2021年湖北省荆州市中考数学试卷和答案

合集下载

2021年湖北省荆门市(荆州市)数学中考试题(含答案)

2021年湖北省荆门市(荆州市)数学中考试题(含答案)

4
24.(本题满分 12 分)如图甲,四边形 OABC 的边 OA、OC 分别在 x 轴、y 轴的正半轴上,顶点
在 B 点的抛物线交 x 轴于点 A、D,交 y 轴于点 E,连结 AB、AE、BE.已知 tan∠CBE=
1 3
,A(3,0),D(-1,0),E(0,3).
(1)求抛物线的解析式及顶点 B 的坐标。 (2)求证:CB 是△ABE 外接圆的切线。 (3)试探究坐标轴上是否存在一点 P,使以 D、E、P 为顶点的三角形与△ABE 相似,若存在, 直接写出点 P 的坐标。若不存在,请说明理由。 (4)设△AOE 沿 x 轴正方向平移 t 个单位长度(0<t≤3)时,△AOE 与△ABE 重叠部分的面积 为 s,求 s 与 t 之间的函数关系式,并指出 t 的取值范围.
二、填空题(每填对一题得 3 分,共 15 分)
13.-1 14. 1 2
15.75 3 +360 16.x=3 17.①③④
18.解:原式=1
a a
3 1

a
2 1
.…………………………………………………………5

当 a= 2 +1 时,原式= 2 = 2 .………………………………………………8 分 2 11
E
C
FC
H
B
AB G
αA
D
第 19 题图
20.(本题满分 10 分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某 食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别 用 A、B、C、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样 调查,并将调查情况绘制成如下两幅统计图(尚不完整).[来源:学*科*网Z*X*X*K]

2021年湖北省荆州市中考数学试卷(原卷答案)

2021年湖北省荆州市中考数学试卷(原卷答案)

初中学业水平考试数学试题一、选择题1. 有理数2-的相反数是( )A. 2B. 12 C. 2- D. 12-2. 下列四个几何体中,俯视图与其他三个不同的是( )A. B. C. D. 3. 在平面直角坐标系中,一次函数1y x =+的图像是( )A. B.C. D.4. 将一张矩形纸片折叠成如图所示的图形,若30CAB ︒∠=,则ACB ∠的度数是()A. 45︒B. 55︒C. 65︒D. 75︒5. 八年级学生去距学校10km 的荆州博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度,若设骑车学生的速度为xkm/h,则可列方程为( )A. 1010202x x -=B. 1010202x x -=C. 1010123x x -=D. 1010123x x -=6. 若x 为实数,在)1x 的中添上一种运算符号(在+,-,×、÷中选择) 后,其运算的结果是有理数,则x 不可能的是( )A. 1B. 1C.D. 17.如图,点E 在菱形ABCD 的AB 边上,点F 在BC 边的延长线上,连接CE,DF ,对于下列条件:①BE CF =②,CE AB DF BC ⊥⊥③CE DF =④BCE CDF ∠=∠只选其中一个添加,不能确定的是( )A. ①B. ②C. ③D. ④ 8. 如图,在平面直角坐标系中,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30度,C 为OA 的中点,BC=1,则A 点的坐标为( )A. B. ) C. ()2,1 D. (9. 定义新运算a b *,对于任意实数a,b 满足()()1a b a b a b *=+--,其中等式右边是通常的加法、减法、乘法运算,例如43(43)(43)1716*=+--=-=,若x k x *=(k 为实数) 是关于x 的方程,则它的根的情况是( )A. 有一个实根B. 有两个不相等的实数根C. 有两个相等的实数根D.没有实数根10. 如图,在66⨯ 正方形网格中,每个小正方形的边长都是1,点A,B,C 均在网格交点上,O 是ABC ∆的外接圆,则cos BAC ∠的值是( )A. B. C. 12D. 二、填空题11.若()1012020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a,b,c 的大小关系是_________________.(用<号连接)12.若单项式32m x y 与3m n xy +_____________________.13.已知:ABC ∆,求作ABC ∆的外接圆,作法:①分别作线段BC,AC 的垂直平分线EF 和MN,它们交于点O ;②以点O 为圆心,OB 的长为半径画弧,如图O 即为所求,以上作图用到的数学依据是___________________.14.若标有A,B,C 的三只灯笼按图示悬挂,每次摘取一只(摘B 先摘C ),直到摘完,则最后一只摘到B 的概率是___________.15.“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步,已知此步道外形近似于如图所示的Rt ABC ∆,其中90C ︒∠=,AB 与BC 间另有步道DE 相连,D 地在AB 的正中位置,E 地与C 地相距1km,若3tan ,454ABC DEB ︒∠=∠=,小张某天沿A C E B D A →→→→→路线跑一圈,则他跑了___________________km.16.我们约定:(),,a b c 为函数2y ax bx c =++的关联数,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为(),2,2m m --的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为____________.三、解答题17.先化简,再求值2211121a a a a -⎛⎫-÷ ⎪++⎝⎭:其中a 是不等式组22(1)213(2)a a a a -≥-⎧⎨-<+⎩的最小整数解; 18.阅读下列问题与提示后,将解方程的过程补充完整,求出x 的值问题:解方程2250x x ++=提示:可以用换元法解方程()0t t =≥,则有222x x t +=原方程可化为:2450t t +-=续解:19.如图,将ABC ∆绕点B 顺时针旋转60度得到DBE ∆,点C 的对应点E 恰好落在AB 的延长线上,连接AD.(1)求证://BC AD ;(2)若AB=4,BC=1,求A,C 两点旋转所经过的路径长之和.20.6月26日是“国际禁毒日”某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分),收集数据为:七年级90,95,95,80,85,90,85,90,85100;八年级:85,85,95,80,95,90,90,90,100,90;整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中,,,a b c d 的值(2)通过数据分析,你认为哪个年级的成绩比较好?说明理由;(3)该校七八年级共600人,本次竞赛成绩不低于90分的为“优秀”估计这两个年级共多少名学生达到“优秀”?21.九年级某数学兴趣小组在学习了反比例函数的图像和性质后,进一步研究了函数2y x=的图像与性质,其探究过程如下:(1)绘制函数图像,如图1,列表;下表是x 与y 的几组对应值,其中______m =;描点:根据表中各组对应值(x,y )在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图像,请你把图像补充完整;(2)通过观察图1,写出该函数的两条性质:①_______________;②_______________;(3)①观察发现:如图2,若直线y=2交函数2y x=的图像于A,B 两点,连接OA,过点B 作BC//OA 交x 轴于点C,则________OABC S =;②探究思考:将①的直线y=2改为直线y=a(a>0),其他条件不变,则________OABC S =;③类比猜想:若直线y=a(a>0)交函数(0)k y k x=>的图像于A,B 两点,连接OA,过点B 作BC//OA 交x 轴于C,则________OABC S =;22.如图矩形ABCD 中,AB=20,点E 是BC 上一点,将ABE ∆沿着AE 折叠,点B 刚好落在CD 边上的点G 处,点F 在DG 上,将ADF ∆沿着AF 折叠,点D 刚好落在AG 上点H 处,此时:2:3CFE AFH S S ∆∆=.(1)求证:EGCGFH ∆∆(2)求AD 的长;(3)求tan GFH ∠的值。

湖北省荆州市2021-2023三年中考数学真题分类汇编——选择题知识点分类(含答案)

湖北省荆州市2021-2023三年中考数学真题分类汇编——选择题知识点分类(含答案)

湖北省荆州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.无理数(共2小题)1.(2023•荆州)在实数﹣1,,,3.14中,无理数是( )A.﹣1B.C.D.3.142.(2021•荆州)在实数﹣1,0,,中,无理数是( )A.﹣1B.0C.D.二.实数与数轴(共1小题)3.(2022•荆州)实数a,b,c,d在数轴上对应点的位置如图,其中有一对互为相反数,它们是( )A.a与d B.b与d C.c与d D.a与c三.估算无理数的大小(共1小题)4.(2023•荆州)已知k=(+)•(﹣),则与k最接近的整数为( )A.2B.3C.4D.5四.合并同类项(共1小题)5.(2022•荆州)化简a﹣2a的结果是( )A.﹣a B.a C.3a D.0五.规律型:图形的变化类(共1小题)6.(2022•荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形A n B n∁n D n的面积是( )A.B.C.D.六.同底数幂的除法(共1小题)7.(2023•荆州)下列各式运算正确的是( )A.3a2b3﹣2a2b3=a2b3B.a2•a3=a6C.a6÷a2=a3D.(a2)3=a5七.单项式乘单项式(共1小题)8.(2021•荆州)若等式2a2•a+□=3a3成立,则□填写单项式可以是( )A.a B.a2C.a3D.a4八.由实际问题抽象出二元一次方程组(共1小题)9.(2023•荆州)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还余4.5尺;将绳子对折再量木条,木条余1尺,问木条长多少尺?若设木条长x尺,绳子长y尺,则可列方程组为( )A.B.C.D.九.根的判别式(共2小题)10.(2022•荆州)关于x的方程x2﹣3kx﹣2=0实数根的情况,下列判断正确的是( )A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根11.(2021•荆州)定义新运算“※”:对于实数m,n,p,q.有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x 的方程[x2+1,x]※[5﹣2k,k]=0有两个实数根,则k的取值范围是( )A.k<且k≠0B.k C.k且k≠0D.k≥一十.由实际问题抽象出分式方程(共1小题)12.(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min到达基地,求甲、乙的速度.设甲的速度为3xkm/h,则依题意可列方程为( )A.+=B.+20=C.﹣=D.﹣=20一十一.一次函数图象上点的坐标特征(共1小题)13.(2023•荆州)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A 顺时针旋转90°得到△CAD,则点B的对应点D的坐标是( )A.(2,5)B.(3,5)C.(5,2)D.(,2)一十二.反比例函数与一次函数的交点问题(共2小题)14.(2022•荆州)如图是同一直角坐标系中函数y1=2x和y2=的图象.观察图象可得不等式2x>的解集为( )A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>115.(2021•荆州)已知:如图,直线y1=kx+1与双曲线y2=在第一象限交于点P(1,t),与x轴、y轴分别交于A,B两点,则下列结论错误的是( )A.t=2B.△AOB是等腰直角三角形C.k=1D.当x>1时,y2>y1一十三.反比例函数的应用(共1小题)16.(2023•荆州)已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系(I=).下列反映电流I与电阻R之间函数关系的图象大致是( )A.B.C.D.一十四.平行线的性质(共1小题)17.(2023•荆州)如图所示的“箭头”图形中,AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是( )A.80°B.76°C.66°D.56°一十五.平行线的判定与性质(共1小题)18.(2021•荆州)阅读下列材料,其①~④步中数学依据错误的是( )如图:已知直线b∥c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b∥c(已知)∴∠1=∠2(同位角相等,两直线平行)③∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义)A.①B.②C.③D.④一十六.等腰三角形的性质(共1小题)19.(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( )A.60°B.70°C.80°D.90°一十七.垂径定理的应用(共1小题)20.(2023•荆州)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,则的长为( )A.300πm B.200πm C.150πm D.100πm一十八.圆周角定理(共1小题)21.(2021•荆州)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA 的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y 轴正半轴于点E,连接DE,BE,则∠BED的度数是( )A.15°B.22.5°C.30°D.45°一十九.扇形面积的计算(共2小题)22.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是( )A.﹣B.2﹣πC.D.﹣23.(2021•荆州)如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC长为半径画,点P为菱形内一点,连接PA,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为( )A.B.C.2πD.二十.作图—复杂作图(共1小题)24.(2021•荆州)如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD的交点.根据图中尺规作图痕迹推断,以下结论错误的是( )A .AD =CDB .∠ABP =∠CBPC .∠BPC =115°D .∠PBC =∠A二十一.关于x 轴、y 轴对称的点的坐标(共1小题)25.(2021•荆州)若点P (a +1,2﹣2a )关于x 轴的对称点在第四象限,则a 的取值范围在数轴上表示为( )A .B .C .D .二十二.锐角三角函数的定义(共1小题)26.(2022•荆州)如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,OC :BC =1:2,连接AC ,过点O 作OP ∥AB 交AC 的延长线于P .若P (1,1),则tan ∠OAP 的值是( )A .B .C .D .3二十三.简单组合体的三视图(共2小题)27.(2023•荆州)观察如图所示的几何体,下列关于其三视图的说法正确的是( )A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D.主视图、左视图、俯视图都是中心对称图形28.(2021•荆州)如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A.B.C.D.二十四.方差(共1小题)29.(2022•荆州)从班上13名排球队员中,挑选7名个头高的参加校排球比赛.若这13名队员的身高各不相同,其中队员小明想知道自己能否入选,只需知道这13名队员身高数据的( )A.平均数B.中位数C.最大值D.方差二十五.统计量的选择(共1小题)30.(2023•荆州)为评估一种水稻的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg)分别为x1,x2,…,x10,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是( )A.这组数据的平均数B.这组数据的方差C.这组数据的众数D.这组数据的中位数湖北省荆州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.无理数(共2小题)1.(2023•荆州)在实数﹣1,,,3.14中,无理数是( )A.﹣1B.C.D.3.14【答案】B【解答】解:实数﹣1,,,3.14中,无理数是,故选:B.2.(2021•荆州)在实数﹣1,0,,中,无理数是( )A.﹣1B.0C.D.【答案】D【解答】解:选项A、B:∵﹣1、0是整数,∴﹣1、0是有理数,∴选项A、B不符合题意;选项C:∵是分数,∴是有理数,∴选项C不符合题意;选项D:∵是无限不循环的小数,∴是无理数,∴选项D符合题意.故选:D.二.实数与数轴(共1小题)3.(2022•荆州)实数a,b,c,d在数轴上对应点的位置如图,其中有一对互为相反数,它们是( )A.a与d B.b与d C.c与d D.a与c【答案】C【解答】解:∵c<0,d>0,|c|=|d|,∴c,d互为相反数,故选:C.三.估算无理数的大小(共1小题)4.(2023•荆州)已知k=(+)•(﹣),则与k最接近的整数为( )A.2B.3C.4D.5【答案】B【解答】解:∵k=(+)•(﹣)=×2=2,而1.4<<1.5,∴2.8<2<3,∴与k最接近的整数,3,故选:B.四.合并同类项(共1小题)5.(2022•荆州)化简a﹣2a的结果是( )A.﹣a B.a C.3a D.0【答案】A【解答】解:a﹣2a=(1﹣2)a=﹣a.故选:A.五.规律型:图形的变化类(共1小题)6.(2022•荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形A n B n∁n D n的面积是( )A.B.C.D.【答案】A【解答】解:如图,连接A1C1,D1B1,∵顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1,∴四边形A1BCC1是矩形,∴A1C1=BC,A1C1∥BC,同理,B1D1=AB,B1D1∥AB,∴A1C1⊥B1D1,∴S1=ab,∵顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2,∴C2D2=C1,A2D2=B1D1,∴S2=C1×B1D1=ab,……依此可得S n=,故选:A.六.同底数幂的除法(共1小题)7.(2023•荆州)下列各式运算正确的是( )A.3a2b3﹣2a2b3=a2b3B.a2•a3=a6C.a6÷a2=a3D.(a2)3=a5【答案】A【解答】解:∵3a2b3﹣2a2b3=a2b3,∴选项A运算正确,符合题意;∵a2•a3=a5,∴选项B运算错误,不符合题意;∵a6÷a2=a4,∴选项C运算错误,不符合题意;∵(a2)3=a6,∴选项D运算错误,不符合题意.故选:A.七.单项式乘单项式(共1小题)8.(2021•荆州)若等式2a2•a+□=3a3成立,则□填写单项式可以是( )A.a B.a2C.a3D.a4【答案】C【解答】解:∵等式2a2•a+□=3a3成立,∴2a3+□=3a3,∴□填写单项式可以是:3a3﹣2a3=a3.故选:C.八.由实际问题抽象出二元一次方程组(共1小题)9.(2023•荆州)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还余4.5尺;将绳子对折再量木条,木条余1尺,问木条长多少尺?若设木条长x尺,绳子长y尺,则可列方程组为( )A.B.C.D.【答案】A【解答】解:设木条长x尺,绳子长y尺,所列方程组为:.故选:A.九.根的判别式(共2小题)10.(2022•荆州)关于x的方程x2﹣3kx﹣2=0实数根的情况,下列判断正确的是( )A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根【答案】B【解答】解:∵关于x的方程x2﹣3kx﹣2=0根的判别式Δ=(﹣3k)2﹣4×1×(﹣2)=9k2+8>0,∴x2﹣3kx﹣2=0有两个不相等实数根,故选:B.11.(2021•荆州)定义新运算“※”:对于实数m,n,p,q.有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x 的方程[x2+1,x]※[5﹣2k,k]=0有两个实数根,则k的取值范围是( )A.k<且k≠0B.k C.k且k≠0D.k≥【答案】C【解答】解:根据题意得k(x2+1)+(5﹣2k)x=0,整理得kx2+(5﹣2k)x+k=0,因为方程有两个实数解,所以k≠0且Δ=(5﹣2k)2﹣4k2≥0,解得k≤且k≠0.故选:C.一十.由实际问题抽象出分式方程(共1小题)12.(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min到达基地,求甲、乙的速度.设甲的速度为3xkm/h,则依题意可列方程为( )A.+=B.+20=C.﹣=D.﹣=20【答案】A【解答】解:由题意可知,甲的速度为3xkm/h,则乙的速度为4xkm/h,+=,即+=,故选:A.一十一.一次函数图象上点的坐标特征(共1小题)13.(2023•荆州)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A 顺时针旋转90°得到△CAD,则点B的对应点D的坐标是( )A.(2,5)B.(3,5)C.(5,2)D.(,2)【答案】C【解答】解:当x=0时,y=﹣x+3=3,则B点坐标为(0,3);当y=0时,﹣x+3=0,解得x=2,则A点坐标为(2,0),则OA=2,OB=3,∵△AOB绕点A顺时针旋转90°后得到△ACD,∴∠OAC=90°,∠ACD=∠AOB=90°,AC=AO=2,CD=OB=3,即AC⊥x轴,CD∥x轴,∴点D的坐标为(5,2).故选:C.一十二.反比例函数与一次函数的交点问题(共2小题)14.(2022•荆州)如图是同一直角坐标系中函数y1=2x和y2=的图象.观察图象可得不等式2x>的解集为( )A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>1【答案】D【解答】解:由图象,函数y1=2x和y2=的交点横坐标为﹣1,1,∴当﹣1<x<0或x>1时,y1>y2,即2x>,故选:D.15.(2021•荆州)已知:如图,直线y1=kx+1与双曲线y2=在第一象限交于点P(1,t),与x轴、y轴分别交于A,B两点,则下列结论错误的是( )A.t=2B.△AOB是等腰直角三角形C.k=1D.当x>1时,y2>y1【答案】D【解答】解:∵点P(1,t)在双曲线y2=上,∴t==2,正确;∴A选项不符合题意;∴P(1,2).∵P(1,2)在直线y1=kx+1上,∴2=k+1.∴k=1,正确;∴C选项不符合题意;∴直线AB的解析式为y=x+1令x=0,则y=1,∴B(0,1).∴OB=1.令y=0,则x=﹣1,∴A(﹣1,0).∴OA=1.∴OA=OB.∴△OAB为等腰直角三角形,正确;∴B选项不符合题意;由图象可知,当x>1时,y1>y2.∴D选项不正确,符合题意.故选:D.一十三.反比例函数的应用(共1小题)16.(2023•荆州)已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系(I=).下列反映电流I与电阻R之间函数关系的图象大致是( )A.B.C.D.【答案】D【解答】解:∵电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=),R、I均大于0,∴反映电流I与电阻R之间函数关系的图象大致是D选项,故选:D.一十四.平行线的性质(共1小题)17.(2023•荆州)如图所示的“箭头”图形中,AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是( )A.80°B.76°C.66°D.56°【答案】C【解答】解:延长AB交EG于M,延长CD交FG于N,过G作GK∥AB,∵AB∥CD,∴GK∥CD,∴∠KGM=∠EMB,∠KGN=∠DNF,∴∠KGM+∠KGN=∠EMB+∠DNF,∴∠EGF=∠EMB+∠DNF,∵∠ABE=80°,∠E=47°,∴∠EMB=∠ABE﹣∠E=33°,同理:∠DNF=33°,∴∠EGF=∠EMB+∠DNF=33°+33°=66°.故选:C.一十五.平行线的判定与性质(共1小题)18.(2021•荆州)阅读下列材料,其①~④步中数学依据错误的是( )如图:已知直线b∥c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b∥c(已知)∴∠1=∠2(同位角相等,两直线平行)③∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义)A.①B.②C.③D.④【答案】B【解答】证明:①∵a⊥b(已知),∴∠1=90°(垂直的定义),②又∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等),③∴∠2=∠1=90°(等量代换),∴a⊥c(垂直的定义),①~④步中数学依据错误的是②,故选:B.一十六.等腰三角形的性质(共1小题)19.(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( )A.60°B.70°C.80°D.90°【答案】B【解答】解:过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=(180°﹣∠BAC)=70°,∴∠1+∠2=70°.故选:B.一十七.垂径定理的应用(共1小题)20.(2023•荆州)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,则的长为( )A.300πm B.200πm C.150πm D.100πm【答案】B【解答】解:如图所示:∵OB⊥AC,∴AD=AC=150m,∠AOC=2AOB,在Rt△AOD中,∵AD2+OD2=OA2,OA=OB,∴AD2+(OA﹣BD)2=OA2,∴+(OA﹣150)22=OA2,解得:OA=300m,∴sin∠AOB==,∴∠AOB=60°,∴∠AOC=120°,∴的长==200πm.故选:B.一十八.圆周角定理(共1小题)21.(2021•荆州)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA 的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y 轴正半轴于点E,连接DE,BE,则∠BED的度数是( )A.15°B.22.5°C.30°D.45°【答案】C【解答】解:如图,连接OB,∵A(2,0),D(4,0),矩形OABC,∴OA=2,OD=4=OB,∴sin∠OBA==,∴∠OBA=30°,∴∠BOD=90°﹣30°=60°,∴∠BED=∠BOD=×60°=30°,故选:C.一十九.扇形面积的计算(共2小题)22.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是( )A.﹣B.2﹣πC.D.﹣【答案】D【解答】解:由题意,以A为圆心、一定的长为半径画弧,恰好与BC边相切,设切点为F,连接AF,则AF⊥BC.在等边△ABC中,AB=AC=BC=2,∠BAC=60°,∴CF=BF=1.在Rt△ACF中,AF==,∴S阴影=S△ABC﹣S扇形ADE=×2×﹣=﹣,故选:D.23.(2021•荆州)如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC长为半径画,点P为菱形内一点,连接PA,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为( )A.B.C.2πD.【答案】A【解答】解:连接AC,延长AP,交BC于E,在菱形ABCD中,∠D=60°,AB=2,∴∠ABC=∠D=60°,AB=BC=2,∴△ABC是等边三角形,∴AB=AC,在△APB和△APC中,,∴△APB≌△APC(SSS),∴∠PAB=∠PAC,∴AE⊥BC,BE=CE=1,∵△BPC为等腰直角三角形,∴PE=BC=1,在Rt△ABE中,AE=AB=,∴AP=﹣1,∴S阴影=S扇形ABC﹣S△PAB﹣S△PBC=﹣(﹣1)×1﹣=π﹣,故选:A.二十.作图—复杂作图(共1小题)24.(2021•荆州)如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD的交点.根据图中尺规作图痕迹推断,以下结论错误的是( )A.AD=CD B.∠ABP=∠CBP C.∠BPC=115°D.∠PBC=∠A 【答案】D【解答】解:由作图可知,点D在AC的垂直平分线上,∴DA=DC,故选项A正确,∴∠A=∠ACD=40°,由作图可知,BP平分∠ABC,∴∠ABP=∠CBP,故选项B正确,∵AB=AC,∠A=40°,∴∠ABC=∠ACB=(180°﹣40°)=70°,∵∠PBC=∠ABC=35°,∠PCB=∠ACB﹣∠ACD=30°,∴∠BPC=180°﹣35°﹣30°=115°,故选项C正确,若∠PBC=∠A,则∠A=36°,显然不符合题意.故选:D.二十一.关于x轴、y轴对称的点的坐标(共1小题)25.(2021•荆州)若点P(a+1,2﹣2a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示为( )A.B.C.D.【答案】C【解答】解:∵点P(a+1,2﹣2a)关于x轴的对称点在第四象限,∴点P在第一象限,∴,解得:﹣1<a<1,在数轴上表示为:,故选:C.二十二.锐角三角函数的定义(共1小题)26.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )A.B.C.D.3【答案】C【解答】解:如图,过点P作PQ⊥x轴于点Q,∵OP∥AB,∴△OCP∽△BCA,∴CP:AC=OC:BC=1:2,∵∠AOC=∠AQP=90°,∴CO∥PQ,∴OQ:AO=CP:AC=1:2,∵P(1,1),∴PQ=OQ=1,∴AO=2,∴tan∠OAP===.故选:C.二十三.简单组合体的三视图(共2小题)27.(2023•荆州)观察如图所示的几何体,下列关于其三视图的说法正确的是( )A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D.主视图、左视图、俯视图都是中心对称图形【答案】C【解答】解:该几何体的主视图是轴对称图形,不是中心对称图形,A选项不符合题意;该几何体的左视图是轴对称图形,不是中心对称图形,B选项不符合题意;该几何体的俯视图是中心对称图形,又是轴对称图形,C选项符合题意;主视图和左视图是轴对称图形,不是中心对称图形,D选项不符合题意;故选:C.28.(2021•荆州)如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A.B.C.D.【答案】A【解答】解:从上边看,是一个矩形,矩形的内部有一个与矩形两边相切的圆.故选:A.二十四.方差(共1小题)29.(2022•荆州)从班上13名排球队员中,挑选7名个头高的参加校排球比赛.若这13名队员的身高各不相同,其中队员小明想知道自己能否入选,只需知道这13名队员身高数据的( )A.平均数B.中位数C.最大值D.方差【答案】B【解答】解:共有13名排球队员,挑选7名个头高的参加校排球比赛,所以小明需要知道自己是否入选.我们把所有同学的身高按大小顺序排列,第7名学生的身高是这组数据的中位数,所以小明知道这组数据的中位数,才能知道自己是否入选.故选:B.二十五.统计量的选择(共1小题)30.(2023•荆州)为评估一种水稻的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg)分别为x1,x2,…,x10,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是( )A.这组数据的平均数B.这组数据的方差C.这组数据的众数D.这组数据的中位数【答案】B【解答】解:标准差,方差能反映数据的波动程度,故选:B.。

荆州市2021年中考数学试卷及答案(Word解析版)

荆州市2021年中考数学试卷及答案(Word解析版)

湖北省荆州市2021年中考数学试卷一、选择题〔本大题共10小题,每题只有唯一正确答案.每题3分,共30分〕1.〔3分〕〔2021•荆州〕假设□×〔﹣2〕=1,那么□内填一个实数应该是〔〕A.B.2C.﹣2 D.﹣考点:有理数的乘法分析:根据乘积是1的两个数互为倒数解答.解答:解:∵﹣×〔﹣2〕=1,∴□内填一个实数应该是﹣.应选D.点评:此题考查了有理数的乘法,是根底题,注意利用了倒数的定义.2.〔3分〕〔2021•荆州〕以下运算正确的选项是〔〕A.3﹣1=﹣3 B.=±3 C.〔ab2〕3=a3b6D.a6÷a2=a3考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂分析:运用负整数指数幂的法那么运算,开平方的方法,同底数幂的除法以及幂的乘方计算.解答:解:A、3﹣1=≠3a,故A选项错误;B、=3≠±3,故B选项错误;C、〔ab2〕3=a3b6故C选项正确;D、a6÷a2=a4≠a3,故D选项错误.应选:C.点评:此题考查了负整数指数幂的运算,开平方,同底数幂的除法以及幂的乘方等知识,解题要注意细心.3.〔3分〕〔2021•荆州〕如图,AB∥ED,AG平分∠BAC,∠ECF=70°,那么∠FAG的度数是〔〕A.155°B.145°C.110°D.35°考点:平行线的性质.分析:首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.应选:B.点评:此题考查了平行线的性质.根据“两直线平行,内错角相等〞求得∠BAC的度数是解题的难点.4.〔3分〕〔2021•荆州〕将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是〔〕A.y=〔x﹣4〕2﹣6 B.y=〔x﹣4〕2﹣2 C.y=〔x﹣2〕2﹣2 D.y=〔x﹣1〕2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为〔3,﹣4〕,再把点〔3,﹣4〕向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为〔4,﹣2〕,然后根据顶点式写出平移后的抛物线解析式.解答:解:y=x2﹣6x+5=〔x﹣3〕2﹣4,即抛物线的顶点坐标为〔3,﹣4〕,把点〔3,﹣4〕向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为〔4,﹣2〕,所以平移后得到的抛物线解析式为y=〔x﹣4〕2﹣2.应选B.点评:此题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.〔3分〕〔2021•荆州〕α是一元二次方程x2﹣x﹣1=0较大的根,那么下面对α的估计正确的选项是〔〕A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,应选C.点评:此题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比拟典型的题目,难度适中.6.〔3分〕〔2021•荆州〕如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.以下添加的条件其中错误的选项是〔〕A.∠ACD=∠DAB B.A D=DE C.A D2=BD•CD D.A D•AB=AC•BD考点:相似三角形的判定;圆周角定理.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故本选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故本选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故本选项正确;D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.应选D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.7.〔3分〕〔2021•荆州〕如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,那么关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的选项是〔〕A.B.C.D.考点:一次函数与一元一次不等式;在数轴上表示不等式的解集.专题:数形结合.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.应选A.点评:此题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于〔或小于〕0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上〔或下〕方局部所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.8.〔3分〕〔2021•荆州〕点P〔1﹣2a,a﹣2〕关于原点的对称点在第一象限内,且a为整数,那么关于x的分式方程=2的解是〔〕A.5B.1C.3D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P〔1﹣2a,a﹣2〕关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,那么方程的解为3.应选C点评:此题考查了解分式方程,解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.〔3分〕〔2021•荆州〕如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,那么第n个三角形中以A n为顶点的内角度数是〔〕A.〔〕n•75°B.〔〕n﹣1•65°C.〔〕n﹣1•75°D.〔〕n•85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=〔〕2×75°,∠FA4A3=〔〕3×75°,∴第n个三角形中以A n为顶点的内角度数是〔〕n﹣1×75°.应选:C.点评:此题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.10.〔3分〕〔2021•荆州〕如图,圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,那么这圈金属丝的周长最小为〔〕A.4dm B.2dm C.2dm D.4dm考点:平面展开-最短路径问题.分析:要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短〞得出结果,在求线段长时,根据勾股定理计算即可.解答:解:如图,把圆柱的侧面展开,得到矩形,那么那么这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2,∴这圈金属丝的周长最小为2AC=4cm.应选A.点评:此题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,此题就是把圆柱的侧面展开成矩形,“化曲面为平面〞,用勾股定理解决.二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3分〕〔2021•荆州〕化减×﹣4××〔1﹣〕0的结果是.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:先把各二次根式化为最简二次根式,再根据二次根式的乘法法那么和零指数幂的意义计算得到原式=2﹣,然后合并即可.解答:解:原式=2×﹣4××1=2﹣=.故答案为.点评:此题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.12.〔3分〕〔2021•荆州〕假设﹣2x m﹣n y2与3x4y2m+n是同类项,那么m﹣3n的立方根是2.考点:立方根;合并同类项;解二元一次方程组.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:假设﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×〔﹣2〕=8.8的立方根是2.故答案为2.点评:此题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n 的值.13.〔3分〕〔2021•荆州〕如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为〔0,1〕,那么点E的坐标是〔,〕.考点:位似变换;坐标与图形性质.分析:由题意可得OA:OD=1:,又由点A的坐标为〔1,0〕,即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为〔1,0〕,即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:〔,〕.故答案为:〔,〕.点评:此题考查了位似变换的性质与正方形的性质.此题比拟简单,注意理解位似变换与相似比的定义是解此题的关键.14.〔3分〕〔2021•荆州〕我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,那么x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.分析:设x=,那么x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,那么x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,解方程得:x=.故答案为.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.15.〔3分〕〔2021•荆州〕如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,那么任意闭合其中两个开关,小灯泡发光的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,那么小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故答案为:.点评:此题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.〔3分〕〔2021•荆州〕如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影局部是一个以格点为顶点的正方形〔简称格点正方形〕.假设再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,那么这个格点正方形的作法共有4种.考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案.解答:解:如下图:这个格点正方形的作法共有4种.故答案为:4.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握中心对称以及轴对称图形的定义是解题关键.17.〔3分〕〔2021•荆州〕如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.假设的长为,那么图中阴影局部的面积为.考点:切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算.分析:求图中阴影局部的面积,就要从图中分析阴影局部的面积是由哪几局部组成的.很显然图中阴影局部的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.点评:此题主要考查了扇形的面积计算方法,不规那么图形的面积通常转化为规那么图形的面积的和差.18.〔3分〕〔2021•荆州〕如图,点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=〔k<0〕上运动,那么k的值是﹣6.考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为〔a,b〕那么ab=2,可得FC•OF=6.设点C坐标为〔x,y〕,从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=OB.连接OC,如下图.∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°.∴tan∠OAC==.∴OC=OA.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OFC.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为〔a,b〕,∵点A在第一象限,∴AE=a,OE=b.∴OF=AE=a,FC=EO=b.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为〔x,y〕,∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•〔﹣y〕=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:此题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答此题的关键.三、解答题〔本大题共7题,共66分〕19.〔7分〕〔2021•荆州〕先化简,再求值:〔〕÷,其中a,b满足+|b﹣|=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=[﹣]•=•=,∵+|b﹣|=0,∴,解得:a=﹣1,b=,那么原式=﹣.点评:此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法那么是解此题的关键.20.〔8分〕〔2021•荆州〕如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,那么有DF=BE〔不必证明〕.将正方形ABCD绕点A逆时针旋转一定角度α〔0°<α<90°〕后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:根据旋转角求出∠FAD=∠EAB,然后利用“边角边〞证明△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF.解答:解:DF=BE还成立;理由:∵正方形ABCD绕点A逆时针旋转一定角度α,∴∠FAD=∠EAB,在△ADF与△ABE中∴△ADF≌△ABE〔SAS〕∴DF=BE.点评:此题考查了旋转的性质,正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质求出三角形全等是解题的关键.21.〔8分〕〔2021•荆州〕钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.假设甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.〔参考数据:cos59°≈0.52,sin46°≈0.72〕考点:解直角三角形的应用-方向角问题.分析:作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,分别在Rt△ACD中,和在Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比拟即可确定答案解答:解:如图,作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,∵在Rt△ACD中,=cos∠ACD,∴AC==≈1.92a;∵在Rt△BCD中,=cos∠BCD,∴BC==≈1.39a;∵其平均速度分别是20海里/小时,18海里/小时,∴1.92a÷20=0.096a.1.39a÷18=0.077a,∵a>0,∴0.096a>0.077a,∴乙先到达.点评:此题考查了解直角三角形的应用,解决此题的关键在于设出未知数a,使得运算更加方便,难度中等.22.〔9分〕〔2021•荆州〕我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门〞知识竞赛,计分采用10分制,选手得分均为整数,成绩到达6分或6分以上为合格,到达9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%〔1〕请依据图表中的数据,求a,b的值;〔2〕直接写出表中的m,n的值;〔3〕有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.考点:条形统计图;统计表;加权平均数;中位数;方差.专题:计算题.分析:〔1〕根据题中数据求出a与b的值即可;〔2〕根据〔1〕a与b的值,确定出m与n的值即可;〔3〕从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.解答:解:〔1〕根据题意得:a=5,b=1;〔2〕七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;〔3〕八年级平均分高于七年级,方差小于七年级,成绩比拟稳定,故八年级队比七年级队成绩好.点评:此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解此题的关键.23.〔10分〕〔2021•荆州〕我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.假设供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.〔1〕试确定月销售量y〔台〕与售价x〔元/台〕之间的函数关系式;并求出自变量x的取值范围;〔2〕当售价x〔元/台〕定为多少时,商场每月销售这种空气净化器所获得的利润w〔元〕最大?最大利润是多少?考点:二次函数的应用.分析:〔1〕根据题中条件销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.〔2〕用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;解答:解:〔1〕根据题中条件销售价每降低10元,月销售量就可多售出50千克,那么月销售量y〔台〕与售价x〔元/台〕之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,那么,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200〔300≤x≤350〕;〔2〕W=〔x﹣200〕〔﹣5x+2200〕,整理得:W=﹣5〔x﹣320〕2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.点评:此题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.24.〔12分〕〔2021•荆州〕:函数y=ax2﹣〔3a+1〕x+2a+1〔a为常数〕.〔1〕假设该函数图象与坐标轴只有两个交点,求a的值;〔2〕假设该函数图象是开口向上的抛物线,与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,与y轴相交于点C,且x2﹣x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.考点:二次函数综合题.分析:〔1〕根据a取值的不同,有三种情形,需要分类讨论,防止漏解.〔2〕①函数与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,那么x1,x2,满足y=0时,方程的根与系数关系.因为x2﹣x1=2,那么可平方,用x1+x2,x1x2表示,那么得关于a的方程,可求,并得抛物线解析式.②解析式那么可得A,B,C,D坐标,求sin∠DCB,须作垂线构造直角三角形,结论易得.解答:解:〔1〕函数y=ax2﹣〔3a+1〕x+2a+1〔a为常数〕,假设a=0,那么y=﹣x+1,与坐标轴有两个交点〔0,1〕,〔1,0〕;假设a≠0且图象过原点时,2a+1=0,a=﹣,有两个交点〔0,0〕,〔1,0〕;假设a≠0且图象与x轴只有一个交点时,令y=0有:△=〔3a+1〕2﹣4a〔2a+1〕=0,解得a=﹣1,有两个交点〔0,﹣1〕,〔1,0〕.综上得:a=0或﹣或﹣1时,函数图象与坐标轴有两个交点.〔2〕①∵函数与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,∴x1,x2为ax2﹣〔3a+1〕x+2a+1=0的两个根,∴x1+x2=,x1x2=,∵x2﹣x1=2,∴4=〔x2﹣x1〕2=〔x1+x2〕2﹣4x1x2=〔〕2﹣4•,解得a=﹣〔函数开口向上,a>0,舍去〕,或a=1,∴y=x2﹣4x+3.②∵函数y=x2﹣4x+3与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,与y轴相交于点C,且x1<x2,∴A〔1,0〕,B〔3,0〕,C〔0,3〕,∵D为A关于y轴的对称点,∴D〔﹣1,0〕.根据题意画图,如图1,过点D作DE⊥CB于E,∵OC=3,OB=3,OC⊥OB,∴△OCB为等腰直角三角形,∴∠CBO=45°,∴△EDB为等腰直角三角形,设DE=x,那么EB=x,∵DB=4,∴x2+x2=42,∴x=2,即DE=2.在Rt△COD中,∵DO=1,CO=3,∴CD==,∴sin∠DCB==.点评:此题考查了二次函数图象交点性质、韦达定理、特殊三角形及三角函数等知识,题目考法新颖,但内容常规根底,是一道非常值得考生练习的题目.25.〔12分〕〔2021•荆州〕如图①,:在矩形ABCD的边AD上有一点O,OA=,以O 为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.假设点E是CD边上一动点〔点E与C,D不重合〕,过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG与矩形ABCD 重叠局部的面积为S.〔1〕求证:四边形ABHP是菱形;〔2〕问△EFG的直角顶点G能落在⊙O上吗?假设能,求出此时x的值;假设不能,请说明理由;〔3〕求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.考点:圆的综合题;含30度角的直角三角形;菱形的判定;矩形的性质;垂径定理;切线的性质;切线长定理;轴对称的性质;特殊角的三角函数值.专题:压轴题.分析:〔1〕连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.〔2〕当点G落到AD上时,可以证到点G与点M重合,可求出x=2.〔3〕当0≤x≤2时,如图①,S=S△EGF,只需求出FG,就可得到S与x之间的函数关系式;当2<x≤3时,如图④,S=S△GEF﹣S△SGR,只需求出SG、RG,就可得到S与x之间的函数关系式.当FG与⊙O相切时,如图⑤,易得FK=AB=3,KQ=AQ﹣AK=2﹣2+x.再由FK=KQ即可求出x,从而求出S.解答:解:〔1〕证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.〔2〕△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.〔3〕①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣〔6﹣2x〕=3x﹣6.∵tan∠SRG===,∴SG=〔x﹣2〕.∴S△SGR=SG•RG=•〔x﹣2〕•〔3x﹣6〕.=〔x﹣2〕2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣〔x﹣2〕2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=〔+2〕﹣〔3﹣x〕=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=〔2﹣2+x〕.解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×〔3﹣〕2=﹣6.∴FG与⊙O相切时,S的值为﹣6.点评:此题考查了矩形的性质、菱形的性质、切线的性质、切线长定理、垂径定理、轴对称性质、特殊角的三角函数值、30°角所对的直角边等于斜边的一半、等腰三角形的性质等知识,综合性非常强.。

湖北省荆州市2021版中考数学试卷B卷

湖北省荆州市2021版中考数学试卷B卷
12. (1分) 方程组 的解为 ________.
13. (1分) 如图是一个中心对称图形,A为对称中心,若∠C=90°,BC=4,A C=3,则BB'的长为________.
14. (1分) (2019八上·皇姑期末) 如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为________.
20. (5分) (2016八上·平谷期末) 计算: .
21. (7分) (2015九上·宝安期末) 某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).
(1) 该同学从5个项目中任选一个,恰好是田赛项目的概率P为________;
A .
B .
C . 或
D . 或
10. (2分) (2017·岱岳模拟) 如图,将正方形纸片ABCD沿FH折叠,使点D与AB的中点E重合,则△FAE与△EBG的面积之比为( )
A . 4:9
B . 2:3
C . 3:4
DБайду номын сангаас. 9:16
二、 填空题: (共6题;共25分)
11. (1分) 计算:(﹣3)0+3﹣1= ________ .
(1) 请直接写出二次函数y=ax2+ x+c的表达式;
(2) 判断△ABC的形状,并说明理由;
(3) 若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;
(4) 若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.

湖北省荆州市2021版中考数学试卷(I)卷

湖北省荆州市2021版中考数学试卷(I)卷

湖北省荆州市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、填空题 (共8题;共8分)1. (1分)已知|a|=1,|b|=2,且a、b异号,则3a+b=________.2. (1分) (2017八上·台州期末) 分解因式:m2﹣16=________.3. (1分) (2019八下·伊春开学考) 分式有意义的条件是________.4. (1分)(2014·韶关) 据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为________.5. (1分)(2018·井研模拟) 小明和他的爸爸、妈妈共3人站成一排拍照,他的爸爸、妈妈相邻的概率是________6. (1分) (2015七上·永定期中) 若a与b互为相反数,c与d互为倒数,则(a+b)3﹣3(cd)2015=________.7. (1分) (2017七下·邗江期中) 如图,已知DE∥BC,DC平分∠EDB,∠ADE=80°,则∠BCD=________°.8. (1分)满足﹣2x>﹣12的非负整数有________.二、选择题 (共10题;共20分)9. (2分)若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A . 3B . -5C . 7D . 7或﹣110. (2分)下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A .B .C .D .11. (2分)(2018·陆丰模拟) 在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、x、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A . 100B . 90C . 80D . 7012. (2分)不等式组:的解集在数轴上表示正确的是()A .B .C .D .13. (2分) (2018八下·深圳月考) 如图,已知正比例函数y1=ax与一次函数y2= x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2 .其中正确的是()A . ①②B . ②③C . ①③D . ①④14. (2分)下列说法错误的是()A . 关于某直线对称的两个图形一定能完全重合B . 全等的两个三角形一定关于某直线对称C . 轴对称图形的对称轴至少有一条D . 线段是轴对称图形15. (2分)已知直线l与半径为2的⊙O的位置关系是相离,则点O到直线l的距离的取值范围表示正确的是()A . d>2B . 0<d<2C . d≥2D . 0≤d≤216. (2分)(2015·江岸) 方程x2+2x-4=0的两根为x1 , x2 ,则x1+x2的值为()A . 2B . -2C .D . -17. (2分)(2016·随州) 如图,直线a∥b,直线c分别与a、b相交于A、B两点,AC⊥AB于点A,交直线b于点C.已知∠1=42°,则∠2的度数是()A . 38°B . 42°C . 48°D . 58°18. (2分) (2016九上·微山期中) 如图,AB是⊙D的直径,AD切⊙D于点A,EC=CB.则下列结论:①BA⊥DA;②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正确的个数有()A . 4个B . 3个C . 2个D . 1个三、解答题 (共8题;共89分)19. (5分)(2017·丰台模拟) 计算:﹣(4﹣π)0+cos60°﹣| ﹣3|.20. (5分) (2017七下·靖江期中) 已知方程组和有相同的解,求a2﹣2ab+b2的值.21. (12分)(2018·柘城模拟) 综合题(1)【问题发现】如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE,填空:①∠AEB的度数为________ ;②线段AD、BE之间的数量关系是________ .(2)【拓展探究】如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)【解决问题】如图3,在正方形ABCD中,CD= .若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.22. (11分)(2017·河源模拟) 某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有________名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?23. (16分)如图,P是∠AOB的边OB上一点.(1)过点P画OA的垂线,垂足为H;(2)过点P画OB的垂线,交OA于点C;(3)点O到直线PC的距离是线段________的长度;(4)比较PH与CO的大小,并说明理由.24. (15分) (2018九上·江都月考) 问题提出图① 图②图③(1)如图①,在△ABC中,∠A=120°,AB=AC=5,求△ABC的外接圆半径R的值。

2021年荆州市中考数学试卷含答案解析

2021年荆州市中考数学试卷含答案解析

2021年荆州市中考数学试卷含答案解析2021年湖北省荆州市中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3.00分后)以下代数式中,整式为()a.x+1b.c.d.2.(3.00分)如图,两个实数互为相反数,在数轴上的对应点分别是点a、点b,则下列说法正确的是()a.原点在点a的左边b.原点在线段ab的中点处为c.原点在点b的右边d.原点可以在点a或点b上3.(3.00分后)以下排序恰当的就是()a.3a24a2=a2b.a2?a3=a6c.a10÷a5=a2d.(a2)3=a64.(3.00分后)例如图,两条直线l1∥l2,rt△acb中,∠c=90°,ac=bc,顶点a、b分别在l1和l2上,∠1=20°,则∠2的度数就是()a.45°b.55°c.65°d.75°5.(3.00分)解分式方程3=时,去分母可得()a.13(x2)=4b.13(x2)=4c.13(2x)=4d.13(2x)=46.(3.00分)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()a.c.b.d.7.(3.00分)已知:将直线y=x1向上平移2个单位长度后得到直线y=kx+b,则以下关于直线y=kx+b的观点恰当的就是()a.经过第一、二、四象限b.与x轴处设(1,0)c.与y轴处设(0,1)d.y随x的减小而增大8.(3.00分)如图,将一块菱形abcd硬纸片固定后进行投针训练.已知纸片上ae⊥bc于e,cf⊥ad于f,sind=.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是()a.b.c.d.9.(3.00分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()a.本次抽样调查的样本容量就是5000b.扇形图中的m为10%c.样本中选择公共交通出行的有2500人d.若“五一”期间至荆州观光的游客存有50万人,则挑选自驾游方式乘车的存有25万人10.(3.00分)如图,平面直角坐标系中,⊙p经过三点a(8,0),o(0,0),b (0,6),点d是⊙p上的一动点.当点d到弦ob的距离最大时,tan∠bod的值是()a.2b.3c.4d.5二、填空题(本大题共8小题,每小题3分后,共24分后)11.(3.00分后)排序:|2|+()1+tan45°=.12.(3.00分后)未知:∠aob,求作:∠aob的平分线.作法:①以点o为圆心,适度短为半径画弧,分别交oa,ob于点m,n;②分别以点m,n为圆心,大于mn的短为半径画弧,两弧在∠aob内部处设点c;③画射线oc.射线oc即为所求.上述作图使用了全等三角形的认定方法,这个方法就是.13.(3.00分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2021次输出的结果是.14.(3.00分后)荆州市滨江公园旁的万寿宝塔始创于明嘉靖年间,周边风景秀丽.现在塔底高于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面a处测得塔顶的仰角为30°,再向古塔方向前进a米后抵达b处为,在b处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).15.(3.00分后)为了比较+1与的大小,可以结构如图所示的图形展开测算,+1.(填上其中∠c=90°,bc=3,d在bc上且bd=ac=1.通过计算可得“>”或“<”或“=”)16.(3.00分后)关于x的一元二次方程x22kx+k2k=0的两个实数根分别就是x1、x2,且x12+x22=4,则x12x1x2+x22的值就是.17.(3.00分)如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为cm(圆锥的壁厚忽略不计).18.(3.00分后)例如图,正方形abcd的对称中心在座标原点,ab∥x轴,ad、bc分别与x轴处设e、f,相连接be、df,若正方形abcd存有两个顶点在双曲线y=上,实数a满足用户a3a=1,则四边形debf的面积就是.三、解答题(本大题共7小题,共66分)19.(10.00分后)(1)谋不等式组的整数求解;(2)先化简,后求值(1)÷,其中a=+1.20.(8.00分后)为了出席“荆州市中小学生首届诗词大会”,某校八年级的两班学生展开了初选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级八(1)八(2)平均分85a中位数b85众数c85方差22.819.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你指出哪个班前5名同学的成绩较好?表明理由.21.(8.00分后)例如图,对折矩形纸片abcd,并使ab与dc重合,获得折痕mn,将纸片展平;再一次卷曲,使点d落在mn上的点f处为,折痕ap交mn于e;缩短pf交ab于g.澄清:(1)△afg≌△afp;(2)△apg为等边三角形.22.(8.00分)探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为,它的另一条性质为;xy……1223……(2)请用配方法求函数y=x+(x >0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为.23.(10.00分后)问题:未知α、β均为锐角,tanα=,tanβ=,谋α+β的度数.探究:(1)用6个大正方形结构如图所示的网格图(每个大正方形的边长均为1),恳请利用这个网格图求出来α+β的度数;延伸:(2)设经过图中m、p、h三点的圆弧与ah交于r,求的弧长.24.(10.00分)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形abcd空地中,垂直于墙的边ab=xm,面积为ym2(如图).(1)谋y与x之间的函数关系式,并写下自变量x的值域范围;(2)若矩形空地的面积为160m2,谋x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲140.4乙161丙280.4单价(元/棵)合理用地(m2/棵)25.(12.00分)阅读理解:在平面直角坐标系中,若两点p、q的坐标分别是p(x1,y1)、q(x2,y2),则p、q这两点间的距离为|pq|=2),q(3,4),则|pq|==2..如p(1,。

湖北省荆州市2021年中考数学试卷D卷(新版)

湖北省荆州市2021年中考数学试卷D卷(新版)

湖北省荆州市2021年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·慈溪期末) 如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A .B .C .D .2. (2分)给出下列说法:两条直线被第三条直线所截,同位角相等;平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;相等的两个角是对顶角;从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有()A . 0个B . 1个C . 2个D . 3个3. (2分)(2017·吉安模拟) 数据2,0,17,6,17的中位数及众数分别是()A . 0,6B . 2,6C . 6,17D . 2,174. (2分)若式子在实数范围内有意义,则x的取值范围是()A . x≥B . x>C . x≥D . x>5. (2分)如图,已知等边△ABC的面积为1,D、E分别为AB、AC的中点,若向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑落在线上的情形)()A .B .C .D .6. (2分)(2018·德州) 如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A .B .C .D .7. (2分)(2018·嘉兴模拟) 一元二次方程根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根8. (2分) (2019九上·随县期中) 已知两点M(6,y1),N(2,y2)均在抛物线y=ax2+bx+c(a≠0)上,点P(x0 , y0)是抛物线的顶点,若y0≤y2<y1 ,则x0的取值范围是()A . x0<4B . x0>﹣2C . ﹣6<x0<﹣2D . ﹣2<x0<29. (2分)(2017·肥城模拟) 如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是()A . 10 海里B . 10 海里C . 10 海里D . 20 海里10. (2分)等腰三角形的一个外角是80°,则其底角是().A . 100°B . 100°或40°C . 40°D . 80°二、填空题 (共8题;共9分)11. (1分)(2018·武昌模拟) 已知,m、n互为相反数,p、q互为倒数,x的绝对值为2,则代数式:的值为________12. (1分)中国的陆地面积约为9 600 000km2 ,把9 600 000用科学记数法表示为________ .13. (1分) (2019八上·绍兴期末) 如图,我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是20,小正方形的面积是8,直角三角形的两直角边分别是a和b,那么ab的值为________.14. (2分) (2019八下·海港期末) 某学生会倡导的“爱心捐款”活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为,又知此次调查中捐15元和20元的人数共26人.(1)他们一共抽查了________人;(2)抽查的这些学生,总共捐款________元.15. (1分)(2012·淮安) 如图,△ABC中,AB=AC,AD⊥BC,垂足为D,若∠BAC=70°,则∠BAD=________°.16. (1分)(2018·遵义) 现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金________两.17. (1分) (2017八下·潮阳期末) 如图,在△ABC中,∠ACB=90°,AC=6,AB=10,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于________.18. (1分)如图,以点P(2,0)为圆心,为半径作圆,点M(a,b)是⊙P上的一点,则的最大值是________ .三、解答题 (共11题;共96分)19. (5分) (2019八上·昌平期中) 计算:20. (5分)求不等式组的正整数解.21. (5分)先化简,再求值:,其中x=2+ ,y= .22. (5分)(1)解方程:﹣1=;(2)解不等式:1﹣<x,并把解集表示在数轴上.23. (10分)(2017·上思模拟) 如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.24. (11分) (2019八上·大田期中) 八年级(1)班张山同学利用所学函数知识,对函数y=|x+2|﹣x﹣1进行了如下研究:列表如下:x﹣5﹣4﹣3﹣2﹣10123Y753m1n111描点并连线(如下图)(1)求表格中的m、n的值;(2)在给出的坐标系中画出函数y=|x+2|﹣x﹣1的图象;(3)一次函数y=﹣x+3的图象与函数y=|x+2|﹣x﹣1的图象交点的坐标为________.25. (5分) (2015九上·揭西期末) 某班从3名男生和2名女生中随机抽出2人参加演讲比赛,求所抽取的两名学生中至少有一名女生的概率.26. (15分)(2018·江城模拟) 如图,A(4,0),B(1,3),以OA、OB为边作平行四边形OACB,反比例函数y= 的图象经过点C.(1)求k的值;(2)根据图象,直接写出y<3时自变量x的取值范围;(3)将平行四边形OACB向上平移几个单位长度,使点B落在反比例函数的图象上.27. (10分)(2019·青海模拟) 如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tanD= ,求AE的长.28. (10分)(2019·枣庄模拟) 如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年湖北省荆州市中考数学试卷一、选择题(本大题共有10个小题,每小题3分,共30分)1.(3分)在实数﹣1,0,,中,无理数是()A.﹣1B.0C.D.2.(3分)如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是()A.B.C.D.3.(3分)若等式2a2•a+□=3a3成立,则□填写单项式可以是()A.a B.a2C.a3D.a44.(3分)阅读下列材料,其①~④步中数学依据错误的是()如图:已知直线b∥c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b∥c(已知)∴∠1=∠2(同位角相等,两直线平行)③∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义)A.①B.②C.③D.④5.(3分)若点P(a+1,2﹣2a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示为()A.B.C.D.6.(3分)已知:如图,直线y1=kx+1与双曲线y2=在第一象限交于点P(1,t),与x轴、y轴分别交于A,则下列结论错误的是()A.t=2B.△AOB是等腰直角三角形C.k=1D.当x>1时,y2>y17.(3分)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,连接DE,BE()A.15°B.22.5°C.30°D.45°8.(3分)如图,在△ABC中,AB=AC,点D,P分别是图中所作直线和射线与AB,以下结论错误的是()A.AD=CD B.∠ABP=∠CBP C.∠BPC=115°D.∠PBC=∠A9.(3分)如图,在菱形ABCD中,∠D=60°,以B为圆心、BC 长为半径画,点P为菱形内一点,PB,PC.当△BPC为等腰直角三角形时()A.B.C.2πD.10.(3分)定义新运算“※”:对于实数m,n,p,q.有[m,p]※[q,其中等式右边是通常的加法和乘法运算,例如:[2,5]=2×5+3×4=22.若关于x的方程[x2+1,x]※[5﹣2k,k]=0有两个实数根()A.k<且k≠0B.k C.k且k≠0D.k≥二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知:a=()﹣1+(﹣)0,b=(+)(﹣),则=.12.(3分)有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁.13.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,连接OC,过点D作DF∥OC交AB于F,DF=,则BE =.14.(3分)如图1是一台手机支架,图2是其侧面示意图,AB,B 转动,测量知BC=8cm,BC转动到∠BAE=60°,∠ABC=50°时cm.(结果保留小数点后一位,参考数据:sin70°≈0.94,≈1.73)15.(3分)若关于x的方程+=3的解是正数,则m的取值范围为.16.(3分)如图,过反比例函数y=(k>0,x>0)图象上的四点P1,P2,P3,P4分别作x轴的垂线,垂足分别为A1,A2,A3,A4,再过P1,P2,P3,P4分别作y轴的垂线,P1A1,P2A2,P3A3,P4A4构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则S1与S4的数量关系为.三、解答题(本大题共有8个小题,共72分)17.(8分)先化简,再求值:÷(1+),其中a=2.18.(8分)已知:a是不等式5(a﹣2)+8<6(a﹣1)+7的最小整数解2+2ax+a+1=0.19.(8分)如图,在5×5的正方形网格图形中,小正方形的边长都为1(称为格点)上.请在网格图形中画图:(1)以线段AD为边画正方形ABCD,再以线段DE为斜边画等腰直角三角形DEF,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,其它顶点也在格点上.20.(8分)高尔基说:“书,是人类进步的阶梯.”阅读可以启智增慧,拓展视野,开学初学校进行了问卷调查,并对部分学生假期(24天)(小时),阅读总时间分为四个类别:A(0≤t<12),B (12≤t<24),C(24≤t<36),D(t≥36),将分类结果制成两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)本次抽样的样本容量为;(2)补全条形统计图;(3)扇形统计图中a的值为,圆心角β的度数为;(4)若该校有2000名学生,估计寒假阅读的总时间少于24小时的学生有多少名?对这些学生用一句话提一条阅读方面的建议.21.(8分)小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:;②方程﹣(|x|﹣1)2=﹣1的解为:;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象?写出平移过程,并直接写出当2<y1≤3时,自变量x的取值范围.22.(10分)小美打算买一束百合和康乃馨组合的鲜花,在“母亲节”祝福妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且百合不少于2支.设买这束鲜花所需费用为w元,康乃馨有x支,并设计一种使费用最少的买花方案,写出最少费用.23.(10分)在矩形ABCD中,AB=2,AD=4,C重合的一点,过F作FE⊥AD于E,点G在射线AD上,连接CG.(1)如图1,若点A的对称点G落在AD上,∠FGC=90°,连接CH.①求证:△CDG∽△GAH;②求tan∠GHC.(2)如图2,若点A的对称点G落在AD延长线上,∠GCF=90°,并说明理由.24.(12分)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,设BE=t.(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系;(2)直接写出点E的坐标(用含t的式子表示);(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,当t=时,求抛物线的解析式.参考答案一、选择题(本大题共有10个小题,每小题3分,共30分)1.解析:根据有理数(包括整数和分数)和无理数(无限不循环的小数)的定义判断即可.参考答案:选项A、B:∵﹣1,∴﹣1,∴选项A;选项C:∵是分数,∴,∴选项C不符合题意;选项D:∵是无限不循环的小数,∴,∴选项D符合题意.故选:D.2.解析:根据俯视图是从上边看得到的图形,可得答案.参考答案:从上边看,是一个矩形.故选:A.3.解析:直接利用单项式乘单项式以及合并同类项法则计算得出答案.参考答案:∵等式2a2•a+□=4a3成立,∴2a8+□=3a3,∴□填写单项式可以是:7a3﹣2a2=a3.故选:C.4.解析:根据垂直的定义得到∠1=90°,再根据两直线平行,同位角相等得到∠2=90°,即可判定a⊥c.【解答】证明:①∵a⊥b(已知),∴∠1=90°(垂直的定义),②又∵b∥c(已知),∴∠1=∠3(两直线平行,同位角相等),③∴∠2=∠1=90°(等量代换),∴a⊥c(垂直的定义),①~④步中数学依据错误的是②,故选:B.5.解析:由P点关于x轴的对称点在第四象限,得出不等式组,求出不等式组的解集,即可得出选项.参考答案:∵点P(a+1,2﹣2a)关于x轴的对称点在第四象限,∴点P在第一象限,∴,解得:﹣8<a<1,在数轴上表示为:,故选:C.6.解析:利用待定系数法求得t,k,利用直线的解析式求得A,B 的坐标,可得线段OA,OB的长度,利用图象可以判断函数值的大小.参考答案:∵点P(1,t)在双曲线y2=上,∴t==2;∴A选项不符合题意;∴P(1,2).∵P(8,2)在直线y1=kx+2上,∴2=k+1.∴k=6,正确;∴C选项不符合题意;∴直线AB的解析式为y=x+1令x=0,则y=2,∴B(0,1).∴OB=7.令y=0,则x=﹣1,∴A(﹣7,0).∴OA=1.∴OA=OB.∴△OAB为等腰直角三角形,正确;∴B选项不符合题意;由图像可知,当x>8时,y1>y2.∴D选项不正确,符合题意.故选:D.7.解析:连接OB,根据直角三角形的边角关系可求出∠BOC=30°,进而求出∠BOD=60°最后再由圆周角定理得出答案.参考答案:如图,连接OB,∵A(2,0),8),∴OA=2,OD=4=OB,∴∠OBA=30°,∴∠BOD=90°﹣30°=60°,∴∠BED=∠BOD=,故选:C.8.解析:利用线段的垂直平分线的性质,角平分线的定义,三角形内角和定理一一判断即可.参考答案:由作图可知,点D在AC的垂直平分线上,∴DA=DC,故选项A正确,∴∠A=∠ACD=40°,由作图可知,BP平分∠ABC,∴∠ABP=∠CBP,故选项B正确,∵AB=AC,∠A=40°,∴∠ABC=∠ACB=(180°﹣40°)=70°,∵∠PBC=∠ABC=35°,∴∠BPC=180°﹣35°﹣30°=115°,故选项C正确,若∠PBC=∠A,则∠A=36°.故选:D.9.解析:连接AC,延长AP,交BC于E,根据菱形的性质得出△ABC是等边三角形,进而通过三角形全等证得AE⊥BC,从而求得AE、PE,利用S阴影=S扇形ABC﹣S△PAB﹣S△PBC即可求得.参考答案:连接AC,延长AP,在菱形ABCD中,∠D=60°,∴∠ABC=∠D=60°,AB=BC=2,∴△ABC是等边三角形,∴AB=AC,在△APB和△APC中,,∴△APB≌△APC(SSS),∴∠PAB=∠PAC,∴AE⊥BC,BE=CE=1,∵△BPC为等腰直角三角形,∴PE=BC=1,在Rt△ABE中,AE=,∴AP=﹣1,∴S阴影=S扇形ABC﹣S△PAB﹣S△PBC=﹣(﹣1)×1﹣=,故选:A.10.解析:先根据新定义得到k(x2+1)+(5﹣2k)x=0,再整理为一般式,接着根据一元二次方程的定义和判别式的意义得到k≠0且△=(5﹣2k)2﹣4k2≥0,然后解不等式即可.参考答案:根据题意得k(x2+1)+(3﹣2k)x=0,整理得kx2+(5﹣2k)x+k=2,因为方程有两个实数解,所以k≠0且△=(5﹣3k)2﹣4k4≥0,解得k≤.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.解析:先计算出a,b的值,然后代入所求式子即可求得相应的值.参考答案:∵a=()﹣2+(﹣)0=2+1=3,b=(+﹣)=3﹣2=4,∴===2,故答案为:2.12.解析:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.参考答案:由题意得,共有2×4=2种等可能情况,其中能打开锁的情况有2种,故一次打开锁的概率为=,故答案为:.13.解析:根据垂径定理得到AD=DC,根据三角形中位线定理求出OC,根据勾股定理求出OD,证明△AOD∽△AEB,根据相似三角形的性质列出比例式,计算即可.参考答案:∵OD⊥AC,AD=4,∴AD=DC=4,∵DF∥OC,DF=,∴OC=2DF=3,在Rt△COD中,OD=,∵BE是⊙O的切线,∴AB⊥BE,∵OD⊥AD,∴∠ADO=∠ABE,∵∠OAD=∠EAB,∴△AOD∽△AEB,∴=,即=,解得:BE=,故答案为:.14.解析:通过作垂线构造直角三角形,在Rt△ABM中,求出BM,在Rt△BCD中,求出BD,即可求出CN,从而解决问题.参考答案:如图,过点B,垂足分别为M、N,垂足为D,在Rt△ABM中,∵∠BAE=60°,AB=16,∴BM=sin60°•AB=×16=2,∠ABM=90°﹣60°=30°,在Rt△BCD中,∵∠DBC=∠ABC﹣∠ABM=50°﹣30°=20°,∴∠BCD=90°﹣20°=70°,又∵BC=8,∴BD=sin70°×6≈0.94×8=7.52(cm),∴CN=DM=BM﹣BD=8﹣2.52≈6.3(cm),即点C到AE的距离约为3.3cm,故答案为:6.4.15.解析:先解分式方程,根据分式方程的解为正数和分式方程有意义的情况,即可得出m的取值范围.参考答案:原方程左右两边同时乘以(x﹣2),得:2x+m﹣(x﹣2)=3(x﹣2),解得:x=,∵原方程的解为正数且x≠2,∴,解得:m>﹣4且m≠﹣3,故答案为:m>﹣7且m≠﹣6.16.解析:过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S是个定值,S=k,由OA1=A1A2=A2A3=A3A4,得出S1=k,S2=k,S3=k,S4=k,即可得出S1=4S4.参考答案:∵过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S是个定值1=A1A7=A2A3=A5A4,∴S1=k,S7=k,S8=k,S4=k,∴S7=4S4.故答案为:S7=4S4.三、解答题(本大题共有8个小题,共72分)17.解析:根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.参考答案:÷(1+)=÷==,当a=2时,原式==.18.解析:解不等式5(a﹣2)+8<6(a﹣1)+7,得a>﹣3,所以最小整数解为﹣2,于是将a=﹣2代入方程x2﹣4x﹣1=0.利用配方法解方程即可.参考答案:解不等式5(a﹣2)+4<6(a﹣1)+7,得a>﹣3,∴最小整数解为﹣2,将a=﹣7代入方程x2+2ax+a+7=0,得x2﹣6x﹣1=0,配方,得(x﹣8)2=5.直接开平方,得x﹣4=±.解得x1=2+,x2=6﹣.19.解析:(1)根据正方形,等腰直角三角形的定义画出图形即可.(2)画出边长为的正方形即可.参考答案:(1)如图,正方形ABCD.(2)如图,正方形BKFG即为所求.20.解析:(1)根据D组的人数和百分比即可求出样本容量;(2)根据C组所占的百分比即可求出C组的人数;(3)根据A组的人数即可求出A组所占的百分比,根据C组所占的百分比即可求出对应的圆心角;(4)先算出低于24小时的学生的百分比,再估算出全校低于24小时的学生的人数.参考答案:(1)本次抽样的人数为(人),∴样本容量为60,故答案为60;(2)C组的人数为40%×60=24(人),统计图如下:(3)A组所占的百分比为,∴a的值为20,β=40%×360°=144°,故答案为20,144°;(4)总时间少于24小时的学生的百分比为,∴全校寒假阅读的总时间少于24小时的学生估计有2000×50%=1000(名),建议:读书是人类文明进步的阶梯,建议每天读书至少1小时.21.解析:(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数y1=﹣(|x﹣2|﹣1)2+3的图象,根据图象即可得到结论.参考答案:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣6的解为:x=﹣2或x=0或x=7;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣5<a<0.故答案为函数图象关于y轴对称;x=﹣2或x=3或x=2.(2)将函数y=﹣(|x|﹣1)4的图象向右平移2个单位,向上平移3个单位可得到函数y4=﹣(|x﹣2|﹣1)3+3的图象,当2<y6≤3时,自变量x的取值范围是0<x<5且x≠2.22.解析:(1)设买一支康乃馨需m元,买一支百合需n元,根据题意列方程组求解即可;(2)根据康乃馨和百合的费用之和列出函数关系式,然后根据函数的性质和百合不少于2支求函数的最小值即可.参考答案:(1)设买一支康乃馨需m元,买一支百合需n元,则根据题意得:,解得:,答:买一支康乃馨需4元,买一支百合需5元;(2)根据题意得:w=2x+5(11﹣x)=﹣x+55,∵百合不少于2支,∴11﹣x≥3,解得:x≤9,∵﹣1<5,∴w随x的增大而减小,∴当x=9时,w最小,即买9支康乃馨,买11﹣6=2支百合费用最少,w min=﹣9+55=46(元),答:w与x之间的函数关系式:w=﹣x+55,买4支康乃馨,最少费用为46元.23.解析:(1)①由矩形的性质和同角的余角相等证明△CDG与△GAH的两组对应角相等,从而证明△CDG∽△GAH;②由翻折得∠AGB=∠DAC=∠DCG,而tan∠DAC=,可求出DG的长,进而求出GA的长,由tan∠GHC即∠GHC的对边与邻边的比恰好等于相似三角形△CDG与△GAH的一组对应边的比,由此可求出tan∠GHC的值;(2)△GCF与△AEF都是直角三角形,由tan∠DAC=可分别求出CG、AG、AE、EF、AF、CF的长,再由直角边的比不相等判断△GCF与△AEF不全等.【解答】(1)如图1,①证明:∵四边形ABCD是矩形,∴∠D=∠GAH=90°,∴∠DCG+∠DGC=90°,∵∠FGC=90°,∴∠AGH+∠DGC=90°,∴∠DCG=∠AGH,∴△CDG∽△GAH.②由翻折得∠EGF=∠EAF,∴∠AGH=∠DAC=∠DCG,∵CD=AB=2,AD=5,∴=tan∠DAC==,∴DG=CD=,∴GA=8﹣1=3,∵△CDG∽△GAH,∴,∴tan∠GHC==.(2)不全等,理由如下:∵AD=4,CD=4,∴AC==,∵∠GCF=90°,∴=tan∠DAC=,∴CG=AC==,∴AG==5,∴EA=AG=,∴EF=EA•tan∠DAC==,∴AF==,∴CF=2=,∵∠GCF=∠AEF=90°,而CG≠EA,∴△GCF与△AEF不全等.24.解析:(1)证明△OAC≌△OBE(SAS),则∠OBE=∠OAC =45°,进而求解;(2)∠EBH=45°,则BH=EH=BE=t,即可求解;(3)由△POA的面积=×AO×y P=×1×y P==,求出y P =1=c﹣,而抛物线过点A(1,0),故a+b+c=0,进而求解.参考答案:(1)直线y=﹣x+1与x轴、y轴分别交于A,则点A、B的坐标分别为(1、(3,则∠OBA=∠OAB=45°,∵∠AOC+∠BOC=90°,∠BOC+∠BOE=90°,∴∠AOC=∠BOE,∵AO=BO,OC=OE,∴△OAC≌△OBE(SAS),∴∠OBE=∠OAC=45°,AC=BE=t,∴∠EBA=∠EBO+∠OBA=∠OAC+∠OBA=45°+45°=90°,∴BE⊥AB;(2)①当点C在线段AB上时,如图1﹣1,过点E作EH⊥OB于点H,∵∠EBH=45°,∴BH=EH=BE=t,故点E的坐标为(﹣t,5﹣;②当点C在线段BA的延长线上时,如图8﹣2,同理可得,点E的坐标为(t t);综上,点E的坐标为(﹣t t)或(t t);(3)①当点C线段AB上时,如题图1﹣7,过点C作CN⊥OA于点N,当t=时,即AC=t=,则CN=AN=t=,则ON=OA﹣NA=2﹣=CN,故tan∠AOC==8=k,∵△POA的面积=×AO×y P=×1×y P==,解得y P=1=c﹣①,∵抛物线过点A(1,0),而5a+3b+2c=6③,联立①②③并解得,∴抛物线的表达式为y=﹣x2+4x﹣8;②抛物线过点A,则a+b+c=0,而6a+2b+2c=0,联立上述两式并解得:,故抛物线的表达式为y=a(x﹣2)6﹣a(a<0),则点P的坐标为(2,﹣a),则AC=BE=t=,则tan∠AOC=k==,故a=﹣4,故y=﹣3x2+12x﹣2.综上,y=﹣3x2+12x﹣6或y=﹣x2+4x﹣7.。

相关文档
最新文档