\angle AEO=45^\circ$,可知 $\angle AEC=135^\circ$,因此 $CE$ 的最大值为$\sqrt{2}(k-1)$。

2、正方形 $AOCD$ 的顶点 $A$、$C$ 分别在 $x$、$y$ 轴上,点 $P$ 为对角线 $AC$ 上一动点,过点 $P$ 作$PQ\perp OP$ 交 $CD$ 边于点 $Q$。

1)设 $P$ 的坐标为 $(t,4-t)$,则直线 $PQ$ 的解析式为$y=-\frac{1}{t}(x-t+4)$。

将直线 $EF$ 向上平移 $2$ 个单位,则其解析式为 $y=-x$;2)由勾股定理可知 $OQ^2=2PA^2=24$,$PC^2=2PA^2-AC^2=12$,因此 $OQ^2-PC^2=12$;3)当点 $P$ 沿 $AC$ 方向移动 $2$ 个单位时,点 $M$ 移动的路径长为 $\sqrt{2}$。

设 $P$ 的坐标为 $(t,4-t)$,则$Q$ 的坐标为 $(4-t,t)$,$OQ$ 的中点 $M$ 的坐标为 $(2-t,2+t)$。

当四边形 $OMNB$ 为菱形时,有 $OM=MB$,因此$t=3$。

此时,$OM$ 与 $BC$ 的交点 $H$ 的坐标为 $(3,1)$,$PQ$ 的长度为 $2\sqrt{2}-2$,四边形 $OPQH$ 的周长为$2\sqrt{2}+2\sqrt{10}$,点 $P$ 的坐标为 $(3-\sqrt{2},1+\sqrt{2})$。

3、正方形 $AOCB$ 的顶点 $A$、$C$ 分别在 $y$ 轴和$x$ 轴正半轴上,且$OA=2$,过点$C$ 作$EF\parallel OB$,交 $y$ 轴于点 $D$,点 $M$ 为直线 $EF$ 上一动点,过点$B$ 作 $BN\parallel OM$,交 $EF$ 于点 $N$。

1)设直线 $EF$ 的解析式为 $y=kx$,则 $k=-\frac{1}{2}$;2)当四边形 $OMNB$ 为菱形时,有 $\angleOBN=30^\circ$;3)当 $M$ 点在 $x$ 轴上方时,设 $P$ 的坐标为 $(t,0)$,则 $Q$ 的坐标为 $(2-t,t)$,$OQ$ 的中点 $M$ 的坐标为 $(1-t,\frac{1}{2}t)$。

由 $\angle OPQ=45^\circ$ 可知 $PQ=\sqrt{2}$,由 $\angle OQM=30^\circ$ 可知 $OM=\sqrt{3}t-\frac{1}{2}$,由 $\angle QBC=45^\circ$ 可知 $BC=2\sqrt{2}$。

因此,四边形$OPQH$ 的周长为 $2\sqrt{2}+\sqrt{6}t$,当$t=\frac{4\sqrt{2}}{3}$ 时,周长最小,此时点 $P$ 的坐标为$(\frac{4\sqrt{2}}{3},0)$。

4、正方形 $ABCD$,顶点 $A$、$B$ 在坐标轴上,点$D$ 坐标是 $(2,1)$。

1)点 $A$ 的坐标为 $(0,1)$,点 $B$ 的坐标为 $(1,0)$;2)设直线 $DE$ 的解析式为 $y=kx+1$,则 $\tan \angle BEC=k=-1$,因此 $\angle BEC=135^\circ$,$\angleDEB=45^\circ$,即 $DE\perp BE$。

2)如图2,点A、B、C分别在直线EF上,且AB=BC,连接AC、BD交于点P,求证:EP=FP;3)如图3,点D、E、F分别在直线BC、AC、AB上,且BD=CE=AF,连接AD、BE、CF交于点O,求证:O为三角形DEF的重心。

1、在平面直角坐标系中,点A沿直线l:y=kx(k<0)运动,点B(-3m,0),将A点向上平移4个单位长度得到点C。

1)当m=22时,OC平分∠AOy,求直线l的解析式;2)设D点在直线l上,连接CA、BD交于点E。

当m<0时,S△EAB=S△ECD,求此时m的值;3)设线段AF在直线l上,且A点在F点的左边,AF=22,连接AB、CF交于点P,证明P点在一条直线上运动。

2、在平面直角坐标系中,直线y=-4x+8上有一定点P,点B、C分别在x轴、y轴上,且满足BP=3PC,直线l:y=kx-3k+4交x轴于点A,且过点P。

1)求定点P的坐标;2)设CE、BE分别平分∠OCB和∠OBC,点D在(0,-2)处,连接PE、AC、AD,当∠ACE=45°时,证明AD=2PE;3)当k=3时,将直线l沿y轴正半轴向上平移n个单位后分别交BC于F,交x轴于G,连接EG,若EG平分∠FGO,求n的值。

3、已知一次函数y=kx+b的图像经过点M(-1,3)、N(1,5),直线MN与坐标轴相交于点A、B两点。

1)求一次函数的解析式;2)设点C与点B关于x轴对称,点D在线段OA上,连接BD,把线段BD顺时针方向旋转9°得到线段DE,作直线CE交x轴于点F,求DF-DA/EF的值;3)设点P在直线AB上,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,BQ的值是否会发生变化,若不变,求出其值,若变化,请说明理由。

4、在平面直角坐标系中,直线EF:y=kx+3与x轴、y轴分别交于点E、F,△OEF为等腰直角三角形。

1)求k的值;2)设点A、B、C在直线EF上,且AB=BC,连接AC、BD交于点P,证明EP=FP;3)设点D、E、F分别在直线BC、AC、AB上,且BD=CE=AF,连接AD、BE、CF交于点O,证明O为△DEF的重心。

2)已知菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行。

将菱形ABCD沿x轴向左平移m个单位,使得点D落在△EOF的内部(不包括三角形的边)。

求m的取值范围。

解析:首先,我们可以根据题目中给出的条件,求出菱形ABCD的所有顶点坐标:A(2,0),B(0,1),C(c。

d),D(2+c,1+d)因为对角线BD与x轴平行,所以BD的斜率为0,即:1+d-1)/(2+c-0) = 0解得d = -1,代入菱形ABCD的顶点坐标中,得:A(2,0),B(0,1),C(c,-1),D(2+c,0)接着,我们需要判断点D是否在△EOF的内部。

根据题目中给出的信息,我们可以列出以下不等式:0 < e < 2+c0 < f < 1e + f。

2将点D的坐标代入不等式中,得:2+c < e+f因为点D需要在△EOF的内部,所以有:e+f。

2综合以上两个不等式,得:2 < e+f < 2+c即:0 < c < 2将菱形ABCD沿x轴向左平移m个单位,即将所有顶点的x坐标减去m。

因为点D需要在△EOF的内部,所以有:e-m。

0将c的取值范围代入上式中,得:2 < m < 0综合以上条件,得:2 < m < 0且0 < c < 2即:2 < m < 0且0 < x < 2-m3)如图2,直线PQ:y=1x+2交x轴于点Q,点P(2,n),点M为PQ上一点,点S在x轴正半轴上,连接PS,过S作ST⊥PS,交y轴于点T.点G(-1,0),作射线MG交ST于点N,若PS=NS,求点M的坐标。

解析:首先,我们可以求出直线PQ与x轴的交点Q的坐标:当y=0时,有:0 = 1/x + 2解得x = -2/1 = -2所以Q的坐标为(-2,0)。

接着,我们需要求出点S和点T的坐标。

因为点S在x轴正半轴上,所以它的坐标为(s,0)。

过S作ST⊥PS,交y轴于点T,因为PS与ST垂直,所以它们的斜率之乘积为-1,即:s-2)/(n-0) * (0-s)/(0-s) = -1解得s = 4n/3,代入点S的坐标中,得:S(4n/3,0)因为点T在y轴上,所以它的坐标为(0,t)。

根据题目中给出的信息,可以列出以下两个方程:PS^2 = PT^2 + ST^2PS = NS将点S和点T的坐标代入上述方程中,得:4n/3-2)^2 + n^2 = t^24n/3 = t化XXX:16n^2/9 - 8n/3 + 4 + n^2 = 16n^2/9解得:n = 2/3t = 8/9代入点S和点T的坐标中,得:S(8/3,0),T(0,8/9)接着,我们需要求出点N的坐标。

因为点G(-1,0)和点M 在直线PQ上,所以可以列出以下方程:y = 1/x + 2y - n = (y-0)/(x-2) * (x-(-1))化XXX:x^2 - 3x + 2 - y^2 + ny = 0因为点N在射线MG上,所以可以列出以下方程:y = (8/9)/(8/3 + 1) * (x+1)化XXX:y = 8x/33 + 8/99将两个方程联立,解得:x = 7/3y = 23/33所以点M的坐标为(7/3,23/33)。

相关文档
最新文档