矩阵的运算教案

矩阵的运算教案
矩阵的运算教案

9.2 矩阵的运算

一、新课引入:

小王、小李在两次数学考试中答对题数如下表表示: 题型 答题 姓 数 名 期中

期末 填空题 选择题 解答题 填空题 选择题 解答题 小王 10

3

2

8

4

4 小李

9 5 3 7 3

3

填空题每题4分,选择题4分,解答题每题10分; 1、观察:

2、思考(1):如何用矩阵表示他们的答对题数?他们期中、期末的成绩? 思考(2):如果期中占40%,期末占60%,求两同学的总评成绩;

3、讨论:今天如何通过矩阵运算来研究上述问题?

二、新课讲授 1、矩阵的加法

(1)引入:记期中成绩答题数为A ,期末答题数为B ,则:

???? ??=3592310A ???

?

??=337448B

确定两次考试的小王,小李的各题型答题总数的矩阵C

???

? ??=+=68166718B A C

(2)矩阵的和(差):

当两个矩阵A B 、的维数相同时,将它们各位置上的元素加(减)所得到的矩阵称为矩阵A B 、的和(差),记作:()A B A B +-。 (3)运算律:

加法运算律:A B B A +=+;

加法结合律:()()A B C A B C ++=++。

2、矩阵的数乘

(1)引入:计算小王、小李各题型平均答题数的矩阵:

()9 3.531

8432A B ??+= ???

(2)矩阵与实数的积:

设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数α的乘

积矩阵,记作:A α。 (3)运算律:(R γλ∈、)

分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==。

3、例题举隅 例2、已知????

??=????

??-=1683,5231B A ,求B A + 例3、已知?

??

? ??=????

??-=3-74-3,1564B A ,求B A - 例4、某公司有三家分厂一月份的水费、电费和燃料费如表所示(单位:元),现在公司限

定各分厂的水费、电费、燃料费都至少要节约20%,用矩阵表示这三家分厂各项费用的限定额

例5、给出二元一次方程组???=+=+2

221

11c y b x a c y b x a 存在唯一解的条件

4、矩阵的乘法

(1)引入:总评成绩如何计算 (2)矩阵的乘积:

一般,设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵,如果矩阵C 中第

i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵

叫做A 与B 的乘积,记作:C AB =。 (3)运算律:

分配律:AC AB C B A +=+)(;CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==;()()BC A C AB =。

注意:(1)交换律不成立,即:BA AB ≠;

(2)只有当矩阵A 的列数与矩阵B 的行数相等时,矩阵之积才有意义。

5、例题举隅 例

6、已知???

?

??=????

??=2-01412,751-3B A ,求AB

例7、已知???

?

??=????

??=21,0110B A ,求AB 例8、今有赵强、钱明、孙军、李宾、周皓等5位同学,他们的某学科实践成绩、平时测验

成绩和期终统考成绩(单位:分)分别列于下表:

学生姓名 实践成绩 平时测验成绩

期终统考成绩

赵强 70 75 80 钱明 80 75 70 孙军 70 80 60 李宾 60 70 80 周皓

80

90

90

如果计算该学科总评乘积时,实践成绩、平时测验乘积和期终统考乘积分别占总评成绩的30%、20%和50%,求各学生的总评成绩。 例9、计算:

(1)???? ??-???? ??13321221;(2)????

?????? ??-12211332;(3)???? ?

?-?????

??011211724543; (4)????? ?????? ??-724543011211;(5)?

????

?????? ??-122645243011211。

答案:(1)???? ??--5718;(2) ?

???

??-7514;(3)?

???

?

??--4591019617; (4)????

??-022212;(5) ???

?

??--402101212。 注意:(1)、(2)结果不同;(3)、(4)结果不同,说明矩阵乘法交换律不成立。

5、巩固练习

课后练习9.2(1)(2)

三、课堂小结

1.矩阵的加减法及其运算律

2.矩阵的数乘及其运算律

3.矩阵的乘法及其运算律

四、作业布置 同步练习9.2A B

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

苏教版高中数学高二选修4-2 矩阵乘法的概念

选修4-2矩阵与变换 2.3.1 矩阵乘法的概念 编写人: 编号:008 学习目标 1、 熟练掌握二阶矩阵与二阶矩阵的乘法。 2、 理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵,从几何变换的角度来看,它表 示的是原来两个矩阵对应的连续两次变换。 学习过程: 一、预习: (一)阅读教材,解决下列问题: 问题:如果我们对一个平面向量连续实施两次几何变换,结果会是怎样?举例说明。 归纳1:矩阵乘法法则: 归纳2:矩阵乘法的几何意义: (二)初等变换:在数学中,一一对应的平面几何变换都可看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵。 练习 、.?? ??????????10110110=( ) A 、???? ??1110 B 、??????1011 C 、? ? ? ???0111 D 、??????0110 、已知矩阵X 、M 、N,若M =?? ? ???--1111, N =??????--3322,则下列X 中不满足:XM=N ,的一个 是( ) A 、X =???? ??--2120 B 、X =??????--1211 C 、X =??????--3031 D 、X =? ? ? ???-3053

二、课堂训练: 例1.(1)已知A= 11 22 11 22 ?? ? ? ? ? ?? ,B= 11 22 11 22 ?? - ? ? ? - ? ?? ,计算AB (2)已知A= 10 02 ?? ? ?? ,B= 14 23 ?? ? - ?? ,计算AB,BA (3)已知A= 10 00 ?? ? ?? ,B= 10 01 ?? ? ?? ,C= 10 02 ?? ? ?? 计算AB,AC 例2、已知梯形ABCD,其中A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于x轴的反射变换,再将所得图形绕原点逆时针旋转0 90 (1)求连续两次变换所对应的变换矩阵M (2)求点A,B,C,D在 M T作用下所得到的结果 (3)在平面直角坐标系内画出两次变换对应的几何图形,并验证(2)中的结论。

求矩阵的基本运算

求矩阵的基本运算 #include #include void jiafa() { int m,n; float a[20][20],b[20][20],c[20][20]; int i,j; printf("请输入矩阵行数:"); scanf("%d",&m); printf("请输入矩阵列数:"); scanf("%d",&n); printf("请输入第一个矩阵:"); for(i=0; i

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

矩阵的定义及其运算规则 (2)

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且 它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此

都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)表示矩阵A及B的和,则有: m ×n 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: (1)k(A+B)=kA+kB (2)(k+h)A=kA+hA (3)k(hA)=khA

MATLAB矩阵运算基础练习题

第2章 MATLAB 矩阵运算基础 2.1 在MA TLAB 中如何建立矩阵?? ?? ??194375,并将其赋予变量a ? 2.2 请产生一个100*5的矩阵,矩阵的每一行都是[1 2 3 4 5] 2.3产生一个1x10的随机矩阵,大小位于(-5 5) 2.2 有几种建立矩阵的方法?各有什么优点? 可以用四种方法建立矩阵: ①直接输入法,如a=[2 5 7 3],优点是输入方法方便简捷; ②通过M 文件建立矩阵,该方法适用于建立尺寸较大的矩阵,并且易于修改; ③由函数建立,如y=sin(x),可以由MATLAB 的内部函数建立一些特殊矩阵; ④通过数据文件建立,该方法可以调用由其他软件产生数据。 2.3 在进行算术运算时,数组运算和矩阵运算各有什么要求? 进行数组运算的两个数组必须有相同的尺寸。进行矩阵运算的两个矩阵必须满足矩阵运算规则,如矩阵a 与b 相乘(a*b )时必须满足a 的列数等于b 的行数。 2.4 数组运算和矩阵运算的运算符有什么区别? 在加、减运算时数组运算与矩阵运算的运算符相同,乘、除和乘方运算时,在矩阵运算的运算符前加一个点即为数组运算,如a*b 为矩阵乘,a.*b 为数组乘。 2.5 计算矩阵??????????897473535与???? ??????638976242之和,差,积,左除和右除。 2.6 求?? ?? ??+-+-+-+-++=i 44i 93i 49i 67i 23i 57i 41i 72i 53i 84x 的共轭转置。 2.7 计算???? ??=572396a 与??????=864142b 的数组乘积。 2.8 “左除”与“右除”有什么区别? 在通常情况下,左除x=a\b 是a*x=b 的解,右除x=b/a 是x*a=b 的解,一般情况下,a\b ≠b/a 。 2.9 对于B AX =,如果??????????=753467294A ,???? ??????=282637B ,求解X 。 2.10 已知:???? ??????=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。 2.11 ??????-=463521a ,?? ????-=263478b ,观察a 与b 之间的六种关系运算的结果。

苏教版数学高二选修4-2矩阵与变换学案第09课时 逆矩阵的概念

第09课时 逆矩阵的概念 一、要点讲解 1.二阶逆矩阵的概念: 2.逆矩阵的求法: 二、知识梳理 1.对于二阶矩阵,若有______________________,则称A 是可逆的,B 称为A 的逆矩阵. 2.在六种变换中,__________变换一定不存在逆矩阵. 3.一般地,对于二阶可逆矩阵(0)a b A ad bc d c =-≠?????? ,它的逆矩阵为1A -=________________. 4.若二阶矩阵A 、B 均可逆,则AB 也可逆,且(AB )-1=____________. 5.已知A 、B 、C 为二阶矩阵,且AB = AC ,若矩阵A 存在逆矩阵,则___________. 三、例题讲解 例1. 对于下列给出的变换矩阵A ,是否存在变换矩阵B ,使得连续进行两次变换(先T A 后 T B )的结果与恒等变换的结果相同? (1)以x 为反射轴的反射变换; (2)绕原点逆时针旋转60o作旋转变换; (3)横坐标不变,沿y 轴方向将纵坐标拉伸为原来的2倍作伸压变换; (4)沿y 轴方向,向x 轴作投影变换; (5)纵坐标y 不变,横坐标依纵坐标的比例增加,且满足(x ,y )→(x + 2y ,y ). 例2. 用几何变换的观点判断下列矩阵是否存在逆矩阵,若存在,请求出逆矩阵;若不存在, 请说明理由. (1)0110??????=A ; (2)11210??????????=B ; (3)0110??-????=C ; (4)1010?????? =D ; 例3. 求矩阵3221??? ???=A 的逆矩阵. 四、巩固练习 1. 已知矩阵122301,,231210??????? ?????--??????===B C A ,求满足AXB = C 的矩阵X .

矩阵论课程教学大纲

《矩阵论》课程教学大纲 一、课程基本信息 课程编号: xxxxx 课程中文名称:矩阵论 课程英文名称:Matrix Theory 课程性质:学位课 考核方式:考试 开课专业:工科各专业 开课学期:1 总学时:36学时 总学分: 2学分 二、课程目的和任务 矩阵论是线性代数的后继课程。在线性代数的基础上,进一步介绍线性空间与线性变换、欧氏空间与酉空间以及在此空间上的线性变换,深刻地揭示有限维空间上的线性变换的本质与思想。为了拓展高等数学的分析领域,通过引入向量范数和矩阵范数在有限维空间上构建了矩阵分析理论。 从应用的角度,矩阵代数是数值分析的重要基础,矩阵分析是研究线性动力系统的重要工具。为了矩阵理论的实用性,对于矩阵代数与分析的计算问题,利用Matlab计算软件实现快捷的计算分析。 三、教学基本要求(含素质教育与创新能力培养的要求) 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。 本课程还要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 四、教学内容与学时分配 (一) 线性空间与线性变换 8学时 1. 理解线性空间的概念,掌握基变换与坐标变换的公式;

2. 掌握子空间与维数定理,了解线性空间同构的含义; 3. 理解线性变换的概念,掌握线性变换的矩阵表示。 (二) 内积空间 6学时 1. 理解内积空间的概念,掌握正交基及子空间的正交关系; 2. 了解内积空间的同构的含义,掌握判断正交变换的方法; 3. 理解酉空间的概念,会判定一个空间是否为酉空间 4. 掌握酉空间与实内积空间的异同; 5. 掌握正规矩阵的概念及判定定理和性质。 (三) 矩阵的对角化与若当标准形 6学时 1. 掌握矩阵相似对角化的判别方法; 2. 理解埃尔米特二次型的含义; 3. 会求史密斯标准形; 4. 会求若当标准型。 (四) 矩阵分解4学时 1. 会求矩阵的三角分解和UR分解; 2. 会求矩阵的满秩分解和单纯矩阵的谱分解; 3. 了解矩阵的奇异值和极分解。 (五) 向量与矩阵的重要数字特征4学时 1. 理解向量范数、矩阵范数; 2. 有限维线性空间上向量范数的等价性; 3. 向量范数与矩阵范数的相容性。 (六) 矩阵分析 4学时 1. 理解向量和矩阵的极限的概念; 2. 掌握矩阵幂级数收敛的判定方法; 3. 理解矩阵的克罗内克积; 4. 会求矩阵的微分与积分。 (七) 矩阵函数 4学时 1. 理解矩阵多项式的概念; 2. 掌握由解析函数确定的矩阵函数; 3. 掌握矩阵函数的计算方法。 五、教学方法及手段(含现代化教学手段) 本课程的所有授课内容,均使用多媒体教学方式,教案采用PowerPoint编写,教师使

矩阵的运算及其运算规则

矩阵的运算及其运算规则 一、矩阵的加法与减法 1、运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 2、运算性质(假设运算都是可行的) 满足交换律和结合律 交换律; 结合律. 二、矩阵与数的乘法 1、运算规则

数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 2、运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 典型例题 例6.5.1已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 三、矩阵与矩阵的乘法 1、运算规则

设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 典型例题 例6.5.2设矩阵 计算 解是的矩阵.设它为 想一想:设列矩阵,行矩阵,和的行数和列数分别是多少呢 是3×3的矩阵,是1×1的矩阵,即只有一个元素. 课堂练习

1、设,,求. 2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B 或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算. 3、设列矩阵,行矩阵,求和,比较两个计算结果,能得出什么结论吗? 4、设三阶方阵,三阶单位阵为,试求和,并将计算结果与A比较,看有什么样的结论. 解: 第1题 . 第2题 对于

Matlab常用函数数组及矩阵的基本运算

实验一 Matlab 常用函数、数组及矩阵的基本运算 一、 实验目的 1. 了解Matlab7.0软件工作界面结构和基本操作; 2. 掌握矩阵的表示方法及Matlab 常用函数; 3. 掌握数组及矩阵的基本运算. 二、 实验内容 1. 了解命令窗口(command widow)和变量空间(workspace)的作用,掌握清 除命令窗口(clc )和变量空间(clear)的方法.掌握查询函数(help)的方法. 2. 掌握保存和加载变量的方法. 加载变量:load 变量名. 3. 掌握掌握矩阵的表示方法: 给a,b,c 赋如下数据: ]6,46,23,4,2,6,3,8,0,1[,356838241248 7,278744125431-=??????????--=??????????=c b a 4. 求a+b,a*b,a.*b,a/b,a./b,a^2,a.^2的结果. 5. 将str1=electronic; str2 = information; str3 = engineering; 三个字符串连接 在一起成str = electronic information engineering. 6. 求矩阵a 的逆矩阵a -1,行列式计算。 (inv(a),det(a)) 三、 实验要求 1.上机操作,熟练掌握清除命令窗口和变量空间的方法、查询变量的方法、加载变量的方法。 2.第2道题请写出步骤。 3.对实验内容中第3-6项,写出指令,上机运行. 记录运行结果(数据)。 4.写出实验报告。 四、 实验结果 2. 用save 函数,可以将工作空间的变量保存成txt 文件或mat 文件等. 比如: save peng.mat p j 就是将工作空间中的p 和j 变量保存在peng.mat 中. 用load 函数,可以将数据读入到matlab 的工作空间中. 比如:load peng.mat 就是将peng.mat 中的所有变量读入matlab 工作空间中。

42矩阵教案

§2.1.1矩阵的概念 教学目标: 知识与技能:1.掌握矩阵的概念以及基本组成的含义(行、列、元素) 2.掌握零矩阵、行矩阵、列矩阵、矩阵相等的概念. 3.尝试将矩阵与生活中的问题联系起来, 用矩阵表示丰富的问题, 体会矩阵的现实意义. 过程与方法: 从具体的实例开始,通过具体的实例让学生认识到,某些几何变换可以用矩阵来表示,丰富学生对矩阵几何意义的理解,并引导学生用映射的观点来认识矩阵、解线性方程组 情感、态度与价值观: 体会代数与几何的有机结合,突出数形结合的重要思想 教学重点:矩阵的概念以及基本组成的含义 教学难点:矩阵的概念以及基本组成的含义 教学过程: 一、问题情境: 设O (0, 0),P (2, 3),则向量OP → (2, 3),将OP →的坐标排成一列,并简记为???? ?? 2 3 2 (1)某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下: (2)某牛仔裤商店经销A 、B 、C 、D 、E 五种不同牌子的牛仔裤,其腰围大小分别有28英寸、30英寸、32英寸、34英寸四种,在一个星期内,该商店的销售情况可用下列矩阵形式表示: A B C D E 28英寸 1 3 0 1 2 30英寸 5 8 6 1 2 32英寸 2 3 5 6 0 34英寸 0 1 1 0 3 3.图——矩阵 2 3 2 3 ???? ??80 90 86 88

二、建构数学 矩阵: 记号:A ,B ,C ,…或(a ij ) (其中i,j 分别元素a ij 所在的行和列) 要素:行——列——元素 矩阵相等行列数目相等并且对应元素相等。 特别:(1)2×1矩阵,2× 2矩阵(二阶矩阵),2×3矩阵 (2)零矩阵 (3)行矩阵:[a 11,a 12] 列矩阵:???? ?? a 11 a 21 ,一般用,等表示。 (4)行向量与列向量 三、教学运用 例1、用矩阵表示图中的△ABC , 其中A(-1 , 0) , B(0 , 2) , C(2 , 0) . 思考: 如果用矩阵M=00??? 12 3 2 40? ?? 表示平面中的图形, 那么该图形有什么几何特征? 例2、某种水果的产地为A 1 , A 2 , 销地为B 1 , B 2 , 请用矩阵表示产地A i 运到销 地B j 的水果数量(a ij ), 其中i=1 , 2 , j=1 , 2 . 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 A B C 0 3 1 3 0 0 1 0 2

matlab中的矩阵的基本运算命令

1.1 矩阵的表示 1.2 矩阵运算 1.2.14 特殊运算 1.矩阵对角线元素的抽取 函数diag 格式X = diag(v,k) %以向量v的元素作为矩阵X的第k条对角线元素,当k=0时,v为X的主对角线;当k>0时,v为上方第k条对角线;当k<0时,v为下方第k条对角线。 X = diag(v) %以v为主对角线元素,其余元素为0构成X。 v = diag(X,k) %抽取X的第k条对角线元素构成向量v。k=0:抽取主对角线元素;k>0:抽取上方第k条对角线元素;k<0抽取下方第k条对角线元素。 v = diag(X) %抽取主对角线元素构成向量v。 2.上三角阵和下三角阵的抽取 函数tril %取下三角部分 格式L = tril(X) %抽取X的主对角线的下三角部分构成矩阵L L = tril(X,k) %抽取X的第k条对角线的下三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。函数triu %取上三角部分 格式U = triu(X) %抽取X的主对角线的上三角部分构成矩阵U U = triu(X,k) %抽取X的第k条对角线的上三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。3.矩阵的变维 矩阵的变维有两种方法,即用“:”和函数“reshape”,前者主要针对2个已知维数矩阵之间的变维操作;而后者是对于一个矩阵的操作。 (1)“:”变维 (2)Reshape函数变维 格式 B = reshape(A,m,n) %返回以矩阵A的元素构成的m×n矩阵B B = reshape(A,m,n,p,…) %将矩阵A变维为m×n×p×… B = reshape(A,[m n p…]) %同上 B = reshape(A,siz) %由siz决定变维的大小,元素个数与A中元素个数 相同。 (5)复制和平铺矩阵 函数repmat 格式 B = repmat(A,m,n) %将矩阵A复制m×n块,即B由m×n块A平铺而成。 B = repmat(A,[m n]) %与上面一致 B = repmat(A,[m n p…]) %B由m×n×p×…个A块平铺而成 repmat(A,m,n) %当A是一个数a时,该命令产生一个全由a组成的m×n矩阵。 1.3 矩阵分解 1.3.1 Cholesky分解 函数chol 格式R = chol(X) %如果X为n阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足R'*R = X;若X非正定,则产生错误信息。 [R,p] = chol(X) %不产生任何错误信息,若X为正定阵,则p=0,R与上相同;若X非正定,则p为正整数,R是有序的上三角阵。 1.3.2 LU分解

苏教版数学高二选修4-2矩阵与变换学案第01课时 矩阵的概念

第01课时 矩阵的概念 一、要点讲解 1.矩阵的概念: 2.矩阵的相等: 二、知识梳理 1.在数学中,将形如13?????? ,80908688??????,23324m ????-??这样的__________________称做矩阵._____________________________________叫做矩阵的行,______________________ ________________叫做矩阵的列.通常称具有i 行j 列的矩阵为i ×j 矩阵. 2.__________________称为零矩阵;______________________称为行矩阵;____________ _______________称为列矩阵. 3.平面上向量α = (x ,y )的坐标和平面上的点P (x ,y )看作行矩阵可记为________,看作列矩阵可记为_________. 4.当两个矩阵A ,B ,只有当A ,B 的_______________________,并且____________________也分别相等时,才有A = B . 三、例题讲解 例1. 用矩阵表示△ABC ,其中A (-1,0),B (0,2),C (2,0). 例2. 设31,422x y A B z ????==????--???? ,若A = B ,求x ,y ,z . 例3. 已知n 阶矩阵11221 21247712j n j n i i i j in n n n j nn a a a a A a a a a a a a a ????????=???????????? ,其中每行、每列都是等差数列,ij a 表示位于第i 行第j 列的数. (1)写出45a 的值; (2) 写出ij a 的计算公式. 四、巩固练习 1. 画出矩阵143111-????-?? 所表示的三角形,并求该三角形的面积.

高等代数张禾瑞版教案第章矩阵

第五章矩阵教学目的: 1.掌握矩阵的加法,乘法及数与矩阵的乘法运算法则。及其基本性质,并熟练地对矩阵进行运算。 2.了解几种特殊矩阵的性质。 教学内容: 5.1矩阵的运算 1矩阵相等 我们将在一个数域上来讨论。令F是一个数域。用F的元素a ij作成的一个m行n列矩阵 叫做 (a ij 一个 F (a+b)A=Aa+Ba; a(bA)=(ab)A; 这里A,B和C表示任意m*n矩阵,而a和b表示F中的任意数。 利用负矩阵,我们如下定义矩阵的减法: A—B=A+(—B)。 于是有 A+B=C?A=C—B。 由于数列是矩阵的特例,以上运算规律对于数列也成立。 4乘法

定义3数域F 上的m*n 矩阵A=(a ij )与n*p 矩阵B=(b ij )的乘积AB 指的是这样的一个m*p 矩阵。这个矩阵的第I 行第j 列(I=1,2,…,m;j=1,2,…p )的元素c ij 等于A 的第I 行的元素与B 的第j 列的对应元素的乘积的和: c ij =a i1b 1j +a i2b 2j+…+a in b nj 。 注意,两个矩阵只有当第一个矩阵的列数等于第二个矩阵的行数时才能相乘。 我们看一个例子: =??? ? ???-+?+-?-?-+?+??+?-+-?-?+?-+?0)2(11)3(3)5()2(2113001)1()3(2)5(02)1(12 =???? ??--81570. 5 矩阵乘法的运算规律: B np 和B nm A nn 那么u il 因此(1)l (2)111l k k ===由于双重求和符号可以交换次序,所以(1)和(2)的又端相等.这就证明了结合律. 我们知道,数1乘任何数a 仍得a.对距阵的乘法来说,存在这样的距阵,他们有类似于数1的性质. 我们把主对角线上(从左上角到右下角的对角线)上的元素都是1,而其它元素都是0的n 阶正距阵 1 0 0 01 0 ………… 001 叫做n 阶单位距阵,记作I n ,有时简记作I. I n 显然有以下性质: I n A np =A np ;A mn I n =A mn . 距阵的乘法和加法满足分配律:

矩阵的基本运算

矩阵的基本运算 (摘自:华东师范大学数学系;https://www.360docs.net/doc/4812595487.html,/)§3.1 加和减 §3.2矩阵乘法 §3.2.1 矩阵的普通乘法 §3.2.2 矩阵的Kronecker乘法 §3.3 矩阵除法 §3.4矩阵乘方 §3.5 矩阵的超越函数 §3.6数组运算 §3.6.1数组的加和减 §3.6.2数组的乘和除 §3.6.3 数组乘方 §3.7 矩阵函数 §3.7.1三角分解 §3.7.2正交变换 §3.7.3奇异值分解 §3.7.4 特征值分解 §3.7.5秩 §3.1 加和减

如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如: A= B= 1 2 3 1 4 7 4 5 6 2 5 8 7 8 0 3 6 0 C =A+B返回: C = 2 6 10 6 10 14 10 14 0 如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如: x= -1 y=x-1= -2 0 -1 2 1 §3.2矩阵乘法 Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍. §3.2.1 矩阵的普通乘法 矩阵乘法用“ * ”符号表示,当A矩阵列数与B矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同. 如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B, 结果为 C=×==

即Matlab返回: C = 19 22 43 50 如果A或B是标量,则A*B返回标量A(或B)乘上矩阵B(或A)的每一个元素所得的矩阵. §3.2.2 矩阵的Kronecker乘法 对n×m阶矩阵A和p×q阶矩阵B,A和B的Kronecher乘法运算可定义为: 由上面的式子可以看出,Kronecker乘积A B表示矩阵A的所有元素与 B之间的乘积组合而成的较大的矩阵,B A则完全类似.A B和B A均为np ×mq矩阵,但一般情况下A B B A.和普通矩阵的乘法不同,Kronecker乘 法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker乘法的Matlab命令为C=kron(A,B),例如给定两个矩阵A和B: A= B= 则由以下命令可以求出A和B的Kronecker乘积C: A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B) C = 1 3 2 2 6 4 2 4 6 4 8 12 3 9 6 4 12 8

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

矩阵乘法的概念

矩阵乘法的概念 The latest revision on November 22, 2020

2006-2007后塍高中高二下学期数学教案(矩阵乘法的概念) 命题人:瞿蕴雅 教学目标: 1.熟练掌握二阶矩阵与二阶矩阵的乘法。 2.理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵,从几何变换的角度来看,它表示的是原来两个矩阵的连续两次变换。 教学重点: 矩阵乘法的概念。 教学过程: 一、问题情境 问题:如果我们对一个平面向量连续实施两次几何变换,结果会是怎样 二、建构数学 1.矩阵乘法法则: 2.矩阵乘法的几何意义: 3.初等变换:在数学中,一一对应的平面几何变换都可看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵。 三、数学应用 1.例题 例1:(1)已知A= 11 22 11 22 ?? ? ? ? ? ?? ,B= 11 22 11 22 ?? - ? ? ? - ? ?? ,计算AB (2)已知A= 10 02 ?? ? ?? ,B= 14 23 ?? ? - ?? ,计算AB,BA (3)已知A= 10 00 ?? ? ?? ,B= 10 01 ?? ? ?? ,C= 10 02 ?? ? ?? 计算AB,AC 例2:已知梯形ABCD,其中A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于x 轴的反射变换,再将所得图形绕原点逆时针旋转0 90 (1)求连续两次变换所对应的变换矩阵M

(2)求点A,B,C,D在 M T作用下所得到的结果 (3)在平面直角坐标系内画出两次变换对应的几何图形,并验证(2)中的结论。 例3: 已知A= cos sin sin cos αα αα - ?? ? ?? ,B= cos sin sin cos ββ ββ - ?? ? ?? ,试求AB,并对其几何意 义给予解释。 2.课堂练习 P46 1,2 四、回顾小结 1. 二阶矩阵乘法运算法则 2. 二阶矩阵乘法的几何意义 五、课外作业 同步导学

矩阵的基本运算法则

矩阵的基本运算法则 1、矩阵的加法 矩阵加法满足下列运算规律(设A 、B 、C 都是m n ?矩阵,其中m 和n 均为已知的正整数): (1)交换律:+=+A B B A (2)结合律:()()++++A B C =A B C 注意:只有当两个矩阵为同型矩阵(两个矩阵的行数和列数分别相等)时,这两个矩阵才能进行加法运算。 2、数与矩阵相乘 数乘矩阵满足下列运算规律(设A 、B 是m n ?矩阵,λ和μ为数): (1)结合律:()λμλμ=A A (2)分配律:()λμλμ+=+A A A (3)分配律:()λλλ+=+A B A B 注意:矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算。 3、矩阵与矩阵相乘 矩阵与矩阵的乘法不满足交换律、但是满足结合律和分配率(假设运算都是可行的): (1)交换律:≠AB BA (不满足) (2)结合律:()()=AB C A BC (3)结合律:()()()λλλλ==其中为数AB A B A B (4)分配律:()(),+=++=+A B C AB AC B C A BA CA 4、矩阵的转置 矩阵的转置满足下述运算规律(假设运算都是可行的,符号()T g 表示转置): (1)()T T =A A

(2)()T T T +=+A B A B (3)()T T λλ=A A (4)()T T T =AB B A 5、方阵的行列式 由A 确定A 这个运算满足下述运算法则(设A 、B 是n 阶方阵,λ为数): (1)T =A A (2)n λλ=A A (3)=AB A B 6、共轭矩阵 共轭矩阵满足下述运算法则(设A 、B 是复矩阵,λ为复数,且运算都是可行的): (1)+=+A B A B (2)λλ=A A (3)=AB AB 7、逆矩阵 方阵的逆矩阵满足下述运算规律: (1)若A 可逆,则1-A 亦可逆,且()11--=A A (2)若A 可逆,数0λ≠,则λA 可逆,且()111 λλ--=A A (3)若A 、B 为同阶矩阵且均可逆,则AB 亦可逆,且()111---=AB B A 参考文献: 【1】线性代数(第五版),同济大学

matlab中矩阵基本运算命令.docx

1.1矩阵的表示 1.2矩阵运算 1.2.14特殊运算 1.矩阵对角线元素的抽取 函数diag 格式X = diag(v,k)% 以向量 v 的元素作为矩阵 X 的第 k 条对角线元素,当 k=0 时, v 为 X 的主对角线;当 k>0 时,v 为上方第 k 条对角线;当 k<0 时, v 为下方第 k 条对角线。 X = diag(v)% 以 v 为主对角线元素,其余元素为 0 构成 X。 v = diag(X,k)%抽取 X 的第 k 条对角线元素构成向量 v。k=0:抽取主对角线元素; k>0 :抽取上方第 k 条对角线元素;k<0 抽取下方第 k 条对角线元素。 v = diag(X)% 抽取主对角线元素构成向量 v。 2.上三角阵和下三角阵的抽取 函数tril% 取下三角部分 格式L = tril(X)%抽取 X 的主对角线的下三角部分构成矩阵L L = tril(X,k)% 抽取 X 的第 k 条对角线的下三角部分; k=0 为主对角线; k>0 为主对角线以上; k<0 为主对角线以下。 函数triu% 取上三角部分 格式U = triu(X)%抽取 X 的主对角线的上三角部分构成矩阵U U = triu(X,k)% 抽取 X 的第 k 条对角线的上三角部分; k=0 为主对角线; k>0 为主对角线以上; k<0 为主对角线以下。3.矩阵的变维 矩阵的变维有两种方法,即用“:”和函数“reshape,”前者主要针对 2 个已知维数矩阵之间的变维操作;而后者是对 于一个矩阵的操作。 (1)“:”变维 (2)Reshape 函数变维 格式 B = reshape(A,m,n)%返回以矩阵 A 的元素构成的 m×n 矩阵 B B = reshape(A,m,n,p,)% 将矩阵 A 变维为 m×n×p× B = reshape(A,[m n p])%同上 B = reshape(A,siz)% 由 siz 决定变维的大小,元素个数与 A 中元素个数 相同。 (5)复制和平铺矩阵 函数repmat 格式 B = repmat(A,m,n)% 将矩阵 A 复制 m×n 块,即 B 由 m×n 块 A 平铺而成。 B = repmat(A,[m n])%与上面一致 B = repmat(A,[m n p]) %B 由 m×n×p× 个 A 块平铺而成 repmat(A,m,n)%当 A 是一个数 a 时,该命令产生一个全由 a 组成的 m×n 矩阵。 1.3矩阵分解 1.3.1Cholesky 分解 函数chol 格式R = chol(X)% 如果 X 为 n 阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足 R'*R = X ;若 X 非正定,则产生错误信息。 [R,p] = chol(X)% 不产生任何错误信息,若X 为正定阵,则p=0 ,R 与上相同;若X 非正定,则p 为正整数, R 是有序的上三角阵。 1.3.2 LU 分解

矩阵及其运算教学要求理解矩阵的定义掌握矩阵的基本律

§1 矩阵及其运算 教学要求:理解矩阵的定义、掌握矩阵的基本律、掌握几类特殊矩阵(比如零矩阵,单位矩阵,对称矩阵和反对称矩阵 ) 的定义与性质、注意矩阵运算与通常数的运算异同。能熟练正确地进行矩阵的计算。 知识要点: 一、矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组 成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标 都是正整数,他们表示该元素在矩阵中的位置。比如,或 表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全 为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵 ,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对角线。若一个阶方阵

的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: 。如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上) 三角矩阵,例如,是一个阶下三角矩阵,而则是 一个阶上三角矩阵。今后我们用表示数域上的矩阵构成的集合,而用 或者表示数域上的阶方阵构成的集合。 二、矩阵的运算 1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比 如说),则定义它们的和仍为与它们同型的矩阵(即), 的元素为和对应元素的和,即:。 给定矩阵,我们定义其负矩阵为:。这样我们可以定义同型矩阵 的减法为:。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律: ( 1)交换律:; ( 2)结合律:; ( 3)存在零元:;

相关文档
最新文档