七年级上学期数学综合练习题

合集下载

人教版七年级上册数学 第一章 有理数 数轴 综合练习题

人教版七年级上册数学  第一章   有理数   数轴   综合练习题

人教版七年级上册数学第一章有理数数轴综合练习题1.如图,在数轴上有A、B两点(点B在点A的右边),点C是数轴上不与A、B两点重合的一个动点,点M、N分别是线段AC、BC的中点.(1)如果点A表示﹣2,点B表示8,则线段AB=;(2)如果点A表示数a,点B表示数b:①点C在线段AB上运动时,求线段MN的长度(用含a和b的代数式表示);②点C在直线AB上运动时,请你猜想线段MN的长度与a和b的数量关系并说明理由.2.如图①,点C在线段AB上,若BC=2AC或AC=2BC,则称点C是线段AB的“雅点”,线段AC、BC称作互为“雅点”伴侣线段.(1)若点C为图①中线段AB的“雅点”AC=6(AC<BC),则AB=;(2)若点D也是图①中线段AB的“雅点”(不同于点C),则AC BD;(填“=”或“≠”)如图②,数轴上有一点E表示的数为1,向右平移5个单位到达点F;(3)若M、N两点都在线段OF上,且M,N均为线段OF的“雅点”,求线段MN的长;(4)图②中,若点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G所表示的数.3.已知数轴上A,B,C三点分别表示有理数6,﹣8,x.(1)求线段AB的长.(2)求线段AB的中点D在数轴上表示的数.(3)在(2)的条件下,已知CD=8,求x的值.4.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?5.已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P到A的距离是点P 到B的距离的3倍时,我们就称点P是关于A→B的“好点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)①若点P运动到原点O时,此时点P 关于A→B的“好点”(填是或者不是);②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“好点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.7.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.(1)在图1的数轴上,AC=个长度单位;数轴上的一个长度单位对应刻度尺上的cm;(2)求数轴上点B所对应的数b;(3)在图1的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.6.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江东大道上营运,共连续运载十批乘客.若规定向东为正,向西为负.沈师傅营运十批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣7,+8,+4,﹣9,﹣4,+3,﹣3.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2)上午8:00~9:15沈师傅开车的平均速度是多少?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?8.在数轴上有两点A,B,并且A,B表示的数a,b分别是﹣6,18.现在P,Q都从A点出发往B点停止,已知P点速度是4个单位长度/秒,Q点速度6个单位长度/秒,已知P出发1秒后,Q才出发.(1)若M点与Q点同时从A点出发,且M点速度是8个单位长度/秒,M出发追上P后再返回与Q相遇就停止,它一共走了多远?(2)在整个过程中,P,Q两点在Q点出发后多久相距一个单位长度?9.对于数轴上的点A,B,C,D,点M,N分别是线段AB,CD的中点,若MN=(AB+CD),则将e的值称为线段AB,CD的相对离散度.特别地,当点M,N重合时,规定e=0.设数轴上点O表示的数为0,点T表示的数为2.(1)若数轴上点E,F,G,H表示的数分别是﹣3,﹣1,3,5,则线段EF,OT的相对离散度是,线段FG,EH的相对离散度是;(3)数轴上点P,Q都在点O的右侧(其中点P,Q不重合),点R是线段PQ的中点,设线段OP,OT的相对离散度为e1,线段OQ,OT的相对离散度为e2,当e1=e2时,直接写出点R所表示的数r的取值范围.10.定义:数轴上的三点,如果其中一个点与近点距离是它与远点距离的,则称该点是其他两个点的“倍分点”.例如数轴上点A,B,C所表示的数分别为﹣1,0,2,满足AB=BC,此时点B是点A,C的“倍分点”.已知点A,B,C,M,N在数轴上所表示的数如图所示.(1)A,B,C三点中,点是点M,N的“倍分点”;(2)若数轴上点M是点D,A的“倍分点”,则点D对应的数有个,分别是;(3)若数轴上点N是点P,M的“倍分点”,且点P在点N的右侧,求此时点P表示的数.11.如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?12.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请直接写出原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点C表示数3,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d的值.13.出租车司机刘师傅某天上午从A地出发,在东西方向的公路上行驶营运,下表是每次行驶的里程(单位:千米)(规定向东走为正,向西走为负;×表示空载,〇表示载有乘客,且乘客都不相同).次数 1 2 3 4 5 6 7 8里程﹣3 ﹣15 +19 ﹣1 +5 ﹣12 ﹣6 +12载客×〇〇×〇〇〇〇(1)刘师傅走完第8次里程后,他在A地的什么方向?离A地有多少千米?(2)已知出租车每千米耗油约0.06升,刘师傅开始营运前油箱里有7升油,若少于2升,则需要加油,请通过计算说明刘师傅这天上午中途是否可以不加油.(3)已知载客时2千米以内收费10元,超过2千米后每千米收费1.6元,问刘师傅这天上午走完8次里程后的营业额为多少元?14.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.(2)A,B两点间的距离是个单位,线段AB中点表示的数是.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A 出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.15.数轴上点A,B,M分别对应数a,b,m,其中a<0,b>0.(1)若a=﹣3,b=7,则线段AB的中点对应的数是;(直接填结果)(2)若m=3,b>3,且AM=2BM,请在数轴上画出点A,B,M,并求a+2b+2011的值.16.2020年初以来,新冠病毒突发,为了将新鲜蔬菜运送到疫情最为严重的武汉,货车司机分工协作,组成货运车队,每一辆货车负责一条道路沿线的蔬菜投放,若以出发点为原点,向东为正,向西为负,下面是其中一辆车一天的行驶情况(单位:千米):+12,﹣4,+6,﹣10,+9,﹣8,+7,﹣15,+5,﹣9.(1)他送到最后一个投放点时,相对出发的地方,他在什么位置?(2)若大货车耗油量为0.12升/千米.这天上午,大货车共耗油多少升?17.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.18.某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,油箱中有10升油摩托车能否最后返回岗亭?19.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.例如数轴上点A,B,C表示的数分别是1,4,5,此时点B 是点A,C的“倍分点”.(1)当点A表示数﹣2,点B表示数2时,下列各数,0,1,4是点A、B的“倍分点”的是;(2)当点A表示数﹣10,点B表示数30时,P为数轴上一个动点,①若点P是点A,B的“倍分点”,求此时点P表示的数;②若点P,A,B中,有一个点恰好是其它两个点的“倍分点”,直接写出此时点P表示的数.20.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC的长=;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.当点B与C重合时,点B与点C在数轴上表示的数是多少?(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左匀速运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为多少?。

广东东莞某校2024-2025学年七年级上学期9月月考数学试题(解析版)

广东东莞某校2024-2025学年七年级上学期9月月考数学试题(解析版)

2024年秋七年级数学9月份综合练习(时间:120分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 计算:(2)3−+的结果是()A. 5−B. 1−C. 1D. 5【答案】C【解析】【分析】直接利用有理数的加法运算法则计算得出答案.【详解】解:(2)31.故选:C.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.2. 计算24−−的结果是()A. 6−B. 2−C. 2D. 6【答案】A【解析】【分析】根据有理数的减法法则计算即可【详解】解:-2-4=-(2+4)=-6故选:A【点睛】本题考查了有理数的减法,熟练掌握法则是解题的关键3. 一个有理数的倒数是它本身,这个数是()A. 0B. 1C. 1−D. 1或1−【答案】D【解析】【分析】本题考查了倒数,根据倒数的定义:乘积是1的两个数互为倒数,即可求解,掌握倒数的定义是解题的关键.【详解】解:一个数的倒数是它本身,这个数是1或1−,故选:D.4. 计算:2×|﹣3|=()A. 6B. ﹣6C. ±6D. ﹣1【答案】A【分析】根据有理数的乘法法则和绝对值的性质解答.【详解】解:2×|﹣3|=2×3=6.故选A .【点睛】一个负数绝对值是它的相反数.两数相乘,同号得正,异号得负,并把绝对值相乘. 5. 若ab <0,则a b 的值( ) A. 是正数B. 是负数C. 是非正数D. 是非负数 【答案】B【解析】【详解】 ab <0, 0a b ∴<.选B.6. 下列计算正确的是( )A. 443(3)−=−B. 21(7)77 −×−=C. 5151777+−+=−D. 20232024(1)(1)0−+−=【答案】D【解析】【分析】本题考查了有理数的运算,解题的关键是掌握有理数的相关运算法则.根据有理数得到加法法则、有理数的乘法和有理数的乘方,逐一判断即可.【详解】解:A 、443(3)−≠−,故选项A 不符合题意;B 、21(7)497177 −=−××−=− ,故选项B 不符合题意; C 、515147777−+−+==−,故选项C 不符合题意; D 、20232024(1)(1)110−+−=−+=,故选项D 符合题意;故选:D .7. 如图,数轴的单位长度是1,若点B 表示的数是1,则点A 表示的数是( )A. 1−B. 2−C. 3−D. 4−【答案】D的【分析】本题主要考查了数轴上两点之间的距离,用数轴上的点表示有理数,直接利用数轴结合A ,B 点位置进而得出答案.【详解】解:∵数轴的单位长度为1,点B 表示的数是1,∴点A 表示的数是:154−=−,故D 正确.故选:D .8. -10相反数是( ).A. 10B. -10C. 110− D. 110【答案】A【解析】【分析】根据相反数的定义即可求解.【详解】-10的相反数是10故选A .【点睛】此题主要考查相反数的求解,解题的关键是熟知a 的相反数为-a .9. 已知120x y −+−=,且()222m x y =+,则m 的值为( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题考查了绝对值的非负性,有理数的乘方等知识,先利用绝对值的非负性求出1x =,2y =,然后代入计算即可. 【详解】解:∵120x y −+−=,∴10x −=,20y −=,∴1x =,2y =,∴()222m x y =+()22212=×+8=,故选:C .的10. 定义一种新的运算:2a b a b a +=☆,如22122+×==2☆1,则(2☆3)☆1=( ) A. 52 B. 32 C. 94 D. 198【答案】B【解析】【分析】根据新定义先算2☆3=2232+×=4,再算4☆1即可. 【详解】解:(2☆3)☆1=2232+×☆1=4☆1=4214+×=32 故选B. 【点睛】本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合运算正确计算是关键.二、填空题(本大题5小题,每小题3分,共15分)11. 小东用天平秤得一个核桃的质量为15.47g ,用四舍五入法将15.47精确到0.1的近似值为_________;【答案】15.5【解析】【分析】根据四舍五入的法则处理.【详解】解:15.4715.5≈,故答案为:15.5【点睛】本题考查四舍五入取近似值;理解四舍五入的法则是解题的关键.12. 若12368000 1.236810n =×,则n =__.【答案】7【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为10n a ×的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.【详解】∵712368000 1.236810 1.236810n ×==×,∴7n =.故答案为:7.13. 已知a ,b 互为相反数,则a b +=______.【答案】0【解析】【分析】本题主要考查了相反数的定义,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:∵a ,b 互为相反数,∴0a b +=,故答案为:0.14. 若7x =,则x =__.【答案】7±【解析】 【分析】本题主要考查了绝对值的性质,根据若()0x a a =>,则x a =±的性质判断即可,解答本题的关键是掌握绝对值的性质. 【详解】∵7x =,∴7x =±,故答案:7±.15. 已知3210a b −+−=,则a b +的值为______. 【答案】53【解析】【分析】根据绝对值非负性的性质可知320−=a ,10b −=,求出a 、b 的值代入即可得出答案 【详解】 3210a b −+−=320a ∴−=,10b −=23a ∴=,1b = 25133a b ∴+=+= 故答案为:53. 【点睛】本题考查了非负数的性质:有限个非负数的和为零,则每一个加数都为零.三、解答题(一)(本大题3小题,每小题7分,共21分)(1)()()()11786−−+−−−;(2)21133838 −−−+−. 【答案】(1)20−(2)12【解析】【分析】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.(1)根据有理数的加减混合运算法则求解即可;(2)根据有理数的加减混合运算法则求解即可.【小问1详解】()()()11786−−+−−−1886=−−+266=−+20=−;【小问2详解】21133838 −−−+− 21133388 =+−+− 112=− 12=. 17. 将下列有理数填入适当的集合中:2.5−,154,0,8, 2.7−,0.8,32−,74,0.0105−. 正有理数集合:负有理数集合:整数集合:【答案】见解析【分析】本题考查了有理数的分类;根据正有理数,负有理数和整数的定义进行分类即可. 【详解】解:正有理数集合:154,8,0.8,74; 负有理数集合: 2.5−, 2.7−,32−,0.0105−; 整数集合:0,8.18. 化简符号:(1)173−−; (2)233−+; (3)-(-3);(4)-(+9).【答案】(1)173−(2)233− (3)3 (4)-9【解析】【分析】(1)(2(3)(4)直接根据相反数的意义得出答案.小问1详解】 解:173−−=173−; 【小问2详解】 解:233−+=233−; 【小问3详解】解:-(-3)=3;【小问4详解】解:-(+9)=-9.【点睛】本题考查了绝对值以及相反数的知识,属于基础题,注意掌握去括号时,若括号前面是“-”则【括号里面各项需变号.四、解答题(二)(本大题3小题,每小题9分,共27分)19. 比较下列两个有理数的大小.(1) 6.26−与254−; (2) 2.7−−和223−+. 【答案】(1)256.264−<−(2) 2.7−−<223 −+【解析】 【分析】本题考查了有理数的大小比较,化简绝对值;(1)根据两个负数比较大小,绝对值大的反而小,可得答案;(2)根据化简各数,再比较大小即可.【小问1详解】 解:因为256.264>, 所以256.264−<−; 【小问2详解】 因为 2.7 2.7−−=−,222233 −+=− ,2.7223>, 所以32.722−−<, 所以 2.7−−<223 −+. 20. 综合与实践某超市以同样的价格购进电风扇20台,由于在不同时间销售,因此销售价格也会变化,若以每台利润50元为标准,超过的金额记为正数,不足的金额记为负数,具体情况如下表: 电风扇(台)5 2 5 3 5 利润相对于标准利润20− 10− 5− 30+ 40+(元)(1)最高售价的一台比最低售价的一台高出多少元?(2)售完这20台电风扇,该超市销售这些电风扇的总利润是多少?请通过计算说明.【答案】(1)最高售价的一台比最低售价的一台高出60元(2)售完这20台电风扇,该超市获得的总利润为1145元【解析】【分析】(1)用最高售价减去最低售价列式计算即可;(2)先求出利润相对于标准利润的和,然后再加上标准利润即可【小问1详解】解:40(20)60−−=(元). 答:最高售价一台比最低售价的一台高出60元.【小问2详解】解:5(20)2(10)5(5)33054020501145×−+×−+×−+×+×+×=(元). 答:售完这20台电风扇,该超市获得的总利润为1145元.【点睛】本题主要考查了正负数的应用、有理数的运算等知识点,认真审题、根据题意正确列式是解答本题的关键.21. 已知a 、b是互为相反数,c 、d 是互为倒数,m 的绝对值等于3.求:m 2+(cd +a +b )m +(cd )2021的值.【答案】7或13【解析】【分析】根据相反数的性质,倒数的性质,绝对值的意义,分别求得,,a b cd m +的值,进而代入式子求解即可【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值等于3,的∴a +b =0,cd =1,|m |=3,当m =-3时,原式=(-3)2+(1+0)×(-3)+12 021=9+1×(-3)+1=9+(-3)+1=7;当m =3时,原式=32+(1+0)×3+12 02193113=++=综上所述,m 2+(cd +a +b )m +(cd )2 020的值为7或13.【点睛】本题考查了相反数的性质,倒数的性质,绝对值的意义,有理数的混合运算,求得,,a b cd m +的值是解题的关键.五、解答题(三)(本大题2小题,第22题13分,第23题14分,共27分)22. 有理数a ,b 在数轴上的位置如图所示:(1)在数轴上表示a −,b −;(2)把a ,b ,0,a −,b −这五个数用“<”连接起来;(3)a __________a ,b ___________b .(填“>”,“<”或“=”) 【答案】(1)见解析;(2)0b a a b −<<<−<;(3)>,=【解析】【分析】本题考查了数轴,绝对值和有理数的大小比较,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.(1)根据已知a ,b 的位置在数轴上把a −,b −表示出来即可;(2)根据数轴上右边的数总比左边的数大比较即可;(3)a 是一个正数,a 是一个负数,比较即可,b 是一个正数,正数的绝对值等于它本身比较即可.【小问1详解】解:在数轴上表示为:【小问2详解】0b a a b −<<<−<;【小问3详解】a a>,b b=,故答案为:>,=.23. 根据绝对值的概念,我们在一些情况下,不需要计算出结果也能把绝对值符号去掉,例如:6767+=+;6776−=−;7676−=−;6767−−=+.请根据以上规律解答:(1)比较大小:150151;(填“>”“<”或“=”)(2)填空:1110099−=________(3)计算:112−+1132−+1143−++1110099−.【答案】(1)>(2)11 99100−(3)99 100【解析】【分析】本题主要考查有理数大小的比较、绝对值的化简以及有理数加减混合运算,正确化简绝对值是解答本题的关键.(1)根据“作差比较”即可得出结论;(2)先判断1110099−<,再去绝对值符号即可;(3)先根据绝对值的性质,求出绝对值,再根据前后两项的和为0,计算即可.【小问1详解】解:∵11515010 505150512550−−==>×,∴11 5051>,故答案:>【小问2详解】解:∵119910010 1009999009900−−==−<,∴111111 100991009999100−=−−=−,为故答案为:1199100−; 【小问3详解】 解:112−+1132−+1143−++ 1110099− 111111112233499100=−+−+−++− 11100=−99100=。

人教版七年级数学上册全册综合测试题

人教版七年级数学上册全册综合测试题

人教版七年级数学上册全册综合测试题1、精选优质文档-倾情为你奉上七年级上数学全册综合测试题一、选择题(本题共10个小题,每小题3分,共30分)1等于() A2 B C2 D 2下列各组数中,互为相反数的是( ) A 与1 B(1)2与1 C与1 D12与13下列各组单项式中,为同类项的是( ) Aa与a Ba与2a C2xy与2x D3与a4如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是Aab0 Bab 0 C D5下列各图中,可以是一个正方体的平面展开图的是( )ABCD北OAB第8题图6在灯塔O处观测到轮船A位于北偏西54的方向,同时轮船B在南偏东15的方向,那么AOB的大小为 ( ) A69 B111 C142、1 D1597一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A(150%)x80%x28B(150%)x80%x28 C(150%x)80%x28 D(150%x)80%x288轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米设A港和B港相距x千米根据题意,可列出的方程是() A B C D9.某种出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米以后,每增加1千米加收1.5元(不足1千米按1千3、米计),某人乘这种出租车从甲地到乙地支付车费18元,设此人从甲地到乙地经过的路程为千米,则的最大值是().(A)7 (B)9 (C)10 (D)1110.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q, 如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上, 则数轴上表示2019的点与圆周上重合的点对应的字母是()Am Bn Cp Dq图1图2qnpmqnpm二、填空题(本大题共8个小题;每小题4分,共32分)11单项式xy2的系数是_12若x=2是方程82x=ax的解,则a=_13计算:1537+4251=_14青藏高原是世界上海拔最高的4、高原,它的面积约为2 500 000平方千米将2 500 000用科学记数法表示应为_平方千米15已知,ab=2,那么2a2b+5=_16已知|x|4,y24且y0,则xy的值为_ 17. 下列说法:若a、b互为相反数,则a+b=0;若a+b=0,则a、b互为相反数;若a、b互为相反数,则;若,则a、b互为相反数其中正确的结论是(第20题)18. 如图所示,圆圈内分别标有1,2,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为,则电子跳蚤连续跳()步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳步到标有数字2的圆圈内,完成一次跳跃,第5、二次则要连续跳步到达标有数字6的圆圈,依此规律,若电子跳蚤从开始,那么第3次能跳到的圆圈内所标的数字为10 ;. 三、解答题(本大题共10个小题;共78分)19(本小题满分5分)计算:20(本小题满分5分)先化简,再求值:(4x2+2x8)(x1),其中x=21.(6分)解方程:解:去分母,得6x3x142x4 即3x12x8 移项,得3x2x81合并同类项,得x7x7上述解方程的过程中,是否有错误?答:_;如果有错误,则错在_步.如果上述解方程有错误,请你给出正确的解题过程:OACBED22(本小题满分5分)如图,AOB=COD=90,OC 平分AOB,BOD=3DOE求:COE的度数236、(本小题满分5分)AEDBFC 如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长24(本小题满分10分)一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,7、求m的值25.(本小题满分8分). 某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超过3公里的,每公里加收多少元?26.(本题满分10分).温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州运往南昌的机器为台。

2022-2023学年苏科版七年级数学上册第一次阶段性(1-1-2-6)综合练习题(附答案)

2022-2023学年苏科版七年级数学上册第一次阶段性(1-1-2-6)综合练习题(附答案)

2022-2023学年苏科版七年级数学上册第一次阶段性(1.1-2.6)综合练习题(附答案)一、选择题(每题3分,夹30分)1.下列选项中,不是具有相反意义的量的是()A.零上25℃与零下3℃B.上升10米与下降7米C.超过0.05mm与不足0.03mm D.增长2岁与减少2升2.在数轴上把表示2的点向右移动5个单位长度后,所得的对应点是()A.7B.﹣3C.6D.83.冬季某天我国三个城市的最高气温分别是﹣11℃,3℃,﹣3℃,它们任意两城市中最大的温差是()A.11℃B.13℃C.14℃D.6℃4.下列说法中,正确的是()A.绝对值最小的数是0B.3与互为倒数C.0没有倒数也没有相反数D.两个有理数的和一定大于每个加数5.绝对值等于它本身的数是()A.非正数B.正数和0C.负数D.1、﹣1或0 6.时代超市出售的三种品牌月饼袋上,分别标有质量为:(500±5)g、(500±10)g、(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差()A.10g B.20g C.30g D.40g7.下列比较大小结果正确的是()A.﹣3<﹣4B.﹣(﹣2)<|﹣2|C.D.8.在简便运算时,把变形成最合适的形式是()A.24×(﹣100+)B.24×(﹣100﹣)C.24×(﹣99﹣)D.24×(﹣99+)9.下列说法正确的是()A.0没有相反数B.有理数分为正有理数及负有理数C.所有的有理数和无理数都能用数轴上的点表示D.0的倒数仍为010.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.>0B.a+b<0C.ab>0D.|a|>|b|二、填空题(每题3分,共24分)11.﹣5的相反数是.12.如果存入3万元记作+3万元,那么支出2万元应记作.13.观察排列规律,填入适当的数:,,,,.14.如果数轴上的点A对应的数为﹣1,那么与A点相距3个单位长度的点所对应的有理数为.15.绝对值不大于3的所有整数有.16.若ab≠0,则是.17.若两个不相等的数互为相反数,则两数之商为.18.已知[x]表示不超过x的最大整数.如:[3.2]=3,[﹣0.7]=﹣1.现定义:{x}=[x]﹣x,如{1.5}=[1.5]﹣1.5=﹣0.5,则{3.9}+{﹣}﹣{1}=.三、解答题(满分66分)19.计算:(1)﹣31+(+12);(2)﹣﹣+﹣;(3)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|;(4)12.5+(﹣3)+(﹣)﹣(﹣2);(5)(+﹣)×(﹣36);(6)(﹣36)÷×÷(﹣9).20.(1)将下列各数在数轴上表示出来,并将它们用“>”连接起来﹣(﹣2.5),﹣|﹣4|,0.5,﹣1,﹣3,0.21.把下列各数填入表示它所在的数集的大括号:﹣2.5,3,﹣2020,﹣,0.1010010001…,0,﹣(﹣30%),,﹣|﹣4|,﹣2.(1)正数集合:{…};(2)无理数集合:{…};(3)分数集合:{…};(4)非正整数集合:{…}.22.已知|a|=8,|b|=2.(1)求a+b的值;(2)若a<0,求的值.23.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如表:星期一星期二星期三星期四星期五0+8+6﹣2﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?24.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,终点表示的数是﹣2.参照图中所给的信息,完成填空:已知A,B都是数轴上的点.(1)若点A表示数﹣3,将点A向右移动5个单位长度至点A1,则点A1表示的数是;(2)若点A表示数2,将点A先向左移动7个单位长度,再向右移动个单位长度至点A2,则点A2表示的数是.(3)若将点B先向左移动3个单位长度,再向右移动6个单位长度,终点表示的数恰好是0.则点B所表示的数是;(4)点A1,A2,B表示的数按从小到大的顺序排列依次是.25.探究规律:将棋子按下面的方式摆出正方形.(1)按图示规律,第(6)图需要个棋子;(2)按照这种方式摆下去,摆第n(n为正整数)个正方形需要个棋子;(3)按照这种方式摆下去,摆第2020个正方形需要多少棋子?26.一般地,数轴上表示数m和数n的两点之间的距离可记为|m﹣n|.例如|5﹣(﹣2)|表示5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)数轴上表示x和﹣3的两点之间的距离表示为;(2)若|x﹣1|=2,则x=.若|x﹣1|=|x+3|,则x=;(3)当整数x是,|x+1|+|x﹣3|取得最小值;(4)若|x+3|+|x﹣1|+|x﹣4|的值最小,最小值是.参考答案一、选择题(每题3分,夹30分)1.解:∵相反意义的量就是两个数字,他们的正负符号相反,代表着相对于基准点(0点)处于不同的方位,而他们的绝对值是不是相等没有关系,∴A、B、C三个选项都符合要求,而D选项中增长2岁与减少2升不是具有相反意义的量.故选:D.2.解:根据题意得:2+5=7,则所得的对应点是7,故选:A.3.解:由题意得:3﹣(﹣11)=3+11=14,故选:C.4.解:A、绝对值最小的数为0,所以A选项正确;B、3与互为倒数,所以B选项不正确;C、0没有倒数,0的相反数为0,所以C选项不正确;D、两个负数的和小于每个加数,所以D选项不正确.故选:A.5.解:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.故绝对值等于它本身的数是0和正数.故选:B.6.解:由题意知:任意拿出两袋,最重的是520g,最轻的是480g,所以质量相差520﹣480=40(g).故选:D.7.解:A、∵|﹣3|=3,|﹣4|=4,3<4,∴﹣3>﹣4,故本选项错误;B、∵﹣(﹣2)=2,|﹣2|=2,∴2=2,故本选项错误;C、∵|﹣|=>0,﹣<0,∴|﹣|>﹣,故本选项正确;D、∵|﹣|=,|﹣|=,>,∴﹣<﹣,故本选项错误.故选:C.8.解:∵﹣100+=﹣(100﹣)=﹣,∴根据有理数的乘法分配律,把变形成最合适的形式为24×(﹣100+)=﹣24×100+24×=,可以简便运算.故选:A.9.解:A、0的相反数是0,故A不符合题意;B、有理数分为正有理数,负有理数和0,故B不符合题意;C、所有的有理数和无理数都能用数轴上的点表示,故C符合题意;D、0没有倒数,故D不符合题意;故选:C.10.解:∵a>0,b<0,|a|<|b|,∴<0,a+b<0,ab<0,所以A,C,D不正确,B正确;故选:B.二、填空题(每题3分,共24分)11.解:﹣5的相反数是5.故答案为:5.12.解:存入与支出是一对意义相反的量,如果存入3万元记作+3万元,那么支出2万元应记作﹣2万元,故答案为:﹣2万元.13.解:∵,,,,∴第五个数是,故答案为:.14.解:在A点左边与A点相距3个单位长度的点所对应的有理数为﹣4;在A点右边与A点相距3个单位长度的点所对应的有理数为2.故答案为﹣4或2.15.解:根据题意得:绝对值不大于3的所有整数有0,±1,±2,±3.故答案为:0,±1,±2,±3.16.解:①当a、b同号时,原式=1+1=2,或原式=﹣1﹣1=﹣2,②当a、b异号时,原式=﹣1+1=0.综上所述:的值是﹣2或0.故答案是:﹣2或0或2.17.解:若两个不相等的数互为相反数,则两数之商为﹣1.故答案为:﹣118.解:根据题意可得{3.9}+{﹣}﹣{1}=(3﹣3.9)+[(﹣2)﹣(﹣1.5)]﹣(1﹣1)=﹣0.9+(﹣0.5)=﹣1.4.故答案为:﹣1.4.三、解答题(满分66分)19.解:(1)﹣31+(+12)=﹣19;(2)﹣﹣+﹣=(﹣+)+(﹣﹣)=1﹣1=﹣;(3)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|=2+2.5+1﹣1=4.5;(4)12.5+(﹣3)+(﹣)﹣(﹣2)=(12.5+2)+(﹣3﹣)=14.5﹣4=10.5;(5)(+﹣)×(﹣36)=×(﹣36)+×(﹣36)﹣×(﹣36)=﹣18﹣30+21=﹣27;(6)(﹣36)÷×÷(﹣9)=(﹣36)×××(﹣)=1.20.解:,﹣(﹣2.5)>0.5>0>﹣1>﹣3>﹣|﹣4|.21.解:(1)正数集合:{3,0.1010010001…,﹣(﹣30%),…}.故答案为:3,0.1010010001…,﹣(﹣30%),;(2)无理数集合:{0.1010010001…,…}.故答案为:0.1010010001…,;(3)分数集合:{﹣2.5,﹣,﹣(﹣30%),﹣2.…}.故答案为:﹣2.5,﹣,﹣(﹣30%),﹣2.;(4)非正整数集合:{﹣2020,0,﹣|﹣4|…}.故答案为:﹣2020,0,﹣|﹣4|.22.解:(1)∵|a|=8,|b|=2.∴a=±8,b=±2,当a=8,b=2时,a+b=10,当a=8,b=﹣2时,a+b=6,当a=﹣8,b=2时,a+b=﹣6,当a=﹣8,b=﹣2时,a+b=﹣10;∴a+b的值为±6或±10.(2)∵a<0,∴a=﹣8,当a=﹣8,b=2时,=﹣,当a=﹣8,b=﹣2时,=,∴的值为±.23.解:(1)根据题意得:50﹣7=43(册),则上星期五借出图书43册;(2)星期二:50+8=58(本),星期五43(本),则上星期二比上星期五多借出图书58﹣43=15(本);(3)上星期平均每天借出图书:50+(0+8+6﹣2﹣7)÷5=50+1=51(本).24.解:(1)若点A表示数﹣3,将点A向右移动5个单位长度至点A1,则点A1表示的数是﹣3+5=2;(2)若点A表示数2,将点A先向左移动7个单位长度,再向右移动个单位长度至点A2,则点A2表示的数是2﹣7+=﹣.(3)若将点B先向左移动3个单位长度,再向右移动6个单位长度,终点表示的数恰好是0.则点B所表示的数是0﹣6+3=﹣3;(4)点A1,A2,B表示的数按从小到大的顺序排列依次是﹣3<﹣<2.故答案为:2;﹣;﹣3;﹣3<﹣<2.25.解:根据题中图形可:第一个正方形需要1×4=4个棋子;第二个正方形需要4+4=2×4=8个棋子;第三个正方形需要4+4+4=3×4=12个棋子;第四个正方形需要4+4+4+4=4×4=16个棋子;第五个正方形需要4+4+4+4+4=5×4=20个棋子;第六个正方形需要4+4+4+4+4+4=6×4=24个棋子;…;第n个正方形需要4+4+4+…+4=4n个棋子.故答案为:24;(2)按照这种方式摆下去,摆第n个正方形需要4n个棋子,故答案为:4n;(3)按照这种方式摆下去,摆第2020方形需要4×2020=8080个棋子.26.解:(1)表示x和﹣3的两点之间的距离表示为|x﹣(﹣3)|=|x+3|,故答案为:|x+3|.(2)∵|x﹣1|=2,∴x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1;∵|x﹣1|=|x+3|,∴x﹣1=x+3或x﹣1=﹣(x+3),解得:x=﹣1.故答案为3或﹣1,﹣1.(3)当x<﹣1时,则|x+1|+|x﹣3|=﹣x﹣1﹣x+3=﹣2x+2,∵x<﹣1,∴﹣2x+2>4,即|x+1|+|x﹣3|>4;当﹣1≤x≤3时,则|x+1|+|x﹣3|=x+1﹣x+3=4;当x>3时,则|x+1|+|x﹣3|=x+1+x﹣3=2x﹣2,∵x>3,∴2x﹣2>4;综上所述,当﹣1≤x≤3时,当x取整数﹣1,0,1,2,3,|x+1|+|x﹣3|的值最小,最小值为4.故答案为﹣1,0,1,2,3;4.(4)借助数轴理解,设x表示的数为A,B表示的数为﹣3,C表示的数为1,D表示的数为4,如图所示,由图象可知,当点A在点C时,即x=1时,|x+3|+|x﹣1|+|x﹣4|的值最小,最小值=4﹣(﹣3)=7.故答案为:7.。

2022-2023学年北师大版七年级数学上册阶段性(第4—5章)综合练习题(附答案)

2022-2023学年北师大版七年级数学上册阶段性(第4—5章)综合练习题(附答案)

2022-2023学年北师大版七年级数学上册阶段性(第4—5章)综合练习题(附答案)一、选择题(共12小题,共36分。

)1.把一条弯曲的河流改成直道,可以缩短航程,用数学知识解释其道理为()A.两点确定一条直线B.经过两点有且仅有一条直线C.直线可以向两端无限延伸D.两点之间,线段最短2.已知下列方程:①3x=6y;②2x=0;③=4x+x﹣1;④x2+2x﹣5=0;⑤3x=1;⑥﹣2=2.其中一元一次方程的个数是()A.2个B.3个C.4个D.5个3.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°4.下列说法,正确的是()A.如果AP=BP,那么点P是线段AB的中点B.连接两点的线段叫两点间的距离C.点A和直线l的位置关系有两种D.点A,B,C过其中每两个点画直线,可以画出3条5.经过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形经过这一顶点的对角线条数是()A.7条B.8条C.9条D.10条6.把方程去分母,下列变形正确的是()A.2x﹣x+1=1B.2x﹣(x+1)=1C.2x﹣x+1=6D.2x﹣(x+1)=6 7.在所给的:①15°、②65°、③75°、④115°、⑤135°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④8.关于x的一元一次方程4x﹣1=7与3(x﹣1)+a=4的解相同,则a的值为()A.﹣2B.0C.1D.29.福州某机械厂加工车间有35名工人,平均每名工人每天加工大齿轮5个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为()A.3×5x=2×10(35﹣x)B.2×5x=3×10(35﹣x)C.3×10x=2×5(35﹣x)D.2×10x=3×5(35﹣x)10.某文化商场同时卖出两台电子琴,每台均卖960元.以成本计算,第一台盈利20%,另一台亏本20%.则本次出售中,商场()A.不赚不赔B.赚160元C.赚80元D.赔80元11.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF等于()A.115°B.110°C.125°D.120°12.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t 秒(t不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒或秒或秒C.3秒或7秒D.3秒或秒或7秒或秒二.填空题(共6题,共24分)13.上午6:30时,时针与分针的夹角为度.14.若(m+1)x|m|=6是关于x的一元一次方程,则m等于.15.由枣庄开往青岛的某一次列车,运行途中要停靠四个站,那么要为这次列车制作的火车票有种.16.七年级男生入住一楼,如果每间住6人,恰好空出一间;如果每间住5人就有4人没有房间住.那么一楼共有间.17.如图所示,两块三角板的直角顶点O 重叠在一起,且OB 恰好平分∠COD ,则∠AOD 的度数是 度.18.已知数列,,记第一个数为a 1,第二个数为a 2,…,第n 个数为a n ,若a n 是方程的解,则n= .三.解答题(共7题,共60分)19.解方程:(1)7x +6=8﹣3x ;(2). 20.嘉淇解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为x =﹣1.(1)试求a 的值;(2)求原方程的解.21.(6分)如图,点A ,B 在线段EF 上,点M ,N 分别是线段EA ,BF 的中点,EA :AB :BF =1:2:3,若MN =6cm ,求线段EF 的长.22.列一元一次方程解决下面的问题.惠民水果店第一次用800元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多20千克,甲、乙两种苹果的进价和售价如下表:甲 乙 进价(元/千克)4 10售价(元/千克) 8 15(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为820元,求第二次乙种苹果按原价打几折销售?23.如图,已知线段AB=12cm,点C为线段AB上的一个动点,点D,E分别是AC和BC 的中点.(1)若AC=4cm,求DE的长;(2)若把“点C在线段AB上”改为“点C在直线AB上”,当AC=4cm时,求DE的长.(请画出图形,说明理由)24.如图,线段AB=8cm,点C是线段AB的中点,点D是线段BC的中点.(1)则线段AD的长是;(2)若在线段AB上有一点E,CE=BC,求AE长.(3)点P从点A出发,以每秒2cm的速度沿射线AB方向运动,点Q同时从C出发,以每秒1cm的速度沿射线CB方向运动,设运动时间为t秒,当PQ=AD时,直接写出t的值.25.(1)如图1所示,已知∠AOC=90°,∠AOB=38°,OD平分∠BOC,请判断∠AOD 和∠BOD之间的数量关系,并说明理由;(2)已知:如图2,点O在直线AD上,射线OC平分∠BOD.求证:∠AOC与∠BOC 互补;(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ =β(0°<β<90°),直接写出锐角∠MPN的度数是参考答案一、选择题(共12小题,共36分。

七年级数学上册比较线段的长短综合练习题(附答案)

七年级数学上册比较线段的长短综合练习题(附答案)

七年级数学上册比较线段的长短综合练习题一、单选题1.如图,点C是AB的中点,D是AB上的一点,3AB=,则CD的长是( )AB DB=,已知12A.6B.4C.3D.22.已知线段10cmAC=,则线段AB的中点与AC的中点AB=,在直线AB上取一点C,使16cm的距离为( )A. 13cm或26cmB. 6cm或13cmC. 6cm或25cmD. 3cm或13cm3.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程.其中可用基本事实“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④4.下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是( )A.用两颗钉子就可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上5.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有( )A.1个B.2个C.3个D.4个6.已知线段6BC=,则线段AC的长( )AB=,在直线AB上取一点C,使2A.2B.4C.8D.8或47.关于直线、射线、线段的描述正确的是( )A.直线最长,线段最短B.直线、射线及线段的长度都不确定C.直线没有端点,射线有一个端点,线段有两个端点D.射线是直线长度的一半a b c两两相交,8.按下所语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线,,下图中正确的是( )A. B.C. D.9.在平面上有任意四个点,那么这四个点可以确定的直线有( )A.1条B.4条C.6条D.1条或4条或6条10.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是:( )A.两点之间,直段最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线11.平面内互不重合的三条直线的交点个数是( )A. 13,B. 0,1,3C. 0,2,3D. 0,1,2,312.线段AB被分为2:3:4三部分,已知第一部分和第三部分两中点间距离是5.4cm,则线段AB长度为( )A. 8.1cmB. 9.1cmC. 10.8cmD. 7.4cm13.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着直线AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有( ).A.①②B.①③C.②④D.③④14.如图,某同学家在A处,现在该同学要去位于B处的同学家玩,请帮助他选择一条最近的路线( )A.A C D B →→→B.A C F B →→→C.A C E F B →→→→D.A C M B →→→15.如图,点M 在线段AB 上,则下列条件不能确定M 是AB 的中点的是( )A.12BM AB = B.AM BM AB +=C.AM BM =D.2AB AM =二、解答题16.如图,N 为线段AC 中点,点M 、点B 分别为线段AN NC ,上的点,且满足::1:4:3AM MB BC =(1)若6AN =,求AM 的长;(2)若2NB =,求AC 的长.三、填空题17.把弯曲的河道改直,能够缩短航程.这样做根据的道理是___________________.18.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.参考答案1.答案:D解析:2.答案:D解析:3.答案:D解析:4.答案:C解析:5.答案:B解析:6.答案:D解析:7.答案:C解析:8.答案:B解析:9.答案:D解析:10.答案:C解析:11.答案:D解析:12.答案:A解析:13.答案:A解析:14.答案:B解析:根据“两点之间,线段最短”可知,C B 两点之间的最短距离是线段CB 的长度,所以最近的一条路线是A C F B →→→.15.答案:B解析:因为点M 在线段AB 上,所以再加下列条件之一,即可确定点M 是AB 的中点:①12BM AB =;②AM BM =;③2AB AM =.而无论点M 在AB 上的什么位置,都有AM BM AB +=,所以选项B 不能确定点M 是AB 的中点. 16.答案:(1)32AM =;(2)16AC = 解析:17.答案:两点之间,线段最短解析:18.答案:两点确定一条直线.解析:。

厦门市同安区2024-2025学年第一学期七年级数学第一阶段质量检测(期中考)综合练习试卷

厦门市同安区2024-2025学年第一学期七年级数学第一阶段质量检测(期中考)综合练习试卷

准考证号:姓名:(在此卷上答题无效)2024-2025学年第一学期七年级第一阶段质量检测综合练习数学(满分:150分时长:120分钟)注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息,核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.全卷共三大题,25小题,试卷共6页.4.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.2024的相反数是A .2024B .-2024C .20241D .-202412.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是“今有两数若其意义相反,则分别叫做正数和负数”.如果气温为“零上20℃”记作+20℃,那么气温“-10℃”表示A .上升10℃B .下降10℃C .零上10℃D .零下10℃3.9月8日至11日,以“投资链接世界”为主题的第二十四届中国国际投资贸易洽谈会在厦门市举办.本届投洽会,计划总投资额达48892000万元.数据48892000用科学记数法表示为A .6108892.4⨯B .610892.48⨯C .7108892.4⨯D .81048892.0⨯4.2024年厦门市青少年校园足球中小学联赛比赛用球如图所示.检测下列4个足球,超过标准质量的克数记为正数,不足标准质量的克数记为负数,质量最接近标准的是A .B .C .D .5.4)5(-可表示为A .45⨯-B .)5()5()5()5(-+-+-+-C .5555⨯⨯⨯-D .)5()5()5()5(-⨯-⨯-⨯-6.下列问题中的两个量成反比例关系的是A .长方体的体积一定,长方体的底面积与高B .汽车行驶的平均速度一定,汽车行驶的路程与时间C .200名同学参加队列操表演,男生的人数与女生的人数D .购买荧光笔和中性笔的总费用一定,荧光笔的费用与中性笔的费用-3.6g+2.5g-0.8g-0.9g7.为进一步推进“双减”政策的落实,提升学校课后服务水平,某校开设了选修课程.已知参加“科技类选修课程”的有m 人,参加“体音美选修课程”的人数比“科技类选修课程”的人数的2倍多18人,则参加“体音美选修课程”的人数为A .2(m +18)B .2(m -18)C .2m +18D .2m -188.若023=-++y x ,则yx +的值是A .1B .-1C .5D .-59.数轴上表示数a ,b 的点如图所示.把a ,-a ,-b 按照从小到大的顺序排列,正确的是A .-b<a<-aB .-a<a<-bC .a<-b<-aD .-a<-b <a10.算筹,是古代用来计算的工具.运算时将若干根小竹棍按纵横两种形式摆在平面上.如图,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,遇零则置空.在个位数算筹上面斜着放一支算筹表示负数.例如:“”表示+238,“”表示-7023.则“”表示的数是A .6028B .-6028C .6208D .-6208二、填空题(本大题有6小题,每小题4分,共24分)11.直接写得数:(1)52+-=;(2)61-=;(3)()()42-⨯-=;(4)()318÷-=.12.比较大小:-7-9(填“>”“<”或“=”).13.在数轴上,点A 表示的数是-3,从点A 出发,沿数轴向某一方向移动4个单位长度到达点B ,则点B 表示的数是.14.若代数式y x 2+的值是3,则代数式242-+y x 的值是.15.如图,用棋子摆出一组形如“T ”字形的图形,按照这种方法摆下去,摆成第10个“T ”字形需要的棋子个数为.数字纵式横式123456789第1个第2个第3个第15题图ab第9题图16.幻方起源于中国,是我国古代数学的杰作之一.“洛书”即三阶幻方,它的每行、每列、每条对角线上三个数之和均相等.如图的方格中填写了一些数,当x 的值为时,它能构成一个三阶幻方.三、解答题(本题有9小题,共86分)17.(本题满分24分)计算:(1))2()5(3+--+;(2)711(1587(-⨯⨯-;(3)2)3()4()6(⨯-+-⨯-;(4)7)28()4(3÷-+-⨯;(5)⎪⎭⎫ ⎝⎛+-⨯61413112;(6)103)2(124-⨯-+-.18.(本题满分7分)画出数轴,在数轴上表示下列有理数,将这些数按从小到大的顺序排列,再用“<”连接起来:23,0,-1,319.(本题满分6分)若数a ,b 满足:a =-1,5=b ,且a <b ,求a -b 的值.解:因为5=b ,所以b =;因为a =-1且a <b ,所以b =;所以a -b =.20.(本题满分7分)甲、乙两人驾车行驶于同集路上,甲以a 千米/时的速度行驶,乙以b 千米/时的速度行驶.(1)经过t 小时,乙比甲多行驶多少千米(用代数式表示)?(2)当t =0.5,a =50,b =60时,求(1)中代数式的值.21.(本题满分8分)某公路养护小组乘车沿一条南北向公路巡视养护,某天早晨他们从A 地出发,晚上最终到达B 地.约定向北为正方向,当天汽车的行驶记录(单位:km)如下:+13,-12,+7,-15,-3,+5,-6,-8,+6,+15.假设汽车在同一行驶记录下是单向行驶.(1)B 地在A 地的哪个方向?它们相距多少千米?(2)如果汽车行驶1km 平均耗油0.08L ,那么这天汽车共耗油多少升?第16题图中秋节是我国的传统节日,自古以来人们就有赏月、吃月饼等风俗习惯.临近中秋节,初一(1)班学生在手工课上制作月饼.第一小组同学制作了10个月饼,这10个月饼的重量与数量如下表所示(单位:g)(1)请将上述表格填写完整.(2)若每克月饼制作成本为0.1元,则这10个月饼制作成本需要多少元?23.(本题满分9分)规定:我们把一些不相等的整数确定为一个研究的整体,称为“数包”,表示为[a,b,c,…],其中整数a,b,c,…称为“数包”的元素.例如:[-3,4,0,100]中-3,4,0和100都是这个“数包”的元素.如果某个“数包”中的任意一个元素a(a为整数),满足2025-a也是这个“数包”的元素,该“数包”我们称为“2025的和谐数包”.例如:数包[2023,2]中,2023和2都是这个“数包”的元素,且2025-2023=2,所以数包[2023,2]是一个“2025的和谐数包”.(1)数包[4,5,2020,2021]________“2025的和谐数包”(填“是”或“不是”);(2)若数包[b,2027]是“2025的和谐数包”,则b=_______;(3)若一个“2025的和谐数包”中所有元素之和为整数M,且15390<M<17881,则该“2025的和谐数包”中共有多少个元素?请说明理由.不同的计算方法背后蕴含的思维逻辑也不相同.小安发现有些计算问题可以用几何图形来辅助.小安要计算24×16.图1是他辅助计算时画的几何图形,图2方框中是小安的计算过程.(1)请你模仿小安的方法计算37×28.在辅助计算的图3的括号内标注对应的数据,并写出区域⑧表示的算式:,然后写出37×28的计算过程.(2)请你根据小安解决问题的方法,计算(a +b )(m +n ).先在图4中画出辅助计算的几何图形,然后写出计算过程.计算过程:24×16=(20+4)×(10+6)=20×10+4×10+20×6+4×6=200+40+120+24=384第24题图2计算过程:37×28=计算过程:(a +b )(m +n )=⑤⑥⑦⑧第24题图3第24题图4()()()()数轴是一个非常重要的数学工具,它使数和点建立起一一对应的关系,揭示了代数与几何之间的内在联系,它是“数形结合”的基础.小安在一张长方形纸条上画了一条数轴,然后进行了实践探究:(1)折叠纸条,使表示1的点与表示-1的点重合,则表示-5的点与表示的点重合.(2)在数轴上A ,B 两点之间的距离为2024(点A 在点B 的左侧),折叠纸条,使表示6的点与表示-4的点重合.此时A ,B 两点也重合,则点A 表示的数是.(3)定义:P ,Q 为数轴上任意两点,若折叠纸条使点P ,Q 重合,折痕与数轴的交点为点M ,则称点M 为点P 和点Q 的“叠点”.点C ,D ,O 在数轴上,点C 是数轴上最大的负整数点,点O 是原点,点D 在点O 的右侧且到点O 的距离是7.折叠纸条使点C 和点D 重合,点E 是点C 和点D 的“叠点”.若存在点F 在点C 与点D 之间,且其在数轴上对应的数为m ,2=m .求点F 到“叠点”E 的距离.012345-4-3-2-1。

七年级数学上册综合算式专项练习题整式的整数与负数

七年级数学上册综合算式专项练习题整式的整数与负数

七年级数学上册综合算式专项练习题整式的整数与负数整式是指由数字和字母按照一定的运算规则组成的式子。

在学习整式的过程中,我们需要掌握整数的概念以及如何运用整数进行整式的计算。

本文将以七年级数学上册综合算式专项练习题为例,详细介绍整式中整数与负数的应用。

一、整数的概念整数是由正整数、负整数和零组成的数集,用Z表示。

正整数是大于零的整数,负整数是小于零的整数,而零既不是正整数也不是负整数。

二、整数的加法与减法整数的加法与减法遵循以下规则:1. 同号相加、相减,取相同的符号。

2. 异号相加、相减,取绝对值较大的负号。

例题一:计算下列各题:1. 3 + 5 = ?2. -7 + 2 = ?3. -4 - 9 = ?4. 6 - (-2) = ?解答:1. 3 + 5 = 82. -7 + 2 = -53. -4 - 9 = -134. 6 - (-2) = 6 + 2 = 8通过以上例题可以看出,整数的加法与减法运算中,同号即加,异号即减。

三、整数的乘法与除法整数的乘法与除法遵循以下规则:1. 同号相乘,结果为正数;异号相乘,结果为负数。

2. 任何数与零相乘的结果为零。

3. 任何数除以零是不合法的,没有意义。

例题二:根据题目要求,计算下列各题:1. 4 × 3 = ?2. -5 × 2 = ?3. -7 ÷ (-2) = ?4. 8 ÷ (-4) = ?解答:1. 4 × 3 = 122. -5 × 2 = -103. -7 ÷ (-2) = 34. 8 ÷ (-4) = -2根据例题二可以得出结论,整数的乘法运算中,同号为正,异号为负;整数的除法运算中,负数除以正数为负,正数除以负数为负。

四、整数在整式中的应用整式是由整数、字母和运算符号按照一定的运算规则组成的代数式。

现以七年级数学上册综合算式专项练习题为例,讲解整数在整式中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上数学
综合练习题(二)
命题人:张凯 审题人:金秀
一、填空题(每小题3分,共24分)
1. 要在墙上钉牢一根木条,至少要钉两颗钉子,数学依据是:.
2.近似数1.2×105
精确到位.
3.若m ,n 互为相反数,则|m +n -2012|=.
4. 有理数a 、b 在数轴上对应点的位置如图所示, 则a b (填“<”、“>”或“=”) .
5. 若1=-b a ,则整式)2(--b a =;若1=+b a ,则整式b a --5=.
6. 某校七年级1班共有48人,其中女生比男生的5
4
多3人,设女生有x 人,那么根据题意可列
方程为.
7.68.36°=°′″.
8. 如图,∠POQ 是直角,射线OA 、OB 把∠POQ 三等分,则图中所有
的角的和为°.
二、单项选择题(每小题3分,共24分)
9. 有大小不同的三个铁球甲、乙、丙。

它们重量比是5:4:7,甲和乙的重量和比丙多4kg ,那 么三个铁球共重 () A.128kgB.64kgC.32kgD.28kg
10.下列关于角的描述正确的是 ( ) ①两条射线所组成的图形叫做角 ②角的大小与角的边长短无关 ③直角没有余角和补角 ④角的两边是两条射线 A .①③ B.②③C.①④D. ②④
11.地球与太阳之间的距离约为1亿5千万千米,用科学记数法表示为 ( )
A. 1.5×107米
B. 1.5×108米
C. 1.5×109米
D. 1.5×1011米
七年级数学试卷 第1页 (共8页)
12. 在400米的环形跑道上,父亲每分钟跑320米,儿子每分钟跑280米,两人同时同地同向出
发,x 分钟后第一次相遇,则x 为 ( ) A .12B .10 C .8D .6 13. 使整式
33k -的值与整式34
-k 的值相等的k 的值是 ( ) A .27B .21C .5
17D .3
14. 小华在某月的日历上圈出相邻的几个数,算出这四个数的和是36,那么这个数阵的形式可能
是下面图形中的哪一种( ) A .B .C .D .
15.小丽制作了一个对面图案均相同的正方体礼品盒(如下左图所示),则这个正方体礼品盒的平
面展开图可能是( )
16. 一个多项式加上3y 2-2y -5得5y 3-4y -6,则这个多项式是( )
A. 5y 3+3y 2+2y -1
B. 5y 3―3y 2―2y -1
C. 5y 3+3y 2―2y -1
D. 5y 3―3y 2―2y -6
三、解答题(17、20每小题6分,18、19每小题5分,共22分) 17.计算:(1)-20+(-14)-(-18)-13. (2)-12
-[1
32)4
3
(]6)12(73-⨯÷-+.
七年级数学试卷 第2页 (共8页)
a
b
第4题
P
A
B Q
O
第8题
A
B
C
D
18.解方程:21(4x -3)-2=3
1 x +1.
19.如图,AB 和CD 都是直线,EO ⊥AB ,∠AOF=∠FOD ,∠AOC=26°24′,求∠COE , ∠AOF 的度数。

七年级数学试卷 第3页 (共8页)
20.某校七年级同学组织劳动,一名男生观察了一下,他说:“除了我之外,女生是男生的二倍”。

过了一会儿,一个女生也站起来观察一下说:“不算上我的话,男生人数和女生人数相等”。

那么一共有多少个学生在劳动。

四、解答题(每小题7分,共14分) 21.若关于a 和b 的单项式-3a m b n -2
与2a 2b 是同类项,求整式2(3m 2-n 2)-3(2mn -3n 2
)+
(m 2
-mn )的值。

七年级数学试卷 第4页 (共8页)
22.“*”是规定的一种运算法则:a*b=a 2
-b. (1)求4*(-1)的值为. (2)若3*x=2,求x 的值.
(3)若(-4)*x=2+x, 求x 的值.
五、解答题(每小题8分,共16分)
23.如图所示,点O 在直线AE 上,射线OC 平分∠AOE ,∠DOB=90°, (1)∠1的余角是; ∠AOB 的余角是;
∠DOE 的补角是.
(2)∠AOB 和∠1之间有什么关系?并说明理由.
(3)若∠COB=65°,求∠DOE 的度数.
七年级数学试卷 第5页 (共8页)
24.在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政
补贴.村民小李购买了一台A 型洗衣机,小王购买了一台B 型洗衣机,两人一共得到财政补 贴351元,又知B 型洗衣机售价比A 型洗衣机售价多500元.试求: (1)A 型洗衣机和B 型洗衣机的售价各是多少元?
(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?
七年级数学试卷 第6页 (共8页)
1A
E
C
B
D
O
六、解答题(每小题10分,共20分)
25.观察一组等式:
1+2=3=22-1
1+2+22 =7=23-1
1+2+22+23=15=24-1
⑴第四个算式是;
⑵1+2+22+23 +……+263 = ;
⑶先阅读下面的解答:
设S=1+2+22+……+2n-1①
两边乘以2,得:
2S=②
②-①,得:S= .
运用此方法计算:1+3+32 +33……+399等于多少?请写出解答过程。

七年级数学试卷第7页(共8页)26.逸夫中学有A、B两台复印机,用于印刷学习资料和考试试卷。

学校举行期末考试,数学试卷如果用复印机A、B单独复印,分别需要90分钟和60分钟。

在考试时为
了保密需要,不能过早提前印刷试卷,学校决定在考试前由两台复印机同时复印。

(1)两台复印机同时复印,共需多少分钟才能印完?
(2)在复印30分钟后B机出了故障,暂时不能复印,此时离发卷还有13分钟。

①请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?
②B机经过紧急抢修,9分钟后修好恢复使用,请你再算算,学校能否按时发卷考试?
七年级数学试卷第8页(共8页)。

相关文档
最新文档