高中数学函数最值的求解方法

高中数学函数最值的求解方法
高中数学函数最值的求解方法

函数最值的解法及其在生活中的应用

(渭南师范学院 数学与信息科学学院 数学与应用数学专业 11级2班)

摘要:函数最值问题是现在高中数学课程中的重要组成部分,也是高考考查的重要内容之一,在高考中占有比较重要的地位.但由于最值问题综合性较强.解法比较灵活.所以对各方面知识及选择何种解题方法方面都有较高的要求.本文主要对函数最值问题进行研究,探讨各种不同的求解方法,阐述函数最值问题研究的重要性,得到求解函数最值的几种方法及求解时应注意的一些问题.

关键词:函数;最值;解法

1绪论

函数是高中数学的主体内容,贯穿于整个高中阶段,而函数最值问题是函

数的重要内容之一.解决函数最值问题就是实现未知向已知、新问题向旧问题以及复杂问题向简单问题的转化的过程,虽然解决问题的具体方法不完全相同,但就其思维模式来说,一般是将待解决的问题进行一次次的转化,直至划为一类很容易解决或已解决的问题,从而获得原问题的解答.

函数最值问题是一类特殊的数学问题,它在生产、科学研究和日常生活中

有着广泛的应用,而且在中学数学教学中也占据着比较重要的位置,是近几年数学竞赛中的常见题型也是历年高考重点考查的知识点之一.由于其综合性强,解法灵活,因此解决这类问题,要掌握各数学分支知识,并能综合运用各种所学知识技巧,选择合适的解题方法.

1.1函数最值的定义:

一般地,函数的最值分为最小值和最大值:设函数()y f x =的定义域为T ,

T x ∈0,且在0x 处的函数值是()0f x

如果对于定义域T 内任意x ,不等式()()0f x f x ≥都成立,那么()0f x 叫做

函数()y f x =的最小值,记作()min 0y f x =;

如果对于定义域T 内任意x ,不等式()()0f x f x ≤都成立,那么()0f x 叫做

函数()y f x =的最大值,记作()max 0y f x =.

函数的最值一般有两种特殊情况:

(1)如果函数0()f x 在[,]a b 上单调增加(减少), 则()f a 是()f x 在[,]a b 上的最小值(最大值),()f b 是()f x 在[,]a b 上的最大值(最小值).

(2)如果连续函数0()f x 在区间(,)a b 内有且仅有一个极大(小)值,而没有极小(大)值,则此极大(小)值就是函数在区间[,]a b 上的最大(小)值.

2函数最值的求解方法探究

中学数学的最值知识是进一步学习高等数学中最值问题的基础,因此最值问题历来是各类考试的热点。利用中学数学知识解决最值问题方法很多,如定义法、导数法、配方法、消元法、数形结合法、以及不等式的证明等等,选择合适的方法才能让问题迎刃而解.

2.1定义法

利用定义解决函数最值的相关问题时,其重要的一点就是要把握定义的内涵,准确地加以应用! 需要注意的是: 函数一定有值域,但不一定有最值.

例1设函数()x f 的定义域为R ,下列命题中正确的是:

(1)若存在常数P ,使得对任意R x ∈,有 ()P x f ≥,则P 是函数()x f 的最小值;

(2)若存在R x ∈0,使得对任意的R x ∈,有()()0x f x f ≥,则()0x f 是函数()x f 的最小值;

(3)若存在R x ∈0,使得对任意的R x ∈,且0x x ≠有()()0x f x f >,则()0x f 是函数()x f 的最小值;

解析 根据函数最小值的定义知,(1)是假命题: 虽然满足最小值定义中的任意性,但不满足存在性,故错误(2)(3)正确: 实质上,它们是等价命题,都满

足最值定义中的两个条件

2.2导数法

例2 求函数5156)(23+-+=x x x x f 在[]3,6-的最值.

解 ∵5156)(23+-+=x x x x f ,

∴15123)('2-+=x x x f

令15123)('2-+=x x x f =3)5)(1(+-x x =0

解得 5,121-==x x

()856=-f ,()1055=-f ,()31-=f ,()413=f

可知

()()3-11055-==极小值极大值,f f

比较得

()()3,105min max -==x f x f

故函数5156)(23+-+=x x x x f 在闭区间[]3,6-上的最大值是105,最小值是-3.

2.3单调性法

闭区间上可导函数的最值来源于区间端点的函数值和函数在这个区间上的极值,而极值又来源于0)('=x f 的根处的函数值.所以建议求可导函数在闭区间

[a,b]上的最值可分以下两步步骤进行:

1.求函数的导数;

2.求函数在[a,b]内令0)('=x f 的x 的值(称之为”驻点”);

3.判断驻点左右两侧)('x f 的正负,以此判断函数曲线的走向(0)('>x f 为上升,0)('

极小值;

4.如果函数驻点较多,分段讨论,并可以列表、画图表达;

5.求最大值,将所有极大值和函数定义域区间端点的函数值一起比较,取最大的,则为最大值.最小值亦然。

2.4 判别式法

对于某些特殊形式的函数的最值问题,经过适当变形后,使函数()f x 出现在一个有实根的一元二次方程的系数中,然后利用一元二次方程有实根的充要条件0?≥来求出()f x 的最值.

例3

2.5 配方法

如果给定函数是二次函数或变形后可转化为二次函数的问题,一般可用此法求解.

例3 求2()234x x f x +=-在区间[1,0]-内的最值.

解:配方得2224()2343(2)33

x x x f x +=-=--+ , 因为[1,0]x ∈-,所以1212x ≤≤,从而当223x =即22log 3

x =,()f x 取得最大值43

;当21x =即0x =时()f x 取得最小值1. 2.5 消元法

在求多元函数最值的条件中#若能由条件中的多元关系解出某些变量,则可考虑通过代入消元法#把多元函数问题转化为一元函数来解决,以达到简化的目的!

例4 已知x y x 3222=+,求x y x u -+=222的最大值

解:由已知得()

x x y 32122+-= ①

30,032≤≤∴≥+-x x x

将①代入x y x u -+=222化为一元函数,再用配方法即可求得。

2.6 数形结合求最值

数形结合法是一种重要的解题方法#其核心就是利用函数的几何意义把函数的最值问题转化为几何问题来解决!此法直观性较强#易于理解#有一定的灵活性且常有化难为易的神奇效果。

例5 已知直线03=+-y x ,求函数22)1(y x S ++=+22)1(y x +-的最值.

解 此题的几何意义是在直线03=+-y x 上求一点M ,使得M 到点)0,1(-,)0,1(的距离之和最小.(如下图3—1)

设:点B A ,的坐标分别为)0,1(-,)0,1(,直线l 的方程为03=+-y x .由几何光学原理知当点光源从A 射出后,经镜面l 反射到点B ,这时NB BM AM =+就是所求的最小值.

设点B 关于光线l 的对称点为),(11y x N ,于是

min S =NB BM AM =+,由 ???????=+---=?+-0322111101111y x x y

化简得 ???=+-=++0

5011111y x y x

解得 2,311=-=y x

所以 min S N B B M A M =+= =22)02()13(-+-- =52 图3— 1

2.7 换元法求最值

换元变换是一种重要的数学变换#在数学中有着广泛的应用!正确而灵活地运用换元法可使问题化繁为简,化难为易。

例6 设1222=++y xy x ,求22y x +的最值.

解 θcos r x =,θsin r y = (θ为参数),则

)sin sin cos (cos 22222θθθθ++=++r y xy x =12)2sin 2

11(2=+θr . 从而 )sin (cos 22222θθ+=+r y x =θ2sin 2

11122+=r . 因-112sin ≤≤θ,

当12sin =θ(即2==y x )时,故8)(min 22=+y x ;

当12sin -=θ(即32==y x )时,故24)(max 22=+y x .

2.8 最值不等式的证明

定理 设c bx ax x m m x f +++=2)((N m m a ∈>>,1,0)若非负整数k 满足:

(1) ,0)]2([log 2=-+-+++k b ak c bk ak m (2) ,2-∈++Z c bk ak

那么有

(I)满足条件(1)的k 值是唯一的;

(II)当k x =时,的最小值为c bk ak

k m m k f x f +++==2)()(min . 例7 证明 62223≥++x x ,(R x ∈).

证 令x x '=+3,那么 )(222296322x f x x x x x '=+=++'-'

'+,

这里

.9,6,1,2=-===c b a m 由条件(1)可得0)26(l

o g 9622=--++-k k k k

∵-∈Z k ,若方程0)26(log 9622=--++-k k k k 有解,必须满足)(226Z p k p ∈=-,

由此可知k 的取值只能是1,2.经过验证只有2=k 是方程0)26(l o g 9622=--++-k k k k 的解,且-∈=+?-=++Z c k ak 19262622,满足条件(2),故由结论(II),可得

622)2()(9262

2min 2=+=='+?-f x f , 即 62223≥++x x ,成立.

注 文中定理利用高等数学知识可推广为:

定理 设c bx ax x m m x f +++=2)((0,1>>a m ),若存在常数k 满足

0)]2([log 2=-+-+++k b ak c bk ak m

那么c bk ak k m m k f x f +++==2)()(min .

3求解函数最值时应注意的一些问题

3.1注意定义域

求最值问题的时候,在求解的过程当中,要注意观察定义域的变化情况,首先看到题目的时候,应该先把确定函数的定义域;在解题过程中,当函数变形时应注意定义域是否发生改变,如果引入新变量也应该确定新变量的取值范围,以免在后面的求解过程中出现错误;在解题结束时,必须检验所求得的使函数取得最值的自变量是否包含在定义域的范围内

例 求函数12

x y x -=-的最值.

错解:将12

x y x -=-两边同时平方并去分母得2222(41)410y x y x y --+-=. 因为x R ?,所以2222(41)4(41)0y y y D=---?,化简得241y £. 所以1122y -#,故min 12y =-,max 12

y =. 分析:这个答案致错原因是两边平方及去分母,使函数的定义域扩大了. 正解:将12

x y x -=-两边平方并去分母,得2222(41)410y x y x y --+-=. 因为x R ?,所以2222(41)4(41)0y y y D=---?,化简得241y £. 所以1122

y -#,注意到原函数的定义域是1x £,则有10x -?,20x -<,于是必有0y £.

所以102y -#,故min 12

y =-,max 0y =. 3.2注意值域

求函数的最值,不但对几种基本初等函数的值域要非常熟悉,而且在解题过程中还要注意函数取值范围的变化.

参考文献

[1[1]方晓华,吴凤香,黄宝存.函数最问题的解法探讨.金华职业技术学院学报,2002,2(2).

[2]潘玉晓.关于函数最值问题的探讨[J].南阳师范学院学报,2005(9).

[3]戴宝尔,李杏莲.初等方法求解函数最值问题[J].科技资讯,2008(20).

[4]戚雪敏.浅谈求函数最值问题的方法[J].2011(11)]

[5]人民教育出版社中学教学室.数学第三册必修I[M].北京:人民教育出版社,2006: 50-51.

[6]袁亚湘,孙文瑜.最优化理论与方案第5次[M].北京:科学出版社,2005:45-47.

[7]陈传理,张同君.数学建模教程第二版[M].北京:高等教育出版社,2005:149.

[8]周汉良.数学规划及其实用[M].超星数字图书馆,1995:56-60.

[9]人民教育出版社中学教学室.数学第三册必修I[M].北京:人民教育出版社,2006: 50.

[7]董国阳.关于求函数最值问题的探讨[J].2011(11).

[13]张维进.一类指数函数最小值的初等求法[J]. 电子学报,1999,(2).

Discussion on the function most value in the application of life

Yang Jing

(Weinan Teachers University , Shanxi Weinan)

Abstract: Application of mathematics is an important task in the teaching of mathematics. This paper will through the definition of the value function and the method of solving the most value, the value of the function and system, which is an important and basic properties and functions, which made people realize the function most value question has a close relationship with the actual the problem. Finally, the value function can use the knowledge, to solve the problems in real life.

Firstly, the value function and the value function of the definition of related theory. And given the value function and the relationship between the (lower) bound; secondly, gives some methods to solve the value function (such as the value of the derivative of general method, elimination method, combination method, substitution method, and to prove inequality etc.); and then

use these some of the problems in real life (for example, to solve the minimum cost maximum profit, the fastest speed, etc.) and the life of some of the most value of some phenomenon; the last is a summary of the value function of the actual life played a certain effect of the value function, and then the further development and research of the positive role.

This paper relates to the application can be divided into the following several points:

1 the value of application in real life;

2 the value of the application in Economics

Keywords: most value; application.

高中数学函数最值问题的常见求解方法

一、配方法 例1:当01≤≤-x 时,求函数x x y 4322 ?-=+的最大值和最小值. 解析:34)3 22(32 + --=x y ,当01≤≤-x 时,122 1≤≤x .显然由二次函数的性质可得1min =y ,3 4max = y . 二、判别式法 对于所求的最值问题,如果能将已知函数式经适当的代数变形转化为一元二次方程有无实根的问题,则常可利用判别式求得函数的最值. 例2:已知012442 2 =-++-x x xy y ,求y 的最值. 解析:由已知,变形得0)1()12(242 2 =-+--y x y x ,R x ∈,则0≥?,即有 0)1(16)12(422≥---y y 故 4 5≤ y . 因此 4 5 max = y ,无最小值. 例3:若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则m ax x = min y = 解析:由已知,变形得:0)()12(2 2 =++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(22≥+--x x x ,于是018≥+-x ,即 81≤ x .即 8 1max =x . 同理,0)()12(2 2 =-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(22≥--+y y y ,于是018≥+y ,即 81-≥y .即 8 1 min -=y . 注意:关于x 、y 的有交叉项的二元二次方程,通常用此法 例4:已知函数1 1 3452 2+++=x x x y ,求y 的最值. 解析:函数式变形为:0)1(34)5(2 =-+--y y x y ,R x ∈,由已知得05≠-y , 0)1)(5(4)34(2≥----=?∴y y ,即:0762≤--y y ,即:71≤≤-y . 因此 7max =y ,1min -=y . 例5:已知函数)(1 2R x x b ax y ∈++=的值域为]4,1[-,求常数b a , 解析: 01 2 22 =-+-?+=+?++= b y ax yx b ax y yx x b ax y

高中数学函数解题技巧方法总结(高考)

高中数学函数知识点总结 1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()()(答:,,,)022334Y Y 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域 函数y =arcsinx 的定义域是 [-1, 1] ,值域是 ,函数y =arccosx 的定义域是 [-1, 1] , 值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R , 值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? [] 的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [] (答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。 例 若函数)(x f y =的定义域为?? ? ???2,21,则)(log 2x f 的定义域为 。 分析:由函数)(x f y =的定义域为?? ? ???2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。 解:依题意知: 2log 2 1 2≤≤x 解之,得 42≤≤x ∴ )(log 2x f 的定义域为{} 42|≤≤x x

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R; (2)二次函数2 y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a﹤0时,值域244ac b B y y a ??-??=≤?????? 。(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。(二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+,(1)求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。(四)课堂练习: 1.用区间表示下列集合: {}{}{}{} 4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或2.已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3.课本P 19练习2。

高中数学:导数与函数的极值、最值练习

高中数学:导数与函数的极值、最值练习 (时间:30分钟) 1.函数f(x)=ln x-x在区间(0,e]上的最大值为( B ) (A)1-e (B)-1 (C)-e (D)0 解析:因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时, f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1. 2.(豫南九校第二次质量考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( C ) (A)4 (B)2或6 (C)2 (D)6 解析:因为f(x)=x(x-c)2, 所以f′(x)=3x2-4cx+c2, 又f(x)=x(x-c)2在x=2处有极小值, 所以f′(2)=12-8c+c2=0,解得c=2或6, c=2时,f(x)=x(x-c)2在x=2处有极小值; c=6时,f(x)=x(x-c)2在x=2处有极大值; 所以c=2. 3.函数f(x)=3x2+ln x-2x的极值点的个数是( A ) (A)0 (B)1 (C)2 (D)无数 解析:函数定义域为(0,+∞),且f′(x)=6x+-2=,不妨设g(x)=6x2-2x+1. 由于x>0,令g(x)=6x2-2x+1=0,则Δ=-20<0, 所以g(x)>0恒成立,故f′(x)>0恒成立, 即f(x)在定义域上单调递增,无极值点. 4.(银川模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a的值等于( D ) (A)4 (B)3 (C)2 (D)1 解析:由题意知,当x∈(0,2)时,f(x)的最大值为-1. 令f′(x)=-a=0,得x=,

高中数学函数常用函数图形及其基本性质

高中数学函数常用函数图形及其基本性质 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见函数性质汇总 常数函数f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴) 的直线 一次函数f (x )=kx +b (k ≠0,b ∈R)|k|越大,图象越陡;|k|越小,图象越平缓; 图象及其性质:直线型图象。b=0;k>0;k<0 定义域:R 值域:R 单调性:当k>0时,当k<0时 奇偶性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反函数:有反函数。K=±1、b=0的时候 周期性:无 补充:一次函数与其它函数之间的lianxi 1、与一元一次函数之间的联系 2、与曲线函数的联合运用 反比例函数f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第 一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定义域:),0()0,(+∞-∞ 值域:),0()0,(+∞-∞ 单调性:当k>0时;当k<0时 奇偶性:奇函数反函数:原函数本身周期性:无 x y b O f (x )=b x y O f (x )=kx +b x y O f (x )=x k

补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个— —⑴直接带入,李永二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图)f (x )= d cx b ax ++(c ≠0且d ≠0) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为,顶点坐标为 ②当0>a 时,开口向上,有最低点当00时,函数图象与x 轴有两个交点();当<0时,函数图象与x 轴有一个交点();当=0时,函数图象与x 轴没有交点。 ④)0()(2≠++=a c bx ax x f 关系)0()(2≠=a ax x f 定义域:R 值域:当0>a 时,值域为();当0a 时;当0

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

高中数学函数最值问题的常见求解方法

高中数学函数最值问题的常见求解方法 一、配方法 例1.当01≤≤-x 时,求函数x x y 4322?-=+的最大值和最小值. 解析:3 4)322(32 + - -=x y ,当01≤≤-x 时, 12 2 1≤≤x .可得1min =y ,3 4max = y . 二、判别式法:若能将问题转化为一元二次方程有无实根的问题,则常利用判别式求得函数的最值. 例2.若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则max x = , min y = . 解析:由已知,变形得:0)()12(22=++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(2 2≥+--x x x ,于是018≥+-x ,即 8 1≤ x .即 8 1max = x . 同理,0)()12(22=-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(2 2 ≥--+y y y ,于是018≥+y ,即 8 1- ≥y .即 8 1min - =y . 例3.在2 0π ≤ ≤x 条件下,求2 ) sin 1()sin 1(sin x x x y +-= 的最大值. 解:设x t sin =,因0(∈x ,)2 π,故 10≤≤t ,则2 ) 1()1(t t t y +-= ,即 0)12()1(2 =+-++y t y t y 因为 10≤≤t ,故01≠+y ,于是0)1(4)12(2 ≥+--=?y y y 即 8 1≤ y 。 将8 1= y 代入方程得 0[3 1∈= t ,]1,所以8 1max = y . 注意:因0≥?仅为方程0)12()1(2 =+-++y t y t y 有实根0[∈t ,]1的必要条件,因此,必须 将8 1= y 代入方程中检验,看等号是否可取. 练习:已知函数)(1 2 R x x b ax y ∈++=的值域为]4,1[-,求常数b a ,.(答案: 3=b ,4±=a ) 三、换元法 (一)局部换元法 例4.求函数x x y 21-+=的最值. 解析:设x t 21-= (0≥t ),则由原式得11)1(2 12 ≤+-- =t y 当且仅当1=t 即0=x 时取 等号.故1max =y ,无最小值. 例5.已知20≤ ≤a ,求函数))(cos (sin a x a x y ++=的最值. 解析:2)cos (sin cos sin a x x a x x y +++= 令t x x =+cos sin 则 22≤ ≤- t 且2 1cos sin 2 -= t x x ,于是]1)[(2 12 2-++= a a t y 当2= t 时,21 22 max + + =a a y ;当a t -=时,)1(2 1 2 min -= a y . 注意:若函数含有x x cos sin 和x x cos sin +,可考虑用换元法解. (二)三角代换法(有时也称参数方程法) 例6.已知x 、y R ∈,4122≤+≤y x .求22y xy x u ++=的最值. 解析:设θcos t x =,θsin t y =,(t 为参数),因 4122≤+≤y x ,故 412≤≤t )2sin 2 11()sin sin cos (cos 2 2 2 2 θθθθθ+ =++=∴t t u 故当42=t 且12sin =θ时,6max =u ;当12=t 且12sin -=θ时,2 1max =u . 练习1:实数x 、y 适合:545422=+-y xy x ,设22y x S +=,则 max 1S +min 1S =____。 练习2:已知x 、y R ∈且x y x 6232 2=+,求y x +的最值. 解析:化x y x 6232 2=+为123)1(2 2 =+-y x ,得参数方程为?? ? ??=+=θθsin 26 cos 1y x )sin(2 101sin 26cos 1?θθθ++ =+ +=+∴y x , 故 2 101)(max +=+y x ,2 101)(min - =+y x . (三)均值换元法 例7.已知1=+b a ,求证:4 4b a +的最小值为 8 1. 解析:由于本题中a 、b 的取值范围为一切实数,故不能用三角换元,但根据其和为1,我们可

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

高中数学阶段常见函数性质汇总

高中阶段常见函数性质汇总 函 数 名 称:常数函数 解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 定 义 域:R 值 域:{b} 单 调 性:没有单调性 奇 偶 性:均为偶函数[当b =0时,函数既是奇函数又是偶函数] 反 函 数:无反函数 周 期 性:无周期性 函 数 名 称:一次函数 解析式 形 式:f (x )=kx +b (k ≠0,b ∈R) 图象及其性质:直线型图象。|k|越大,图象越陡;|k|越小,图象越平缓; 当b =0时,函数f (x )的图象过原点; 当b =0且k =1时,函数f (x )的图象为一、三象限角平分线; 当b =0且k =-1时,函数f (x )的图象为二、四象限角平分线; 定 义 域:R 值 域:R 单 调 性:当k>0时,函数f (x )为R 上的增函数; 当k<0时,函数f (x )为R 上的减函数; 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数。[特殊地,当k =-1或b =0且k =1时,函数f (x )的反函数为原函数f (x )本身] 周 期 性:无 函 数 名 称:反比例函数 解析式 形 式:f (x )= x k (k ≠0) 图象及其性质:图象分为两部分,均不与坐标轴相交,当k>0时,函数f (x )的 图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 图象成中心对称图形,对称中心为原点; 图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ; 定 义 域:),0()0,(+∞-∞Y 值 域:),0()0,(+∞-∞Y 单 调 性:当k>0时,函数f (x )为)0,(-∞和),0(+∞上的减函数; 当k<0时,函数f (x )为)0,(-∞和),0(+∞上的增 函数; 奇 偶 性:奇函数 反 函 数:原函数本身 b

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于α αααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道 )cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ

高一数学必修一函数的最值问题试题(1)

函数的最值问题(高一) 一.填空题: 1. ()35,[3,6]f x x x =+∈的最大值是 。1 ()f x x =,[]1,3x ∈的最小值是 。 2. 函数y =的最小值是 ,最大值是 3.函数21 2810y x x =-+的最大值是 ,此时x = 4.函数[]23 ,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3 ,2,1y x x x =-∈--的最小值是 ,最大值是 6.函数y=2-x -21 +x 的最小值是 。y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 . 8.函数()2 1f x x =-在[2,6]上的最大值是 最小值是 。 9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值 11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。 12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值 13.函数f (x )=)1(11x x --的最大值是 22225 1x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是 15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是 16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是 17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为: 18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是 19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。 二、解答题 20.已知二次函数 在 上有最大值4,求实数 a 的值。 21.已知二次函数 在 上有最大值2,求a 的值。 []2,3-∈x 12)(2++=ax x a x f []1,0∈x a ax x x f -++-=12)(2

高一数学函数的最值

第八课时 函数的最值 【学习导航】 知识网络 学习要求 1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域. 自学评价 1.函数最值的定义: 一般地,设函数()y f x =的定义域为A . 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =; 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =; 2.单调性与最值: 设函数()y f x =的定义域为[],a b , 若()y f x =是增函数,则max y = ()f a ,min y = ()f b ; 若()y f x =是减函数,则max y = ()f b ,min y = ()f a . 【精典范例】 一.根据函数图像写单调区间和最值: 例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.

【解】 由图可以知道: 当 1.5x =-时,该函数取得最小值2-; 当3x =时,函数取得最大值为3; 函数的单调递增区间有2个:( 1.5,3)-和(5,6); 该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7) 二.求函数最值: 例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x = ,[]1,3x ∈. 【解】 (1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; []1,3x ∈上是单调减函数,所以当3x =时函数1()f x x =取得1. 函数()4(0)f x x mx m =-+>在(,0]-∞上的最小值(A ) ()A 4 ()B 4- ()C 与m 的取值有关 ()D 不存在 2. 函数()f x =的最小值是 0 ,最大值是 32 . 3. 求下列函数的最值:

高中数学函数知识点归纳及常考题型

《函数》知识要点和基本方法 1.映射定义:设非空集合A,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射。若集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 可建立n m 个映射。 2.函数定义:函数就是定义在非空数集A,B 上的映射f 。此时称数集A 为函数f(x)的定义域,集合C={f(x)|x ∈A}为值域,且C ?B 。 3.定义域、对应法则和值域构成了函数的三要素。 相同函数的判断方法:①定义域、值域;②对应法则。(两点必须同时具备) 4.求函数的定义域常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义;⑥正切函数角的终边不在y 轴上。 5.函数解析式的求法:①配凑法; ②换元法: ③待定系数法; ④赋值法;⑤消元法等。 6.函数值域的求法:①配方法;②分离常数法;③逆求法;④换元法;⑤判别式法;⑥单调性法等。 7.函数单调性及证明方法: 如果对于定义域内某个区间上的任意..两个自变量的值x 1,x 2,当x 1f(x 2)),那么就说f(x)在这个区间上是增函数(或减函数)。 第一步:设x 1、x 2是给定区间内的两个任意的值,且x 1

相关文档
最新文档