复习凸函数理论在解决中学数学极值问题中的应用
凸函数的性质与应用

凸函数的性质与应用凸函数是一种特殊的函数,它的图像在任何一点处都是凸的,也就是说,它的图像在任何一点处都是向上凸的。
凸函数的性质和应用非常广泛,它们在数学、统计学、经济学、机器学习等领域都有着重要的应用。
首先,凸函数的性质可以用来求解最优化问题。
最优化问题是指在给定条件下,求解使目标函数取得最大值或最小值的变量值。
凸函数的性质可以用来求解最优化问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解最优化问题。
其次,凸函数的性质可以用来求解线性规划问题。
线性规划问题是指在给定条件下,求解使目标函数取得最大值或最小值的变量值,而且变量值必须满足一组线性约束条件。
凸函数的性质可以用来求解线性规划问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解线性规划问题。
此外,凸函数的性质还可以用来求解最小二乘问题。
最小二乘问题是指在给定条件下,求解使目标函数取得最小值的变量值,而且变量值必须满足一组线性约束条件。
凸函数的性质可以用来求解最小二乘问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解最小二乘问题。
最后,凸函数的性质还可以用来求解机器学习问题。
机器学习是一种人工智能技术,它可以自动从数据中学习规律,并做出预测。
凸函数的性质可以用来求解机器学习问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解机器学习问题。
总之,凸函数的性质和应用非常广泛,它们在数学、统计学、经济学、机器学习等领域都有着重要的应用。
凸函数的性质可以用来求解最优化问题、线性规划问题、最小二乘问题和机器学习问题,从而为科学研究和实际应用提供了重要的理论支持。
函数凹凸性与极值在优化中的应用指南

函数凹凸性与极值在优化中的应用指南函数的凹凸性和极值之间的关系在优化问题中具有广泛的应用。
这种关系不仅有助于我们理解优化问题的本质,还能指导我们设计求解策略、评估解的质量以及进行算法的选择与改进。
以下是具体的应用:1. 指导求解策略●凸优化问题:对于凸优化问题,由于局部最优解即为全局最优解,因此可以采用各种高效的算法(如梯度下降法、牛顿法等)来求解。
这些算法在凸函数上能够确保收敛到全局最优解。
●非凸优化问题:对于非凸优化问题,虽然不能直接保证局部最优解即为全局最优解,但可以利用函数的凹凸性信息来指导求解策略。
例如,通过寻找函数的拐点(凹凸性变化的点)或利用凸包络等方法来近似原问题,从而更容易地找到全局最优解或较好的局部最优解。
2. 评估解的质量●全局最优性检验:在凸优化问题中,可以通过比较解与已知的全局最优解(如果存在的话)来检验解的质量。
如果两者相等或非常接近,则可以认为找到了全局最优解。
●局部最优性评估:在非凸优化问题中,虽然无法直接判断解是否为全局最优解,但可以利用函数的凹凸性信息来评估解是否为局部最优解。
例如,如果解位于一个由凸变凹或由凹变凸的点上,并且该点处的函数值比其他邻近点都小(或大),那么这个解很可能是局部最优解。
3. 算法选择与改进●算法选择:根据函数的凹凸性选择合适的优化算法。
对于凸函数,可以选择具有全局收敛性的算法;而对于非凸函数,则可能需要采用启发式算法或元启发式算法来寻找近似解。
●算法改进:在算法运行过程中,可以根据函数的凹凸性信息来调整算法参数或改进算法策略。
例如,在梯度下降法中,可以根据函数的二阶导数(即凹凸性信息)来调整学习率的大小;在遗传算法中,可以利用函数的凹凸性信息来指导交叉和变异操作等。
4. 实际应用场景●金融领域:在投资组合优化、风险管理和资产定价等问题中,经常需要求解凸优化问题来找到最优的投资组合或风险策略。
此时,函数的凹凸性对于保证解的全局最优性和稳定性至关重要。
函数凸凹性在高考解题中的应用

函数凸凹性在高考解题中的应用
函数凸凹性在高考解题中的应用
函数凸凹性是高等数学研究的函数重要性质之一,虽然在高中数学的课标中没有对凸凹函数做具体要求,但是它的身影在高考试题中却频频出现.充分说明了高考命题源于课本,又高于课本的原则,同时也体现了高考为高校输送优秀人才的选拔性功能.下面仅就函数凸凹性的一个侧面在高考题中的应用做初步论述.
一、凹凸函数的定义及相关定理
引理:
定理:
证明:
二、定理在高考题中的应用
以下就2012年高考试题中出现的若干有关凸凹性的试题来说明定理的解题应用价值.
例一
分析
另一种解法
解后反思
解法一基于题目代数条件、放缩求最值,解法自然,但仅停留在条件到结论的表面计算,部分学生由于计算量大和讨论繁琐而望而却步;解法二简洁明快,直观性较强,且揭示了试题立意的本质即是基于函数凹凸性立意.
例二
评注
例三
2014年长春第二次质量监测
解答。
17.凸函数及其应用

编号学士学位论文凸函数及其应用学生姓名:艾木拉姑丽·吐尔逊学号:20060101025系部:数学系专业:数学与应用数学年级:2006-1班指导教师:托乎提·塞都拉完成日期:2011 年 5 月10 日1摘要函数凸是一种非常重要的函数.它是研究函数,作出函数图象的基础,因此论文中首先提出了凸函数的几种等价定义并说明凸函数的几何意义,然后讨论凸函数的充要条件或充分条件.提出凸函数的9种常用的判别法,并给出每一个定理的证明,最后应用凸函数概念证明几个重要不等式.关键词:有界;单调;连续;可导;凸函数;Lagrange 定;Lepshitiz 条件;Jensen 不等式;2目 录摘要 .............................................................................................................................1 引言 .............................................................................................................................1 1.凸函数的定义与几何意义 .....................................................................................1 2.凸函数的判别法 .. (3)定理1............................................................................................................................ 3 定理2............................................................................................................................ 4 定理3............................................................................................................................ 5 定理4............................................................................................................................ 6 定理5............................................................................................................................ 6 定理6............................................................................................................................ 8 定理7............................................................................................................................ 9 定理8............................................................................................................................ 9 定理9.. (10)3.凸函数的应用 ....................................................................................................... 11 总结 ...........................................................................................................................17 参考文献 ...................................................................................................................18 致谢 (19)1引言讨论函数()y f x =的性态,仅仅知道函数()y f x =在区间I 严格增加还不够.因为函数()y f x =在区间I 严格增加还有不同的方式.函数的凹,凸性是研究函数性质(形态)的重要方法,且证明有些不等式的有力工具.为了掌握好函数的所有性质,首先要讨论函数凸性的充分条件与充要条件,因此本文中提出了凸函数的几种常用的判别法. 1.凸函数的定义与几何意义设函数()f x 在区间I 上有定义、从几何上来看、若()y f x =的图像上任意两点()()11,x f x 和()()22,x f x 之间的曲线段总位于连接这两点的线段之下(上)、则称该函数是凸(凹).参见图1.这个概念用解析的语言可以表述成 定义1;定义2:设函数()f x 在开区间I 有定义,若()12,,0,1x x I λ∀∈∀,有()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦〈1〉则称()f x 在区间I 是下凸函数或简称函数()f x 在区间I 是凸的﹒()121x x x λλ=+-若定义中则221,x x x x λ-=-1211x x x x λ--=-则不等式〈1〉可以改写为()()()()1212fx f x fx f x x x x x--≤--2这就是凸函数的另一种定义﹒ 凸函数的几何意义: 当()0,1λ∈时点()()122211x x x x x x λλλλ=+-=--表示了区间()12,x x 中的某一点,即()12,x x x λ∈﹒在下图中弦12A A 的方程是:()()()12121fx f x y f x x x +=+-将x x λ=代入上式得()()()3231BA f x f x λλ=+-但()4BA f x =因此不等式〈1〉在几何上表示为34BA BA ≥也就是说,曲线()y f x =在弦12A A 下方,呈现为下凸的形状,而上凸函数的图象则呈现为上凸的形状﹒(图1)除了凸函数上面的定义意外,还可以给出连续函数()f x 在区间I 上为凸函数的的等价性定义;定义1':()f x 在区间I 上有定义且连续()f x 称为I 上的凸函数,如果21,x x ∀I ∈,有⎪⎭⎫ ⎝⎛+221x x f ()()⎪⎭⎫⎝⎛+≤221x f x f f将“≤”改为“〈”.定义2':()f x 在区间I 上有定义且连续()f x 称为I 上的凸函数,如果Ix x x n ∈∀,...,,21,有()()()⎪⎭⎫⎝⎛+++≤⎪⎭⎫⎝⎛+++n x f x f x f f n x x x f n n (2121)x)x ()()21f x λ-图13例1: 证明()2f x x =在R 上是严格凸函数﹒ 证明:事实上()1212,,,0,1x x R x x λ∀∈≠∀∈且有()()()()()()()()()()()()()()22221211222222222212121122222212221212121121111111f x x x x x x x x x x x x x x x x x x fx f x λλλλλλλλλλλλλλλλλλλλ+-=+-+-⎡⎤⎣⎦<+<+-++-⎡⎤⎡⎤=+-+-+-⎣⎦⎣⎦=+-=+-即函数()2f x x =在R 上是严格凸函数﹒2.凸函数的判别法定理1设()f x 于(,)a b 上可微 ,则()f x 严格下凸⇔()f x '是严格增加﹒ 证明:()⇐根据Lagrange 中值定理对一切()1212,,,x x a b x x ∈≠及01t <<必存在()()1122,,t t x x x x ξξ∈∈和使得()()()()121t f x tf x t f x ---()()()()()121t t t f x f x t f x f x =-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()112212211(1)0t t t f x x t f x x t t f f x x ξξξξ''=-+--⎡⎤⎡⎤⎣⎦⎣⎦''=---<⎡⎤⎣⎦( ()()12f f ξξ''<)()()()()121t f x tf x t f x ∴<+-由凸函数定义()f x 在(),a b 是函数﹒()⇒任取()12,,x x a b ∈满足12x x <我们来证明4()()()()12,f x f x f x a b '''<及在严格增加,设ξη<从(),x ξη∈知存在数01t <<使得()11t x t ξη=-+,根据()f x 的严格下凸条件得】()()()()1f t f x tf ξη<-+即()()()()f fx f f x xxξηξη--<--上式表明λ的函数()()()f fx xλψλλ-=-在()12,x x 严格增加.由此可见()()x x ψψ+<-记起()()11x f x ψ'+=并类次可()()22x f x ψ'+=∴()()()12f x f x f x '''<⇒在(),a b 严格增加﹒定理2函数()f x 在区间I 可导则()f x 在区间I 可导,则()f x 在I 是凸函数的充要条件是()()()()1221121,x x I f x f x f x x x '∀∈≥+-有证明:()⇒若()f x 在I 是凸函数,则由定理1有()f x '在I 上单调增加12,x x I∴∀∈ ()12x x <有()()()()2121f x f x f x x ξ'-=-()()()12121xx f x x x ξ'<<≥- ()()()()21121f x f x f x x x '∴≥+-同法可证明12x x >时也有()()()()21121f x f x f x x x '>+-()⇐若()()()()1221121,x x I f x f x f x x x '∀∈≥+-有令()3121x x x λλ=+- ()01λ<<则()()()131221211,x x x x x x x x λλ-=---=-∴对13,x x I∈有()()()()13313f x f x f x x x '≥+-()()()()33121f x f x x x λ'=+--5对()()()()()()()23233233321,x x I f x f x f x x x f x f x x x λ''∈≥+-=+-有从而()()()()()()()()()()()()()()()()()()133122332112312111111f x f x f x x x f x f x f x x x f x f x f x f x x λλλλλλλλλλλλ≥+--'-≥-+--∴+-≥=+-即()f x 在I 是凸函数. 定理3若函数()f x 在区间(),a b 上二阶可微且()0f x ''≥,则()f x 下凸. 证明:在区间(),a b 内任取两点()1212,x x x x <, 令120120202x x x x x x +=+-=即函数()f x 在0x 的泰勒公式是()()()()()()2000012f x f x f x x x f c x x '''=+-+- ()0c x x 是与之间当1x x =时()()()()()()21001011012fx fx f x x x f c x x '''=+-+- ()10x c x <<当2x x =时()()()()()()22002022012fx fx f x x x f c x x '''=+-+-02x c x <<()()()()()()()()()()()()()()221200*********2201102201222122fx f x f x f x x x x f c x x f c x x fx f c x x f c x x ⎡⎤'''''∴+=++-+-+-⎣⎦⎡⎤''''=+-+-⎣⎦()()()()()()()()2212110220,00,00x a b f x f c f c f c x x f c x x ''''''''''∀∈>∴≥≥-+-≥ 有即于是()()()()()()1212022f x f x f x f x f x f x ++≥≤或因此()(),f x a b 在内是凸﹒6定理4设函数()f x 在开区间I 可导,函数()f x 在I 上是凸⇔曲线()y f x =位于它的任意一点切线的上方.证明:()⇒0x I ∀∈,曲线()y f x =在点()()00,x f x 的切线方程: ()()()()000y x f x f x x x '=+- 从而()()()()()()000f x y x f x f x f x x x '-=---()()()()()()()00000f x x f x x x f f x x x ξξ''=---''=--⎡⎤⎣⎦其中ξ在x 与0x 之间.若函数()f x 在I 是凸,根据定理1,则()()00f f x x x ξ''--与同号,于是x I ∀∈,有()()0f x y x -≥即曲线()y f x =在其上任意点()()00,x f x 的切线上方.()⇐若0,x x I ∈,有()()()()()()0000f x y x f x f x f x x x '-=---≥当0x x <时有()()()000fx f x f x x x -'≤- ,当0x x >时有()()()000fx f x f x x x -'≥-于是x I ∀∈且()()()()121212fx f x fx f x x x x x x x x--<<≤--有 因此函数()f x 在I 上凸.定理5()f x 在(),a b 上为下凸函数的充要条件是对一切()123,,,x x x a b ∈ ()123x x x <<恒有x7()()()()()()213132213132fx f x fx f x fx f x x x x x x x ---≤≤--- ;证明:如图所示在曲线()y f x =上自左至右任取三点,,P Q R 则两两相连所得线段的斜率满足PQ PR Q R K K K ≤≤ ( 图-2)()⇒设3221313111x x x x x x x x λλ--=<-=--则 ,令()2131x x x λλ=+- 则根据()f x 的凸函数有()()()()()131311fx f x x fx f x λλλλ=+-≤+-⎡⎤⎣⎦ (1)()()3221133131x x x x fx fx x x x x --=+-- (2)进而得到()()()()()()312321213x x f x x x f x x x f x -≤-+- (3)()()()()()()3213122130x x f x x x f x x x f x ∴---+-≥()()()()()()()()3112113122130x x f x x x f x x x f x x x f x -----+-≥ 或 ()()()()()()()()3213222122130x x f x x x f x x x f x x x f x -----+-≥ 从而()()()()()()31212132x x f x f x x x f x f x --≤--⎡⎤⎡⎤⎣⎦⎣⎦()()()()21312131fx f x fx f x x x x x --∴≤-- 同法可证 ()()()()31323132fx f x fx f x x x x x --∴≤--()⇐由123,,x x x 在(),a b 上任意性,可以得到凸函数的定义2故()f x 在(),a b 上为一凸函数.8定理6()f x 在区间I 上为凸函数x I ⇔∀∈,当12x x x <<时有 ()()()11221101x fx x f x x f x ≥.证明:()⇒()1212,,,x x x I x x x f x ∀∈<<且在区间I 上可导,由定义()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦(1)设()121x x λλλ=+- 1211x x x x λ--=- 不等式(1)可以改写为()()()21122121x x x x fx fx fx x x x x --=+-- (2) 设12x x x <<将不等式(2)不等号两边乘上210x x ->有()()()()()()21112120x x f x x x f x x x f x -+-+-≥ (3)或可以改写为行列式的形式()()()1122111x fx x f x x f x ≥ ,()⇐()()()11221101x fx x f x x f x ≥ 设12x x x <<由于()()2121x x x x x x -=-+-,(3)或改写为()()()()()()()()21121120x x f x x x f x x x f x x x f x -----+-≥或()()()()1212fx f x fx f x x x x x--≤-- ∴函数()f x 是凸函数.9定理7若函数()f x ,()g x 在区间I 上为凸函数,则()()f x g x +也在I 上为凸. 证明:因为()(),f x g x 在区间I 上为凸函数.∴对定义区间内任意两点12,x x 及()0,1λ∀∈,有()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦及()()()()121211g x x g x g x λλλλ+-≤+-⎡⎤⎣⎦不等式两边分别相加得()()()()()()()12121122111f x x g x x f x g x f x g x λλλλλλ+-++-≤++-+⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦按定义()()f x g x +为凸函数.定理8若()f u 是单调增加的凸函数,且()u x ψ=为凸函数,则复合函数()f x ψ⎡⎤⎣⎦也是凸函数.证明:()u x ψ= 是凸函数,12,x x ∀有()()121222x x x x ψψψ++⎛⎫≤ ⎪⎝⎭(由凸函数的定义)又因为()f x 是单调增加的凸函数,所以12,x x ∀有()()()()121212222f x f x x x x x f f ψψψψψ+⎡⎤⎡⎤+⎡⎤⎡+⎤⎛⎫⎣⎦⎣⎦≤≤⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦(()()1212122x x x x ψψψ+⎛⎫+≥⎡⎤ ⎪⎣⎦⎝⎭)所以复合函数()f u ψ⎡⎤⎣⎦也是凸函数.10定理9函数()f x 在区间I 上为凸⇔12,,n x x x I ∀∈ 有()()()112211221212n n n n n n t f x t f x t f x t x t x t x f t t t t t t +++⎛⎫+++≤⎪++++++⎝⎭其中 ()122,,,,0nn t t t ≥>证明:()⇐若12,,,n x x x I ∀∈ 有 ()()()112211221212n n n n n nt f x t f x t f x t x t x t x f t t t t t t +++⎛⎫+++≤⎪++++++⎝⎭()12,,,0nt t t > 则2n =时有()()112211221212t f x t f x t x t x f t t t t +⎛⎫+≤ ⎪++⎝⎭()12,0t t >令12,1t t t t ==- (0<t<1)有()()()()121211f tx t x tf x t f x +-≤+-⎡⎤⎣⎦ 由定义知函数()f x 在I 上为凸. 必要性()⇒若()f x 在I 为凸函数,则12,x x I ∀∈有()()()()121211f tx t x tfx t f x +-≤+-⎡⎤⎣⎦ ()01t << 12,0t t ∴∀>令112t t t t =+ 则2121t t t t -=+ 则()()112211221212t f x t f x t x t x f t t t t +⎛⎫+≤⎪++⎝⎭ 即2n =是不等式成立.设1n k =-时有11()()()112211112211121121k k k k k k t f x t f x t f x t x t x t x f t t t t t t ------+++⎛⎫+++≤⎪++++++⎝⎭()121121,,,,,,,0k k x x x I t t t --∀∈> ,n k =时有()()112211121112211121121121.()()k k k k k k k k k k k k k k t x t x t x t t t t x t x t x t x t x t t t f f t t t t t t t t --------+++⎡⎤++++⎢⎥⎡⎤+++++++⎢⎥=⎢⎥++++++++⎢⎥⎣⎦⎢⎥⎣⎦()()112211*********.k k k k k k k kt x t x t x t t t ft x t t t t t t t -----⎛⎫+++++++ ⎪+++⎝⎭≤++++()()()112211121()k k k k k kt fx t f x t f x t f x t t t t ---++++≤++++即n k =是不等式成立,所以定理是正确的.3.凸函数的应用例2: ()f x 为区间I 上的凸函数,1,2,,x I n ιι∈= 10,1nιιιλλ=>=∑这时有()()()()11221122n n n n f x x x f x f x f x λλλλλλ+++≤+++ . 证明:(用数学归纳法) 当2n =是凸函数的定义 12λ=时112λλ==()()()11221122f x x f x f x λλλλ+≤+成立.当1n k =-时0a ι> 111k a ιι-==∑ 有12()()()()112211112211k k k k f x x x f x f x f x αααααα----+++≤+++ 成立当n k = 时 11nιιλ==∑时只各项 1kιιλαλ=-就有()()1122111122111.1k k k k k k k k k kx x x f x x x x f x λλλλλλλλλλ----⎡⎤+++++++=-+⎢⎥-⎣⎦()()11221111k k k k k kx x x f f x λλλλλλ--⎡⎤+++=-+⎢⎥-⎣⎦()()()()()1122111.k k k k k fx f x f x f x λαααλ--≤-++++⎡⎤⎣⎦()()()()112211k k k k f x f x f x f x λλλλ--=++++()()()()11221122n n n n f x x x f x f x f x λλλλλλ∴+++≤+++例3:设:()f x 在区间(a ,b )内为凸函数,并且有界,试证()lim x af x +→与()5lim x f x →均存在.证明:不妨设()f x M ≤,根据()f x 的凸性知,()00,,x a b a x x ∀∈<<时()()()()()()00000fx f x fx f x fx Mk x x x x xx a---==>---是x 的单调有界函数,从而存在()()00lim ,x afx f x A x x +→-=-,而(),x a b ∈ ()()()()()0000fx f x f x x x fx x x -=-+-则()()()000lim x af x a x f x →=-+例4:设0i a >,0i b >(1,2,...,i n =)证明:11111nnnp qp q i i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑其中110,,1p q qp<<+∞+=此不等式称为赫尔德(Holder )不等式,当2p q ==时,13又称为始瓦茨(Schwarz )不等式或柯西不等式;证明:令 ()16f x x =则()()0;011121''>∀<⎪⎪⎭⎫ ⎝⎛-=-x xq q x f q 因此()f x 为()0,+∞上的严格凹函数,于是若10,,1ni i i i x t o t =>>=∑ 则有()q n n q nn q qx t x t xt xt xt 1111122111......++≤+++ 现取1pii np ii a t a==∑,q i i pib x a =并且代入不等式,得()q p i ni qq nqni nn a bbb a b a 1111111......⎪⎭⎫ ⎝⎛∑++≤∑++==整理即得q p i ni p p i ni i i ni b a b a 11111⎪⎭⎫⎝⎛∑⎪⎭⎫ ⎝⎛∑<∑==-;例5:由()ln f x x = 的凸性,利用Jensen 不等式来导出平均值不等式. 解:由于()210,f x x=-<故()fx 在()0,+∞上是凹函数,对于凹函数詹森不等式()()()()1...............1111n n n n x f x f x x f λλλλ++≤++ 应取反向,设()0,0,1,2,,;i x i n >=⋅⋅⋅并取()1,1,2,,i i n nλ==⋅⋅⋅显示有11ni i λ==∑把它们代入反向的(1)式,得到()111lnln ln lnnn x x x x nn+⋅⋅⋅+≥+⋅⋅⋅+=由于()ln f x x =是递增函数,因此得到1nx x n⋅⋅⋅≤再由()1ln ln g x x x=-=为—凹函数,类似地又有1111111ln ln ln ln nn x x nn x x +⋅⋅⋅+⎛⎫-≤-+⋅⋅⋅+= ⎪⎝⎭又得14111nn x x ≤+⋅⋅⋅+1111nnx x n nx x ⋅⋅⋅≤≤+⋅⋅⋅+例6:设()f x 为区域(),a b 内的凸函数,试证:()f x 在I 的一内闭区间[](),,a b αβ⊂上满足来布尼兹(Lipschitz )条件.证明:首先我们要清楚来布尼兹(Lipschitz )条件,称()f x 在[],αβ满足 来布尼兹(Lipschitz )条件,是存在L ,使[]12,,x x αβ∀∈有()()1212fx f x L x x -≤-即()()1212f x f x Lx x -≤-曾有凸函数关于增量比值的性质:()()1212fx f x x x --是关于x 的增函数实际上,有关增量的结论,一般还有如下四个结论是等价的()123x x x <<(1)()f x 在[],αβ上凸函数; (2)()()()()21312131fx f x fx f x x x x x --≤--;(3)()()()()31322131fx f x fx f x x x x x --≤--;(4)()()()()21322132fx f x fx f x x x x x --≤--;15上面式(1)(2)(3)均表明()()00fx f x x x --对固定的1x 而言,是关于x 的增函数的结论的变形形式.则由于[](),,a b αβ⊂,故有在0h >使得[](),,h h a b αβ-+⊂ 12x x <且[]12,,x x αβ∈时,取32x x h =+尤式(4)知()()()()213221fx f x fx f x M m x x hh---≤≤-,其中,M m 分别表示f 在[],h h αβ-+上的上,下确界,则()()1221..................M m f x f x x x h--≤-(1)12x x >,则可取32x x h =-,有()()()()21212121fx f x M m M m fx f x x x x x hh---≤⇒-≤--当21x x = 21x x =时不等式(1)成立.变换21,x x 的位置,不等式(1)成立,故[]12,,x x αβ∀∈有()()1221M m fx f x x x h--≤-;例7:设()f x 是区间[],a b 上的凸函数,则()()()122b af a f b a b f f x dx b a++⎛⎫≤≤⎪-⎝⎭⎰证明:由()f x 的凸性保证了积分()ba f x ⎰有意义当,2a b x b +⎡⎤∈⎢⎥⎣⎦时,2a b a b x a +⎡⎤+-∈⎢⎥⎣⎦且有()()22a b f a b x f x f +⎛⎫+-+≥⎪⎝⎭因为()()2a b baaf x dx fx dx +=⎰⎰令x a b μ=+-,得16()()()22a bbb aa b bf x dx f a b d f a b dx μμμ++=-+-=+-⎰⎰⎰从而()()()()22222bbb aa b a ba ba b f x dx f a b x f x dx f dx a b f ++++⎛⎫⎛⎫=+-+≥=-⎡⎤⎪ ⎪⎣⎦⎝⎭⎝⎭⎰⎰⎰于是()12b aa b f fx dx b a+⎛⎫≤⎪-⎝⎭⎰作变换()()t b x b a =-÷-,则有()()()()()()()()()()()1111112b af a f b f x dx f a t b dt b a t a t b dt b a tf a t f b dt b a +=+-=-⋅+-≤-+-=-⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰从而()()()12b af a f b f x dx b a+≤-⎰例8:设0,0,p q >>求证:当2o xπ<<时sin cos px qx <证:原式可以变形为22sin cos 1pqp qx x p q p q +⎛⎫⎛⎫⎛⎫⋅< ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,取对数又可变性为22sin cos 1ln ln ln px px p q p p q q p q ⎛⎫⎛⎫⎛⎫+< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,由()ln g x x =的凹性,即证;17总结凸函数是研究函数性质的重要工具,作出函数图象与证明不等式的一种方法.因此本文中主要讨论凸函数概念与凸函数的9种常用的判别法.应用凸函数解决问题或证明一个不等式时首先选取本文中的适当的一种凸函数判别法,然后利用此种方法讨论已知函数的凸性,最后按照函数的凸性来证明原不等式.18参考文献[1] 毛羽辉.数学分析选论(上册)[M].北京:科学出版社.2004:66~72[2] 吴良森,毛羽辉,韩士安,吴畏.数学分析指导书[M].高等教育出版社.2004:169~171[3] 谢惠民,恽自求,易法槐,钱定边.数学分析习题课讲义(上册)[M].高等教育出版社.2004:243~245[4] 方企勤.数学分析(上册)[M].北京大学数学系.1986:197~206[5] 欧阳光中,姚允龙.数学分析(上册)[M].复旦大学出版社.1991:195~199[6]陈传璋,金福临,朱学炎,欧阳光中.数学分析(上册)[M].高等教育出版社.1978:193~200[7]刘玉璉,傅沛仁,林玎,刘宁 .数学分析(上册)[M].高等教育出版社.2003:256~262[8]任胜健.数学分析(第一册)[M].北京大学出版社.2009:218~225[9]牛庆银.数学分析选论[M].科学出版社.2004:66~72[10]李胜宏.数学分析[M].浙江大学出版社.2009:197~20319 致谢在喀什师范学院的教育下经过五年的学习,使我在做人做事各个方面得到了很大的提高.在老师的指导下我的毕业论文顺利通过,他帮我批准了好多次,提供了这方面的资料和很好的意见,非常感谢他的帮助,在老师耐心的指导下,我学会了论文的三步骤:怎么样开头,怎么样继续,怎么样结束.非常感谢指导老师,也非常感谢我系的各位老师,在他们的教育下,使我在各方面得到了很大的提高,为以后工作打下了良好的基础.此致敬礼:艾木拉姑丽.吐尔逊 2011-5-10。
凸函数的性质与应用

凸函数的性质与应用数学与统计学院、数学与应用数学、0701班,湖北,黄石,4350021.引言凸函数是数学分析中的一个重要概念,它涉及了许多数学命题的讨论证明和应用,而且在现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义和很好的应用.关于凸函数,虽然很多书籍都做了相应的介绍,但多是从不同的角度出发来进行不同的定义和应用.在高等数学中,利用导数讨论函数的性态时,经常遇到一类特殊函数—凸函数,由于凸函数具有一些特殊性质,利用这些性质可非常简单地证明一些初等不等式、函数不等式和积分不等式. 凸函数是一类重要的函数,在不等式的研究中尤为重要.本文通过凸函数的定义、性质的描述,主要研究其在不等式证明中的应用,举例说明解题思路与证明方法,并且证明了几个常见的重要不等式及高次函数的凸性猜想. 函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘函数的图象,而且有助于对函数的定性分析.2. 凸函数的有关概念2.1凸函数的定义、定理及其几何意义定义 若函数()f x 对于区间(),a b 内的任意12,x x 以及()0,1,λ∈恒有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点()()11,,x f x ()()22,x f x 间的割线总在曲线之上.定理1 若函数()f x 在区间(),a b 内连续,对于区间(),a b 内的任意12,x x 恒有12121[][()()]22x x f f x f x +≤+, 则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点()()11,,x f x ()()22,x f x 间割线的中点总在曲线上.定理2 若函数()f x 在区间(),a b 内可微,且对于区间(),a b 内的任意x 及0x ,恒有00()()()f x f x f x x '≥+-,则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任一点处的切线,总在曲线之下. 注 若将定义1,2,3中的≤“”改为<“”则称()f x 为(),a b 上的严格凸函数. 2.2 凸函数定义与定理之间的等价性条件2.2.1 定义1与定理1的等价性证 定义1⇒定理1:显然,只要取12λ=即可由定义1推得定理1.定理1⇒定义1:我们首先推证()f x 对于任意的12,x x (),a b ∈及有理数()0,1λ∈,不等式1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,成立.事实上,对于此有理数λ,总可表示为有穷二进位小数,即121121122220.2n n n nn na a a a a a a ---++=,其中0,1(1,2,,1);1i n a i n a ==-=或由于1λ-也是有理数,故也可以表示为有穷的二进位小数,即1λ-=121121122220.2n n n nn nb b b b b b b ---++=, 其中()1,1,2,,1;i i b a i n =-=-1,n b =这是因为()11λλ+-=的缘故,因此111212[]()()i i f a x b x a f x b f x +≤+(1,2,,1)i n =-,所以12[(1)]f x x λλ+-12112112112112222222[]22n n n n n nn n nna a a ab b b b f x x ------++++=+21212121111212112222()(22[]2n n n n n nn n a a a b b b a x b x x x f ------+++++=2121212111121211222211[()]()2222n n n nn n n n a a a b b b f a x b x f x x ------++≤+++2121212111121211222211[()()]()2222n n n n n n n n a a a b b b a f x b f x f x x ------++≤+++121112212221111[()()][()()]()2222n n n a x b x a f x b f x a f x b f x f -+≤++++11122122122111[()()][()()][()()]222n n na f xb f x a f x b f x a f x b f x ≤+++++12112112112112222222()()22n n n n n n n n n na a a ab b b b f x f x ------++++=+12()(1)().f x f x λλ=+-下面再推证()f x 对λ为无理数时定义1也成立.事实上,对任意无里数()0,1,λ∈{}(0,1),n λ⊂存在有理数列12(),(1)n n n n x x λλλλ→→∞+-→所以,12(1)()x x n λλ+-→∞,由于()f x 在(),a b 内连续,所以1212121212[(1)][lim (1)]lim [(1)]lim[()(1)()]()(1)()n n x n n n n x x f x x f x x f x x f x f x f x f x λλλλλλλλλλ→∞→∞→∞+-=+-=+-≤+-=+-综上即知,定义1与定理1等价.2.2.2 定义1与定理2的等价条件证 定义1⇒定理2:对(),a b 内任意的0x 及x ,若0,x x <则取0h >,使00,x x h x <+<由推论1得0000()()()()].f x h f x f x f x h x x +-+≤-上式中令0,h →由于()f x 可微,所以有0()f x '00()(),f x f x x x +≤-即00()()()f x f x f x x '≥+-.若0,x x <则取0h >,使00,,x x x x h x <<+<同理可证.2.2.3 定理2与定义1的等价条件对于区间(),a b 内的任意12,x x (不妨设12x x <)以及()0,1,λ∈令()121x x x λλ=+-,则12,x x x << ()()1121,x x x x λ-=-- 2x x -= ()()211,x x λ--由泰勒(Taylor)公式,我们有111222()()()()()()()()f x f x f x x f x f x f x x θθ''=+-=+-及其中1122x x x θθ<<<<,于是12()(1)()f x f x λλ+-12[(1)]f x x λλ=+-+2121(1)()[()()]x x f f λλθθ''---.再由单调性知21()()f f θθ''≥,所以12()(1)()f x f x λλ+-≥ 12[(1)]f x x λλ+-,即12[(1)]f x x λλ+-≤12()(1)()f x f x λλ+-.所以在一定条件下,定义1与定理3等价.3. 凸函数的有关结论 3.1 凸函数的运算性质性质1 若()f x 为区间I 上的凸函数, k 为非负实数,则()kf x 也为区间I 上的凸函数.性质2 若()(),f x g x 均为区间I 上的凸函数,则()f x + ()g x 也为区间I 上的凸函数.推论 若()(),f x g x 均为区间I 上的凸函数,12,k k 为非负实数,则()()12f x k g x +k 也为区间I 上的凸函数.性质3 若()f x 为区间I 上的凸函数,()g x 为J 上的凸增函数,且()f I J ⊂,则g f ⋅为区间I 上的凸函数.性质4 若()(),f x g x 均为区间I 上的凸函数,则()F x =()(){}max ,f x g x 也是区间I 上的凸函数.上述性质很容易证明,故在此省略.3.2 凸函数的其他性质引理 f 为I 上的凸函数的充要条件是:对于I 上的任意三点12x x x <<,总有32212132()()()()f x f x f x f x x x x x +-≤--. ()1证 [必要性]记3231,x x x x λ-=-则213(1).x x x λλ=+- 由f 的凸性知道()21313[(1)]()(1)()f x f x x f x f x λλλλ=+-≤+-=3221133131()()x x x xf x f x x x x x --+--.从而有()()312321213()()()()x x f x x x f x x x f x -≤-+-,即()()()322212321213()()()()()x x f x x x f x x x f x x x f x -+-≤-+-.整理后即得()1式.[充分性]在I 上任取两点1313,,(),x x x x <在[13,x x ]上任取一点213(1)x x x λλ=+- ()0,1,λ∈即3231.x x x x λ-=-由必要性的推导逆过程,即可证明 1313[(1)]()(1)()f x x f x f x λλλλ+-≤+-.故f 为I 上的凸函数.同理可证,f 为I 上的凸函数的充要条件是:对于I 上的任意三点12,x x x <<总有313221213132()()()()()()]]f x f x f x f x f x f x x x x x x x -+-≤≤---.性质1 设f 为区间I 上的严格凸函数,若有0x 是()f x 的极小值点,则0x 是()f x 在I 上唯一的极小值点.证明 若()f x 有异于0x 的另一极小值点1x I ∈ ,不妨设()()10f x f x ≤ 由于()f x 是在I 上的严格凸函数, 故对于任意的()0,1λ∈,都有()01010[(1)]()(1)()f x x f x f x f x λλλλ+-<+-≤.于是,任意的0δ>,1,只要充分接近时总有()0010(1),x x x U x λλδ=+-∈.但是,()0()f x f x ≤,这与1x 是()f x 的极小值点的条件矛盾,从而0x 是()f x 在I 上唯一的极小值点.性质2 设()f x 为(),a b 内的凸函数,有()f x 在I 的任一内闭区间()(),,a b αβ<上满足Lipschitz 条件.证明 要证明()f x 在(),αβ上满足Lipschitz 条件,即要证明:0,L ∃>使得()12,,x x αβ∀∈有1212()()f x f x L x x -≤-. ()2()()()(),,,,,,a b h h a b αβαβ⊂-+⊂因为,故可取充分小使得因此,()12,,x x αβ∀∈,12,x x <32x x h =+取,根据定义有32212132()()()()f x f x f x f x M mx x x x h+--≤≤--,(其中,M m 分别表示()f x 在(),h h αβ-+的上、下界)从而2121()()M mf x f x x x h--≤-, ()3 若1232,,x x x x h >=-可取由定义有32211223()()()()f x f x f x f x x x x x --≤--,从而32211223()()()()f x f x f x f x M m x x x x h---≤≤--.由此也可推出()3式.若12x x =,则()2显然成立.这就证明了()3式显然对于一切()12,,x x αβ∈都成立,因此()3式当12,x x 互换位置也应成立,故有2121()()M mf x f x x x h--≤-. 令M mL h-=,则原命题成立.性质3 设()f x 是(),a b 上的凸函数,则()f x 在(),a b 上处处存在左、右导数,且左导数小于、等于右导数.证明 ()()()00,,,x a b U x a b δ∀∈∃⊂.记()()00()(),,f x f x F x x a b x x +=∈-,()121200,x x x x x x δ<∈-任意且,,,有引理得()()1020121020()()()()f x f x f x f x F x F x x x x x ++=≤=--.()F x 在()00x x δ-,上单调递增;再在0x 右方任取一定点()00,x x λλδ∈+,,由引理得: ()()()12F F F x x λ≤≤所以()F x 在()00x x δ-,上单调递增且有上界, 故由单调有界原理: 极限()0lim x x F x -→存在,即0()f x +'存在; 任意102x x x <<由定义3有()()1020121020()()()()f x f x f x f x F x F x x x x x ++=≤=--.令1020,x x x x -+→→,则()f x 在0x 的左导数小于等于()f x 在0x 的右导数.性质4 设()f x 为(),a b 内可导凸函数,证明()0,x a b ∈ 为()f x 的极小值的充要条件是0()0f x '=.证明 [必要性]已知函数()f x 在0x 可导,且取得极小值,则0()0f x '=(极值的必要条件).[充分性] (),x a b ∀∈,0,x x ≠有00()()().f x f x x x ≥+-因为0()0f x '=,故(),,x a b ∀∈都有0()(),f x f x ≥所以0x 为()f x 的极小值点.定理1 设f 为区间I 上的可导函数,则下列论断互相等价;1) f 为I 上的凸函数, 2) f '为I 上的增函数, 3) 对I 上的任意两点12,,x x 有()21121()()()f x f x f x x x '≥+-. ()*证明 1)2)→ 任取I 上的两点1212,x x x x <()及充分小的正数,h 由于1122,x h x x x h -<<<+根据的凸性及引理有11212212()()()()()()f x f x h f x f x f x h f x h x x h---+-≤≤-.有f 是可导函数,令0h +→时可得211212()()()()f x f x f x f x x x -''≤≤-.所以f '为I 上的递增函数.2)3)→ 在以1212,()x x x x <为端点的区间上,应用拉格朗日中值定理和f '递增条件,有()()2121121()()()()f x f x f x x f x x x ξ''-=-≥-,移项后即得()*式成立,且当12x x >仍可得到相同结论3)1)→ 设以12,x x 为I 上的任意两点,312(1)x x x λλ=+-,由3)并利用131223211)()x x x x x x x x λλ-=---=-与(),()()133133312()()()()(1)()f x f x f x x x f x f x x x λ''≥+-=+--,()233233321()()()()()f x f x f x x x f x f x x x λ''≥+-=+-(),分别用λ和1λ-乘上列两式并相加,便得()()12312(1)()()(1)f x f x f x f x x λλλλ+-≥=+-,从而为I 上的凸函数.推论1 设()f x 为区间I 上的二阶可导函数,则()f x 为凸函数.()0,f x x I ''⇔≥∈.推论2 设()f x 为区间I 上的可微凸函数,则有0x I ∈是()f x 的极小值点.()00.f x ''⇔=定理2 设()f x 在(),a b 上连续,则()f x 是(),a b 上的凸函数的充要条件是:对任意含于(),a b 的闭区间[],,x h x h -+都有1()()2hhf x f x t dt h -≤+⎰. 证明 必要性:()()()()1,2t h f x f x t f x t ∀≤≤-++,故 ()()()()12[]2hhhhhf x f x t f x t f x t dt --≤-++≤+⎰⎰.充分性:假定存在12,x x <使()()1212122x x f f x f x +⎛⎫>+⎡⎤ ⎪⎣⎦⎝⎭ 作辅助函数()()()()11,x f x k x x f x ϕ=---其中2121()()f x f x k x x +=-则120,2x x ϕ+⎛⎫> ⎪⎝⎭因此[]()()[][]12012,max 0,0,,,,x x x x h x h x h x x ϕϕ=>=-+⊂取()()000t h x x t ϕϕ≤-+≥当时,且不恒为0,因此()()002hhh x xt dt ϕϕ->+⎰.再由()x ϕ的定义推出: ()002()hhf xt hf x dt -+>⎰ 这与条件矛盾, 故定理2得证.定理3 若()f x 为(),a b 内的凸函数,(),,i x a b ∈ 1,2,,,i n =则()111.ni ni i i x f f x n n ==⎛⎫⎪ ⎪≤ ⎪ ⎪⎝⎭∑∑ 证明 对12,2n x ==不等式是显然的,设对1n -不等式成立. 因为1212111,1nn n x x x x x x n x nn n n-++++++-=⋅+- 这里()()1211,,,,,1n n x x x n a b x a b n n λ-+++-=∈∈- 由题得()()111111.1n n i i n i i n i i x x n f f f x f x n n n nn ===⎛⎫⎛⎫ ⎪ ⎪- ⎪⎪≤+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 4.凸函数的一些应用4.1应用凸函数性质证明不等式在初等数学及数学分析的课程中,对于不等式的证明是一个重要内容.有时利用凸 函数的理论,证明一些不等式,将会更加简单.下面用例题加以说明.例1 求证:对任意实数,,a b 有()21.2a ba bee e +≤+ 证明 设()()(),0,,x f x e f x x ''=≥∈-∞+∞则故()xf x e =(),-∞+∞为上的凸函数.从而对121,,2x a x b λ===有定义 12121[][()()]22x x f f x f x +≤+.即得()212a ba bee e +≤+. 注:该题构造函数,运用凸函数的定义很容易就导出.例2 设01,01,x a <<<<则有()()1111.aax x x -+-<-证明 设()()()()11101aaf x x x x -=+-<<.那么()()()()()()111111,aaa a f x a x x x ax ---'=-+-++-()()()()()()1111111aaaa f x a a x x a a x x ----''=--+---+()()()()1121111a aa a a a x x a a x x ------+--+()()()()()()12112111111aa a a a a a x x x x x x x x -----⎡⎤=--+-++++-+⎣⎦()()()()()()1212111111.a a aa a a x x a a x x ------=--+-=-+-于是 ,当01,01x a <<<<时,()0,f x ''>由严格凸函数的定义,其中12,1,0,x x x λ===得()()()()()110110,f x f x x x f x f =⋅+-⋅<⋅+-⋅⎡⎤⎣⎦即()()1111.aax x x -+-<-注:该题运用了定理1及推论1的结论.例3 在ABC 中,证明sin sin sin 2A B C ++≤()()()()sin ,0,,sin 0,0,f x x x f x x x ππ''=-∈=>∈证明 令由应用2得()()()33f A f B f C A B C F ++++⎛⎫≥ ⎪⎝⎭,即sin sin sin sin3A B CA B C ++++≤s i n ,3π≤=所以sinA+sinB+sinC 2注:该题运用了定理3的结论.例4设12n a a a 、、均为正数,且121n a a a +++=.求证:()2222212121111.n n na a a a a a n +⎛⎫⎛⎫⎛⎫++++++≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭证 因为()2,f x x =()()()22,20,f x x f x f x x ''==>=由于得是凸函数,有凸函数的性质,有22212122121221211111111111.n n n nn a a a a a a a a a a a a n n n a a a ⎛⎫⎛⎫⎛⎫+++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫++++++ ⎪⎪≥⎪ ⎪⎝⎭⎛⎫=++++ ⎪⎝⎭()4 由柯西不等式:222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫⋅≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑得1212111111()1n n a a a a a a ⎛⎫+++=+++⋅ ⎪⎝⎭()12122111(),n na a a a a a n =++++++≥212111()nn a a a ∴+++≥,由()4即得 ()2222212121111n n n a a a a a a n+⎛⎫⎛⎫⎛⎫+++++≥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.4.2关于凸函数的某些猜想猜想1 三次函数不是(),-∞+∞上的凸函数. 证 设()3232103,0.x x a x a x a a f a +++≠= 显然,()f x 在(),-∞+∞上可导,且()232123x x a x a f a ++'=,因为30,a ≠故()f x '在(),-∞+∞上不单调,所以不是凸函数.猜想2 试给出四次的函数在定义域上是凸函数的一个充分条件. 设()432432104,0,x x x a x a x a a f a a ++++≠=因为四次的在定义域上二次同样可导,且()324321432x x x a x a f a a +++'=, ()24321262x x x a f a a ++''=.根据3..1的推论1可知,下式()423420.64120a a a a >⎧⎪⎨-⋅⋅≤⎪⎩ 则该四次函数在(),-∞+∞是凸函数. 化简得① 423420.380a a a a >⎧⎨-⋅≤⎩② 423420.380a a a a <⎧⎨-⋅≤⎩ 则该四次函数在(),-∞+∞不是凸函数.③ 423420.380a a a a >⎧⎨-⋅>⎩设()24321262x x x a f a a ++''=与x 轴的两交点分别是()1212,,x x x x <则()x f 在()()12,,,x x -∞+∞内分别为凸函数,在()12,x x 内不是凸函数.④ 423420.380a a a a <⎧⎨-⋅>⎩同理设()x f ''与x 轴的两交点分别是()1212,,x x x x <则()x f 在()12,x x 内为凸函数,其他区间不是凸函数.猜想3 5次函数在实数范围内是否有为凸函数的?设5次函数的表达式为()54325432105,0,x x x x a x a x a a f a a a +++++≠= 显然该是在实数范围内二次可导.()432543215432,x x x x a x a f a a a ++++'= ()325432201262.x x x x a f a a a +++''=现在需要找出二次导数在实数范围内是否恒大于等于0. 我们设()()325432201262,x f x x x x a g a a a ''=+++=()2154360246.x x x g a a a =++'下面分情况讨论:()524530,2446060a a a a >⎧⎪⎨-⋅⋅≤⎪⎩ 即()0x g ≥'在R 上恒成立.则()x g 在R 上单调递增,此时5a 为某一定值,但是总,x R ∃∈使得()0,x g <即x R ∃∈使()0f x ''<成立.同四次的理一样,其他3种情况更不可能为凸函数. 所以五次函数在R 上不是凸函数.以此类推,高次函数()11100,,n n n n n f x a x a x a x a a --=+++≠5n 时,该函数在实数范围内不是凸函数.5.小结本文通过凸函数的定义、性质的描述,主要研究其在不等式证明中的应用,举例说明解题思路与证明方法,并且证明了几个常见的重要不等式及高次函数的凸性猜想.函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘函数的图象,而且有助于对函数的定性分析.致谢经过半年的忙碌和工作,本次毕业论文已经接近尾声,在这里首先要感谢我的指导老师柴国庆教授.柴老师平日里工作繁多,但在我做毕业论文的每个阶段,从初次选题到查阅资料,论文初稿的确定和修改,中期检查,后期详细设计等整个过程中都给予了我悉心的指导,还不惜把自己的研究成果让我参考、借鉴,细心地纠正论文中的错误并给予指导.如果没有他的大力支持,此次论文的完成将变得非常困难.除了敬佩柴老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,然后还要感谢大学四年来所有的老师,为我们打下坚实的专业知识的基础.最后祝各位评审老师身体健康,工作顺利!参考文献[1]数学分析上第三版.华东师范大学数学系编.北京.高等教育出版社,2001,148-154.[2]李惜雯.数学分析例题解析及难点注释(上册).西安.西安交通大学出版社,2004.1,265-269.[3]林源渠方企勤.数学分析解题指南.北京.北京大学大学出版社,2003.11.84-87.[4]大学数学名师导学丛书.北京.中国水利水电出版社,2004208-212..[5]花树忠.邯郸市职工大学基础教学部.邯郸,056001.[6]李世杰.衢州市教育局.浙江.衢州,324002.[7]宋小军.西华师范大学数学与信息学院.四川文理学院学报.2010年5期.[8]陈迪红.长沙铁道学院学报.第12卷.第3期.1994年9月.[9]曹良干.阜阳师范学院学报.总22期.[10]陈太道.琼州大学.数学系.临沂师范学院学报第24卷,第3期.[11]李宗铎.湖南教育学院学报长沙大学.第18卷第2期.。
凸函数的性质与应用【文献综述】

文献综述数学与应用数学凸函数的性质与应用凸函数是数学分析中一类非常重要的函数,它不仅在一些具体学科,如机器人学,模具设计或一些数学分支(如全局优化,运筹学等)中具有重要的应用,在具体的数学学科学习中也有重要的应用.我们在华东师范大学数学系编的数学分析书上册的第六章第五节学习了凸函数的有关定义和性质.在该书中对凸函数的定义叙述为:定义1[1] 设f 为定义在区间I 上的函数,若对I 上的任意两点1x ,2x 和任意实数λ∈(0,1)总有: 1212((1))()(1)()f x x f x f x λλλλ+-≤+-,则称f 为I 上的凸函数.几何形状如下图所示:根据凸函数的定义和相关引理,我们可以得出关于二阶可导凸函数的一个重要的充要条件:定理2[1]设f 为区间I 上的二阶可导函数,则在I 上f 为凸函数的充要条件是: 0)(''≥x f ,I x ∈.从凸函数的定义,图像,充要条件上,我们可以看到凸函数有其本身的特殊性和直观性,而这些性质对于证明某些较复杂的不等式,解答高中里的数学题目均有很大的帮助.国内外现状与研究方向:由于凸函数在数学上的广泛应用,国内外越来越多的学者专注于对凸函数各个方面的研究.首先,在凸函数的众多研究课题当中,对其基本定义和性质的研究最为广泛和普遍.研究的主要内容包括凸函数及对其概念的理解,等价定义,判别法,它的线形性[华东师范大学.数学分析上册(第三版)就对凸函数的概念和定义作了详细的说明].除了对凸函数原有性质的研究之外,对其新性质的研究也使研究者们趋之若鹜.目前越来越多的学者专注于凸函数的若干新性质在求解线性与非线性不等式组和线性规划中的应用,寻找求解线性与非线性不等式组的新方法.其次,在对凸函数的定义和性质有了充分研究的前提下,研究者们更加关注对凸函数的应用的研究.例如研究其与不等式证明有关的下凸函数的性质[邱忠文,刘瑞金.函数的凹凸性及不等式的证明;王新奇.利用函数的凹凸性证明一类三角不等式];利用Jenven不等式证明当 n 取任意自然数时该性质的推广;在不等式中的应用[于靖.利用曲线的凹凸性证明柯西不等式];凸函数与极值,导数的一些关系[裴礼文.数学分析中的典型问题与方法;孙本旺,汪浩.数学分析中的典型例题和方法];判断函数极值点与拐点等应用.凸函数在高中数学中的研究也是一大亮点:由于凸函数是一类象形函数,在高中课程中虽然没有明确引入它的定义和概念,但因其性质具有明显的直观性,可以考查学生的观察能力和知识迁移能力,又可考查函数的各种性质,还能使平淡的题目增色,所以近年来已受高考命题人的青睐.初等函数基本都是凸函数,研究凸函数性质的纵向和横向的发散应用[方良秋.高考题中凸函数的题型及应用].最后,随着凸函数的凸性在数学,物理学,经济学,管理学,最优化理论等领域的广泛应用,对凸函数的凸性的进一步研究已成为众多学者密切关注的一个焦点,而由凸集和凸函数拓展延伸而产生的各类凸集和凸函数的不断出现,不仅极大地丰富了凸分析理论,而且有力地推动了数学科学的发展,特别是对数学规划,控制论,最优化等领域的发展起到巨大的作用,也引起了众多学者的密切关注和极大兴趣[钟伟,周彬林.凸函数的几种不同定义及应用].进展情况:一开始时,凸函数的重要作用被认为是在一些具体学科,如机器人学,模具设计或一些数学分支(如全局优化,运筹学等)中的应用.但随着对凸函数横向和纵向研究的逐渐深入,研究者们越来越意识到凸函数是数学分析中的一个重要概念,它涉及了许多数学命题的讨论证明和应用.例如由重庆师范大学罗超群学者所写的《凸函数在分析中的初探》就详细得探讨了凸函数的线形性和凸函数与极值,倒数的一些关系;由中国科学院计算数学与科学工程计算研究所时贞军学者和曲阜师范大学运筹与管理学院岳丽学者所写的《凸函数的若干新性质及应用》则详细讨论凸函数的性质在求解线性与非线性不等式组和线性规划中的应用,为线性与非线性不等式组,线性规划的求解提供了一种新方法;由井冈山职业技术学院的晏忠红学者所写的《凸函数的应用》则对用凸函数方法和凸函数詹生不等式推证几种重要的不等式作出了讨论;由湖南省汨罗市第二中学的刘正良和宋加文老师则在《凸函数理论及应用策略》中描述了凸函数在初高中数学学科中的具体应用.总之,学者们对凸函数各方面的研究是趋之若鹜,使得凸函数在各方面的应用也越来越深入.存在问题:现阶段关于凸函数主要存在三个方面的问题:(1)在一元微积分的教学里,函数的凹凸性的的概念却往往被忽视.在一些工科类的微积分教材中,对于函数的凹凸性的判断甚至就简单地通过比较函数图像和其切线(或割线)的上下位置关系来描述.(2)对二元凸函数的性质研究较少.(3)对于凸函数的定义和基本性质的介绍比较分散,跨度大.参考文献:[1] 华东师范大学. 数学分析上册(第三版)[M]. 北京:高等教育出版社,2006:119-125.[2] 雷澜.凸函数的性质与不等式证明[N].渝州大学学报,2000,17(4):19-21.[3] 裴礼文. 数学分析中的典型问题与方法[M]. 北京: 高等教育出版社, 2006: 186-191.[4] 卢兴江,金蒙伟. 高等数学竞赛教程[M]. 杭州: 浙江大学出版社, 2010: 20-46.[5] 顾荣. 函数凹凸性定义的探讨[J]. 佳木斯教育学院学报,2010, 102(6): 299.[6] 王庆东,侯海军. R n 中函数凹凸性判定的充要条件[J]. 河北理科教学研究, 2003, 3: 50.[7] 张国坤. 多元函数的凹凸性再探[J], 曲靖师专学报. 1995, 14(6): 29-31.[8] 陈朝晖. 二元函数凹凸性的判别法及最值探讨[J]. 高师理科学刊, 2010, 30(5): 25-28.[9] 白景华. 凸函数的性质、等价定义及应用[J]. 开封大学学报, 2003, 17(2), 69-64.[10] 赵文彼, 栗洪敏. 利用函数的凹凸性推导出一批积分不等式[J]. 工科数学, 1994, 10(4):227-229.[11] 王新奇. 利用函数的凹凸性证明一类三角不等式[J]. 西安文理学院学报(自然科学版), 2005,8(3): 37-40.[12] 于靖. 利用曲线的凹凸性证明柯西不等式[J]. 辽宁师专学报, 2003, 5(2): 2-3.[13] 沈文国. 用泰勒公式研究函数凹凸性的一种拓广[J]. 兰州工业高等专科学校学报, 2001,8(4): 4-8.[14] 普丰山, 李兆强. 连续函数的单调性及凸凹性研究[J]. 河南科学, 2009, 27(8): 896-899.[15] 陈传璋. 数学分析[M]. 北京: 高等教育出版社, 1992:203-205.[16] 时贞军. 无约束优化的超记忆梯度算法[J]. 工程数学学报, 2000, 17(2): 99-104.[17] 孙本旺, 汪浩. 数学分析中的典型例题和方法[M]. 长沙: 湖南科学技术出版社, 1983:246-264.[18] 方良秋.高考题中的凸函数题型及其应用[J].数学教学通讯报,2007,271:38-4.[19] 李碧荣.凸函数及其性质在不等式证明中的应用[N].广西师范学院学报,2004,21(2):93-95.[20] 邱忠文, 刘瑞金. 函数的凹凸性及不等式的证明[J]. 工科数学, 1993, 19(3): 151-154.[21] 陈太道.凸函数判定及其应用[N].临沂师范学院学报,2002,24(3):91-92.[22] 古小敏.对凸函数定义之间等价性的进一步研究[J].重庆工商大学学报(自然科学版),2009,26(2):172-182.。
凸函数的性质及其应用

摘要高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。
凸函数的许多良好性质在数学中都有着非常重要的作用。
凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。
同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。
为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。
本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。
关键词:凸函数;不等式;经济学;最优化问题AbstractConvex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines.Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's.The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply.Key words:Convex function;Inequality;Economics;Optimization problem目录摘要 (I)Abstract ......................................................................................................................... I I第1章绪论 (1)第2章预备知识 (3)2.1 凸函数的定义 (3)2.2 凸函数的定理 (6)2.3 凸函数的简单性质 (9)2.4 几种常见的不等式 (10)第3章在数学中的应用 (12)3.1. 初等不等式的证明 (12)3.2 函数不等式的证明 (14)3.3 积分不等式的证明 (15)第4章凸函数在经济学的中应用 (19)4.1 最优化问题 (19)4.1.1 线性规划下的最优化问题 (19)4.1.2 非线性规划下的最优化问题 (21)4.2 Arrow-pratt风险厌恶度量 (26)结论 (28)参考文献 (29)致谢 (30)第1章绪论提起凸函数我们就知道它是一种性质特殊的函数,在初高中阶段我们只是对其性质,及其图像进行了简单的认识。
函数的凸性在高中数学中的应用

( 2 )由题 意 I / )≥ 1 + +b , 即e ≥ ( 。+1 ) +b ,
二
∈R 恒 成 立 . 记g ( x ) =e , 所 以g ( x ) 图像 位 于 直 线 Y =( a +1 ) +b的
上 方.
J e n s e n不 等 式 的 应 用也 就是 凸 函数 的 应 用 . 对 具 体 的 函数 套 用 J e n s e n不 等 式 的结 果 .可 以 证 明 一 些 较 复 杂 的 不 等 式 .这 种 证 明 不 等 式 的 方 法 称 为 J e n s e n不 等 式 法 或 凸 函数 法 . 具 体 应 用 时 。往 往 还 用 到所 选 函 数 的 严 格单调性. 2 . 函数 凸 凹性 在 高 中 数 学 解 题 中 的应 用 凸 凹 性 尽 管 是 高 等 数 学 的 一 个 内容 . 但 在 高 中 数 学 中却 有 着 广 泛 的应 用 , 如能灵活应用 , 可事半功倍. 在 以下 例 题 中 主 要 采 用 凸 凹 函数 性 质 解 题 , 其他方法暂不介绍. 2 . 1函 数 凸 凹性 在 证 明不 等 式 中 的 应 用 证 明 不 等 式 是 高 中数 学 的 一 个 重 点 内 容 . 也 是 难 点 内 容, 但 若 用 函 数 凸 凹性 的 方 法 证 明 不 等 式 , 往 往 会 起 到 奇 妙
边 形 的n 个内 角, 则 有∑ i n 嘶 ≤ . i n
i= 1
…
“
( 3 , 4 ,
( 1 ) 若 对 任 意 ∈, , 有厂 ( ) >0 , 则. ) 在, 上为凸函数 ; ( 2 ) 若 对 任 意 ∈, , 有尸 ( ) <0 , 则f ( x ) 在, 上为凹函数. 定理 2 ( J e n s e n不 等 式 )设 f ( x ) 是定 义 在 区 间 , 上 的一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凸函数理论在解决中学数学极值问题中的应用 -将极值问题转化为凸函数问题求解
例 1 在条件11116x x y y -+++-++≤的约束下,求函数
2(,)sin 4
x y
f x y +=的最大值和最小值。
解:约束条件在xy 平面上构成一个八边形(如图4-1)。
图4-1
先考虑函数2(,)4
x y
g x y +=,由于2x 是一元凸函数,
222
1212[(1)](1)x x x x αααα+-≤+-
而y 是线性函数,所以
21212112222
11221122[(1)][(1)]
[(,)(1)(,)]4
(1)(,)(1)(,)
44
x x y y g x y x y x y x y g x y g x y αααααααααα+-++-+-=
++≤+-=+- 有
(,)185
max (,)max (,)(2,1)4
i i x y D i g x y g x y g ∈≤≤===,
又由于
5,42π<sin x 在,22ππ⎡⎤
-⎢⎥⎣⎦
上单调增,所以 2(,)5
max sin sin .44
x y D x y ∈+= 至于最小值,我们注意到当x 的绝对值越小,y 的值越小,(,)g x y 越小,故
2
1)2,0(),(min ),(-=-=∈g y x g D y x 再由sin x 的单调性,有
(,)1
min (,)sin
2
x y D
f x y ∈=-. 注意,(,)f x y 的极小值点不在八边形的顶点集上。
例2 已知,x y 满足下列不等式
270,43120,230x y x y x y -+≥--≤+-≥
求22(,)f x y x y =+的最大值和最小值。
解:约束条件构成(,)x y 的区域为下图(4-2)中以5
(9,8),(2,),(3,0)2A B C -为
顶点的三
图4-2
角形闭域S .
我们来证明(,)f x y 是S 上的下凸函数。
对于任意的112222(,)(,)M x y M x y 与,
2211(,)(,)x y A x y 22x y ⎡⎤⎢⎥⎣⎦
=22
2
22()0x y +≥ 可知(,)f x y 是S 上的下凸函数。
可得
max{(,)(,)}max{(),(),()}()(9,8)145f x y x y S f A f B f C f A f ∈==== 为求min{()}f M M S ∈,
首先注意到,对于M S ∈表示点M 到坐标原点的距离,故
}S OH ∈==
=
从而得
9min{(,)(,)}5
f x y x y S ∈=。