系统的稳定性分析与判据
系统稳定性分析—劳斯稳定判据

© BIP
例题4:s6 s5 6s4 5s3 9s2 4s 4 0
S6 1
6
S5 1
5
9
4
辅助方程
4
0
S4 1
5
4
S3
0 4
0 10
0 0
S2 2.5
4
0
0 s4 5s2 4 0
0 0 4s3 10s 0 0
S1 3.6
0
0
0
S0 4
0
0
0
某一行全为零,说明存在对称于原点的根,系统不稳定
No.15
© BIP
图7 K=15时系统的单位阶跃响应曲线
No.16
© BIP
图8 K=20时系统的单位阶跃响应曲线
No.17
© BIP
例题2:液位控制系统的稳定性分析。
进水
阀门
进水阀门的 传递函数K3
减速器
+ 电位器
-
连杆
执行电机和 减速器的传
递函数
K2/S(TS+1)
电动机
放大器
控制对象水箱的
系统稳定性分析之 ——劳斯判据
一、系统稳定的重要性
图1“舞动的格蒂”—首座塔科马大桥
No.2
© BIP
二、系统稳定性的基本概念和条件
1、定义:如果线性控制系统在初始扰动的作 用下,使被控量产生偏差,当扰动消失后,该 偏差随着时间的推移逐渐减小并趋于零,即系 统趋于原来的工作状态,则称该系统为渐进稳 定。反之,如果在初始扰动的作用下,系统的 偏差随着时间的推移而发散,系统无法趋于原 来的工作状态,则称系统不稳定。
传递函数K4/S
系统的稳定性常见判据

定义:
无输入时的初态
系统在初始状态作用下
输入引起的初态
输出
收敛(回复平衡位置)
(响应) 发散(偏离越来越大)
系统稳定 系统不稳定
2. 系统稳定条件
线性定常系统:
anxo(n) (t )
an
1
x ( n1) o
(
t
)
a1
x o(
其中:
A1
an1an2 anan3 an1
A2
an1an4 anan5 an1
A3
an1an6 anan7 an1
B1
A1an3 an1 A2 A1
B2
A1an5 an1 A3 A1
B3
A1an7 an1 A4 A1
s0 F1
Routh 判据:Routh表中第一列各元符号改变的次数等于系统特
t
)
a0 xo(t )
xi(t )
自由响应
强迫响应
n
n
xo(t ) A1ie sit A2ie sit B(t )
i 1
i 1
系统的初态引 输入引起的 起的自由响应 自由响应
si:系统的特征根
2. 系统稳定条件
1) 当系统所有的特征根si(i=1,2,…,n)均具有负实部(位
于[s]平面的左半平面)
lt im
n i 1
A1i e si t
n i 1
A2i e si t
0
自由响应收敛,系统稳定
2) 若有任一sk具有正实部(位于[s]平面的右半平面)
lim e skt
t
ltim
§6.5系统稳定性及其判定 《信号与系统》课件

1
ht 0 ht 0 ht 0
这表明 etht ht ,则响应 rt
r
t
h
et
d
r0
h
e
d
h
d
此式表明: 若
必要性得证。
ht
d
t无界,则
r0也无界
由H(s)的极点位置判断系统稳定性
1.稳定系统
若H(s)的全部极点位于s平面的左半平面(不包括虚 轴),则可满足
lim h(t) 0
t
系统是稳定的。
例如
1 , p0 s p
系统稳定;
1 s2 ps q
p 0, q 0 系统稳定;
2.不稳定系统
如果H(s)的极点位于s右半平面,或在虚轴上有 二阶(或以上)极点
lim h(t)
t
系统是不稳定系统。
3.临界稳定系统
如果H(s)极点位于s平面虚轴上,且只有一阶。 t , h为(t)非零数值或等幅振荡。
定义(BIBO)
一个系统,如果对任意的有界输入,其零
状态响应也是有界的,则称该系统有界输入
有界输出(BIBO)稳定的系统,简称稳定系
统。。
对所有的激励信号e(t)
et Me
其响应r(t)满足
rt Mr
则称该系统是稳定的。式中,
M
e
,对可积条件):
ht d t M
号与系统 信
§6.5 系统稳定性及其判定
1.系统的稳定性
2.系统稳定性判据
引言
某连续时间系统的系统函数
Hs 1 0.001
s1 s2
当输入为u(t)时,系统的零状态响应的象函数为
0.005 1
Rzs
系统的稳定性和代数稳定判据

)
n2
(
s
2
2ll
l2)
j 1
l 1
n1
aj
j 1 s p j
n2
l 1
l
(s
lnl s2 2
) lnl 1 lnl s nl2
2 l
y2(t) n1 a je pjt n2 le lnlt cosnl
1l2t
n2
e lnlt
l
sin nl
1l2t
j 1
l 1
l 1
线性系统稳定的充要条件:
Tuesday, July 28,
2020
3
稳定的充要条件和属性
前面讨论的当外作用消失后,如果经过足够长的时间它能回复到 原来的起始平衡状态可看作第二项经过足够长的时间变为零。
系数取决于初始条件的多项式 系数取决于初始条件的多项式
Y2(s)
sn an1sn1 a1s a0
n1
(s
p
j
稳定的基本概念: 设系统处于某一起始的平衡状态。在外作用的影响下,离
开了该平衡状态。当外作用消失后,如果经过足够长的时间它 能回复到原来的起始平衡状态,则称这样的系统为稳定的系统 。 否则为不稳定的系统。
Tuesday, July 28,
2020
2
稳定的充要条件和属性
设系统或元件的微分方程为:
y(n)(t) an1y(n1) (t) a0 y(t) bmx(m)(t) bm1x(m1)(t) b0x(t)
系统特征方程的根(即传递函数的极点)全为负实数或具
有负实部的共轭复根。或者说,特征方程的根应全部位于s平面
的左半部。 Tuesday, July 28,
系统稳定性分析实验报告

一、实验目的1. 理解系统稳定性的基本概念和稳定性判据。
2. 掌握控制系统稳定性分析的方法和步骤。
3. 分析系统开环增益和时间常数对系统稳定性的影响。
4. 通过实验验证稳定性分析方法的有效性。
二、实验原理系统稳定性分析是自动控制理论中的一个重要内容,主要研究系统在受到扰动后能否恢复到原来的稳定状态。
根据系统传递函数的极点分布,可以将系统分为稳定系统和不稳定系统。
稳定系统在受到扰动后,其输出会逐渐恢复到原来的平衡状态;而不稳定系统在受到扰动后,其输出会发散,无法恢复到原来的平衡状态。
三、实验仪器1. 自动控制系统实验箱一台2. 计算机一台3. 数据采集卡一台四、实验内容1. 系统模拟电路搭建根据实验要求,搭建一个典型的控制系统模拟电路,如图1所示。
电路中包含一个比例积分(PI)控制器和一个被控对象。
被控对象可以用一个一阶环节表示,传递函数为G(s) = K / (Ts + 1),其中K为开环增益,T为时间常数。
图1 系统模拟电路图2. 系统稳定性分析(1)观察系统的不稳定现象在实验箱上设置不同的K和T值,观察系统在受到扰动后的响应情况。
当K值较大或T值较小时,系统容易产生增幅振荡,表现为不稳定现象。
(2)研究系统开环增益和时间常数对稳定性的影响通过改变K和T的值,观察系统稳定性的变化。
分析以下情况:1)当K值增加时,系统稳定性降低,容易出现增幅振荡;2)当T值减小时,系统稳定性降低,容易出现增幅振荡;3)当K和T同时改变时,系统稳定性受到双重影响。
(3)验证稳定性分析方法的有效性使用劳斯-赫尔维茨稳定性判据,分析系统传递函数的极点分布,判断系统是否稳定。
将实验得到的K和T值代入传递函数,计算特征方程的根,判断系统稳定性。
五、实验步骤1. 搭建系统模拟电路,连接实验箱和计算机。
2. 设置实验箱参数,调整K和T的值。
3. 观察系统在受到扰动后的响应情况,记录数据。
4. 使用劳斯-赫尔维茨稳定性判据,分析系统稳定性。
第四章稳定性分析——劳讲义斯判据4-1

21
THANKS
第二步:建立劳斯表(又叫劳斯阵列)。 例:五阶系统,其特征方程:
a 5 s 5 a 4 s 4 a 3 s 3 a 2 s 2 a 1 s a 0 0
9
s5
a5
a3
a1
s4
a4
a2
a0
s3
A1
a4a3 a5a2 a4
A2
a4a1 a5a0 a4
0
s2
B1
A1a 2 a 4 A2 A1
13
s5
1
52
s4
1
51
s3
0 ( )
10
s2
5 1
10
s1 5 1 2 0 0
5 1
s0
1
00
5 1 0
5 12
0
5 1
劳斯表中第一列元素符号的变化两次, 说明特征方程有两个正实部的根,所以系统不 稳定。
14
(2)某一行元素全为零 在劳斯表中,如果出现某一行元素全为零,
说明特征方程存在大小相等符号相反的实根 和(或)共轭虚根,或者共轭复根。
s0 2 0
因劳斯表中第一列元素无符号变化,所以系统稳 定。 令: ss1 1
20
原特征方程,经过整理,得到 s1 特征方程:
s1 35s1 23s110
s
3 1
1
3
s
2 1
5
1
s
1 1
2.8
0
s
0 1
1
0
劳斯表中第一列元素符号变化一次,所以有一 个特征方程根在垂线 s1右边。即有一个根在阴影 区内。
即输出增量收敛于原平衡工作点,线性系统稳定 。
自动控制原理-控制系统稳定性分析及判据

R(s)
+﹣
K
C(s)
s(s+1)(s+2)
解:系统特征方程式 s3 + 3s2 + 2s + K = 0
s3
1
s2
3
2 要使系统稳定,劳斯表中第
K 一列元素均大于零。
s1 (6 K)/3
0< K < 6
s0
2020/10/21
K
3.2.2 劳斯判据
系统稳定的充要条件是:特征方程式的全部系数为正,且由该 方程式作出的劳斯表中第一列全部元素都为正。
若不满足,则不稳定。 劳斯表中第一列元素符号改变的次数,等于相应特征方程式位 于右半s平面上根的个数。
2020/10/21
劳斯表的构造:
D ( s ) a 0 s n a 1 s n 1 a 2 s n 2 a n 1 s a n 0
2020/10/21
3.2.3 劳斯判据的应用
(1)判断系统的稳定性
例1 设有下列特征方程 D(s) = s4 +2s3 + 3s2 + 4s + 5 = 0,试用劳斯 判据判别该特征方程的正实部根的数目。
解:劳斯表 s4
1
s3 2 4
s2
15
6
s1
5
s0
第一列元素 2020/10/21
符号改变了2次,∴系统不稳定,且s
试用劳斯判据判断系统稳定性。
解: 该系统的劳斯表如下
s5
1
32
s4
1
32
s3
0
0
第二种特殊情况:劳斯表中某行元素全为零。此时,特征 方程中存在关于原点对称的根(实根,共轭虚根或共轭复 数根)。对此情况,可作如下处理:
10 系统的稳定性分析Nyquist稳定判据

根据米哈伊洛夫定理推论: arg DK ( j ) n 若闭环也稳定,当由0变化到时:
arg DB ( j ) n
2
2
从而:
argF ( j) argDB ( j) argDK ( j) 0
上式表明,若系统开环稳定,则当由0变化到时, F(j) 的相角变化量等于0 时,系统闭环也稳定。
注意到: F ( j) 1 G( j) H ( j) 即:
G( j ) H ( j ) F ( j ) 1
上式表明,在复平面上将F(j)的轨迹向左移动一 个单位,便得到G(j)H(j) 的轨迹。
Im
=
-1 0
=0
Re
1
G(j)H(j)
F(j)
7.4 乃奎斯特稳定性判据
7.4 乃奎斯特稳定性判据 Im
D(j)
Im
-p
j 0
'
-p
Re
由图易知,当由0变化到时, D(j)逆时针旋转 90°,即相角变化了 /2。 arg D ( j )
2
若特征根为正实根,则当由0变化到时:
arg D ( j )
2
7.4 乃奎斯特稳定性判据
代数稳定性判据判别系统的稳定性,要求必须知 道闭环系统的特征方程,而实际系统的特征方程是 难以写出来的,另外它很难判别系统稳定或不稳定 的程度,也很难知道系统中的各个参数对系统性能 的影响。
两种常用的频域稳定判据:Nyquist稳定判据(简称
乃氏判据)和对数频率稳定判据。
Nyquist判据根据开环幅相曲线判别闭环系统稳定性;
7.4 乃奎斯特稳定性判据
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统的稳定性分析与判据
在信息技术快速发展的背景下,系统的稳定性成为了一个重要的议题。
不论是计算机系统、电力系统还是金融系统,其稳定性都是保证
其正常运行和可靠性的关键。
因此,对系统的稳定性进行分析和判据
是非常必要的。
一、稳定性分析的概念与意义
稳定性分析是指对系统的各个方面进行评估和分析,以确定系统是
否能够在各种条件下保持稳定运行的能力。
系统的稳定性直接关系到
系统的可靠性、可用性和性能,对于用户来说也是一个重要的参考因素。
稳定性分析可以帮助我们了解系统的薄弱环节和潜在问题,并采
取相应的措施来加以改进和完善。
二、稳定性分析的方法与步骤
稳定性分析是一个系统工程,需要综合考虑各个方面的因素。
下面
将介绍稳定性分析的一般方法与步骤。
1. 收集数据
稳定性分析需要收集系统的各种数据,包括系统的架构、硬件配置、软件版本、历史运行数据等。
这些数据将为后续的分析提供基础。
2. 确定评价指标
根据系统的特点和要求,确定适用的评价指标,如系统响应时间、故障率、可用性等。
评价指标的选择应当与系统的功能和使用环境相匹配。
3. 进行问题分析
通过对系统的运行数据和用户反馈进行分析,确定系统存在的问题和潜在的风险。
可以利用统计学方法、故障树分析等手段来找出系统的薄弱环节和关键问题。
4. 制定改进措施
根据问题分析的结果,制定相应的改进措施。
这些措施可以包括改进软件算法、优化硬件配置、增加冗余容量等。
改进措施的制定应当综合考虑成本、可行性和效果。
5. 实施和监控
将改进措施付诸实施,并进行监控和评估。
通过监控系统的运行数据,评估改进措施的效果,不断优化系统的稳定性和性能。
三、稳定性判据的依据与指标
稳定性判据是对系统稳定性进行评判的依据和指标,通常包括以下方面:
1. 故障率
故障率是指系统在一定时间内出现故障的频率。
较低的故障率意味着系统具有更高的稳定性和可靠性。
2. 可用性
可用性是指系统在一定时间内能够正常工作的概率。
高可用性表示系统具有更好的稳定性和可靠性。
3. 响应时间
响应时间是指系统从接收到请求到完成相应操作所需的时间。
较短的响应时间能够提高系统的用户体验和稳定性。
4. 资源利用率
资源利用率是指系统在运行过程中所使用资源的比例。
较高的资源利用率表示系统能够更有效地利用资源,提高稳定性和性能。
综上所述,系统的稳定性分析与判据是保证系统正常运行和可靠性的重要手段。
通过对系统的各个方面进行评估和分析,确定系统存在的问题和潜在的风险,并制定相应的改进措施。
稳定性判据则提供了稳定性评判的依据和指标。
只有通过科学系统的分析和判断,我们才能不断提升系统的稳定性,以满足不断发展的需求。