第2章静力平衡

合集下载

第二章水静力学(环境)

第二章水静力学(环境)

h
H
H
L
L
h H H
h
P
H H
P
L
L/3
h
h
H
H
e
L
H
h
h H
h
H
( H h)
请画出上图正确的静水压强分布图
画出以上三个容器左侧壁面上的压强分布图
A h H
B
R

平衡方程为
p X 0 x

1 p X 0 x
1 p Y 0 y
1 p Z 0 z
同理有
和 其中 X, Y, Z 是质量力 f 的三个分量。

平衡微 分方程的 矢量形式
1 p X 0 x 1 p Y 0 y 1 p Z 0 z
z py
dz
px pn
n
dx dy pz
o
y
pn p x p y p z
x
此时,pn,px,py,pz已是同一点(M点)在不同方位作用面上 的静压强,其中斜面的方位 n 又是任取的,这就证明了静水压 强的大小与作用面的方位无关。
静止液体中一点的应力
p p( x, y, z )
在这个表达式中,已 包含了应力四要素: 作用点、作用面、受 力侧和作用方向。
p
pA / zA

,所以
pB /
叫测压管水头。
zB
O O
• 敞口容器和封口容器接上测压管后的情况如图
•4. 静水压强的方程式的物理意义
z 位置势能,(从
基准面 z = 0 算起铅 垂向上为正。 )
p
压强势能(从
大气压强算起)
z
p

02 大气静力平衡

02 大气静力平衡

均质层(homosphere) 或湍流层(turbosphere) 在 86km 以下,包括对流层、平流层、中 层在内,由于湍流扩散作用使大气均匀混合, 大气中各种成分所占的比例,除臭氧等可变成 分外,在垂直方向和水平方向保持不变,干空 气的平均摩尔质量d = 28.9644 kgkmol1。
2、位势高度 表示位势的大小,定义为
位势米(gpm)或位势千米(gpkm)等 1 9.80665 Jkg /gpm
实际高度与位势高度的关系
其中,
1 gpmm1。
在 100km 高度,偏差小于 1.6%。 在实际工作中,可近似认为两者数值相等。
3、流体静力平衡
气块受的地心引力与其在垂直方向的气压梯度力的分量 平衡,称流体静力假设,这种平衡关系称流体静力平衡。
(3) 中间层(mesosphere) 从平流层顶到 85km 左右称为中间层(也 称中层) ,温度随高度而下降。 中间层内水汽极少,但在高纬地区的黄昏 前后,有时在 75~90km 上空出现薄而带银白 色光亮的云,称为夜光云。
(4) 热层(thermosphere) 中间层顶以上,温度始终是增加的。 大气极稀薄,分子碰撞机会极少。热层温 度的日变化大气光学现象极光。 热层温度趋于常数的高度是热层顶。热层 顶的高度随太阳活动的强、弱而变化,高峰期 约在 500km 高度, 温度可达 2000K; 宁静期下 降到 250km 左右,温度约 500K。
,与热力学中多元过程的方程类似
压力—高度关系
或:

多元大气的上界(p=0)为
多元大气极限位势高度 或简称多元大气高度。
2、均质大气 34.2 ℃gpkm1,可以得到
,或
)
自动对流减温率
34.2℃gpkm

第二章 水静力学 5-6

第二章 水静力学 5-6

FP 9.8 12.61 4 6 2964 kN
IC 求FP的作用点距水面的斜距 LD LC LC A h1 1 10 LC 3 3 11.5 14.5m o 2 sin 60 0.87
对矩形平面,绕形心轴的面积惯矩为
1 I C 4 6 3 72 m 4 12
图解法:
1.静水压强分布图 (1)按一定比例,用线段长度 代表该点静水压强的大小。 (2)用箭头表示静水压强的方 向,并与作用面垂直。
静压分布图
正确绘制静压分布图是求解静止流体作用在物体表 面总压力的基础。静压分布图的绘制原则:1、根据物 面上各点浸深确定静压大小;2、静压垂直于作用面且 为压应力。
强分布图的形心点)
静止液体作用在平面上的总压力分 为静止液体作用在斜面、水平面和垂直 面上的总压力三种,斜面是最普通的一 种情况,水平面和垂直面是斜面的特殊 情况。下面介绍静止液体作用在斜面上 的总压力问题。
2.5.2 作用于任意平面上的静水总压力
受压面为任意形状,静水总压力的计算较为复杂。取 一任意形状平面EF,倾斜置放于水中,与水平面的 夹角α,平面面积为A,平面形心点在C。
Fp
yD
h1
胸墙 ρgh1 A
yC C h2 D B h2 b
Fp1 Fp2 ρg(h1+ h2) ρgh2 ρgh1 Fp
yD
2h/3
ρgh1 Fp D
Fp2
Fp1
ρg(h1+ h2)
ρgh2
ρgh1
h2
h/2
例3 某泄洪隧洞,在进口倾斜设置一矩形平板闸门 (见图),倾角为60o,门宽b为4m,门长L为6m,门顶 在水面下淹没深度h1为10m,若不计闸门自重时,问沿斜 面拖动闸门所需的拉力F为多少(已知闸门与门槽之间 摩擦系数 f 为0.25)?门上静水总压力的作用点在 哪里?

理论力学第2章平面任意力系

理论力学第2章平面任意力系

空载时轨道A 、 B的约束反力,并问此起重机在使用过程中有无翻
倒的危险。
解:
(1)起重机受力图如图
(2)列平衡方程 :
MA 0:
Q
Q(6 2) RB 4 W 2 P(12 2) 0
MB 0:
Q(6 2) W 2 P(12 2) RA 4 0
6m
解方程得:
W
P
12m
RA 170 2.5P
FR' Fi Fxi Fy j
MO MO (Fi )
3. 平面任意力系的简化结果
(1)FR´= 0,Mo ≠ 0, (2)FR´ ≠ 0,Mo = 0, (3)FR´≠ 0,Mo ≠ 0, (4)FR´= 0,Mo = 0,
合力偶,合力偶矩,MO MO (Fi )
合力,合力作用线通过简化中心O。
3
F2
j
F3
x
(437.6)2 (161.6)2
F1
1 1
100
Oi
1 2
466.5N
200
MO 21.44N m
y
合力及其与原点O的距离如图(c) 。 MO
x
y
d
x
O
FR FR′ 466.5N FR´
FR
O
d MO 45.96mm
(b)
(c)
FR
10
例11 水平梁AB受按三角形分布的载荷作用,如图示。载荷的
M
l
l
30
B
D
° F
3l
P
q
A
21
解:T字形刚架ABD的受力如图所示。
M
l
l
Fx 0
30
B
FAx 1 • q • 3a Fcos30 0

第二章 杆件的静力分析 复习资料(学生)

第二章 杆件的静力分析  复习资料(学生)

第二章杆件的静力分析复习资料一、力的概念1、力是使物体的运动状态发生变化或使物体产生变形的物体之间的相互机械作用。

2、力的三要素:、和。

当这三个要素中任何一个改变时,力对物体的作用效应就会改变。

3、力是一个既有又有的矢量。

在国际单位制中,力的单位用(牛)或(千牛)表示。

二、力的基本性质1、作用与反作用定律一个物体对另一个物体有一作用力时,另一物体对该物体必有一个反作用力。

这两个力相等、相反、作用在上,且分别作用在上。

2、二力平衡公理作用于某刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力、,且上。

作用于刚体上的力,可以沿其移动到该刚体上的,而它对刚体的作用效果。

3、力的平行四边形法则作用在物体上同一点的两个力,其合力也作用在该点上,合力的和由这两个力为邻边所作平行四边形的确定。

4、力的分解1)工程中常将作用力分解为沿方向的分力和方向的分力。

2)在人拉车相同力的情况下,越小,拉车的效果越明显,是因为起到拉车的作用,起到减少车与地面正压力的作用。

3)当物体沿水平方向运动时,常将力分解为沿方向和方向;当物体沿斜面运动时,常将力分解为方向和方向。

三、力矩1、力对物体的作用效应,除 外,还有 。

2、在力学上用F 与d 的乘积及其转向来度量力F 使物体绕O 点转动的效应,称为力F 对O 点之矩,简称 ,以符号M0(F )表示。

O 为力矩中心,简称 ;O 点到力F 作用线的垂直距离d 称为 。

Fd F o ±=)(M3、正负号表示两种不同的转向,规定使物体产生 旋转的力矩为正值;反之为负值。

4、力矩的单位是 (牛·米)或 (千牛·米)5、提高转动效应的方法:一方面可以 ,更有效的办法是 。

6、力矩原理的应用: 、 、 等四、力偶1、力学中,把作用在同一物体上 、 、 的一对平行力称为力偶,记作(F 1,F 2),力偶中两个力的作用线间的距离d 称为,两个力所在的平面称为力偶的作用面。

物体的静力平衡

物体的静力平衡

物体的静力平衡物体的静力平衡是物理学中的一个重要概念,它描述了当物体处于静止状态时,所有作用在该物体上的力的合力为零的情况。

在这篇文章中,我们将会探讨物体的静力平衡的概念,以及其在现实生活中的应用。

首先,让我们来了解一下物体的静力平衡的定义。

当一个物体处于静止状态时,我们可以假设它在一个平面上,并且没有任何外力作用在该物体上。

在这种情况下,物体的静力平衡可以通过以下方式来判断:所有作用在物体上的力,包括重力、张力等,都需要达到力的平衡,也就是合力为零。

这意味着,物体上作用着的力需要相互抵消,不会导致物体发生运动。

重力是物体的重要力之一,它是以质量和重力加速度之乘积来计算的。

当物体处于静止状态时,与物体重力相等的反作用力,比如支撑力或拉力,使得物体保持着静力平衡。

例如,当我们放置一个书本在桌子上时,重力向下作用在书本上,而桌子向上施加的力则是支撑力,两者之和为零,使得书本保持在桌面上静止不动。

除了重力外,物体还可以受到其他力的作用,如张力、摩擦力等。

这些力也需要满足静力平衡的条件,即合力为零。

例如,当一个物体悬挂在两根绳子上时,这两根绳子的张力需要满足合力为零的条件,才能保持物体的静力平衡。

物体的静力平衡不仅在物理学中具有重要的理论意义,同时也在现实生活中有着广泛的应用。

其中一个应用是建筑物的结构设计。

在设计建筑物的时候,工程师需要考虑到物体的静力平衡,确保建筑物能够稳定地承受外部的力,如风力、地震等。

另一个应用是天平的使用。

天平是一种能够测量物体质量的仪器。

它的工作原理就是基于物体的静力平衡。

当物体放在天平的两个盘子上时,天平会根据物体在两个盘子上施加的力来判断物体的质量,只有当两个盘子上的力相等时,天平才能保持静止。

通过测量物体产生的力与重力之间的平衡关系,天平可以准确测量物体的质量。

除了在建筑物和天平中的应用之外,物体的静力平衡还在其他许多领域中发挥着重要作用,如桥梁设计、车辆平衡控制等。

只有通过合理地利用物体的静力平衡原理,我们才能确保物体在各种条件下保持稳定和安全。

工程力学中的静力平衡和动力平衡

工程力学中的静力平衡和动力平衡

工程力学中的静力平衡和动力平衡工程力学是应用力学原理解决工程实际问题的学科,其中静力平衡和动力平衡是基本概念。

静力平衡是指物体在静止状态下所处的力的平衡,而动力平衡则是指物体在运动状态下所处的力的平衡。

本文将就工程力学中的静力平衡和动力平衡进行探讨。

一、静力平衡静力平衡是工程力学中的一个重要概念,它是指物体处于静止状态下所受力的平衡。

在静力平衡的条件下,物体不会发生运动或旋转。

静力平衡的核心原理是力的平衡,即合力为零。

根据牛顿第一定律,当物体处于静止状态时,合外力为零。

这意味着物体所受的外力与其受到的内力相平衡。

为了满足静力平衡,必须满足以下两个条件:1. 合力为零:物体受到的所有外力的合力必须为零。

这意味着物体所受的各个力在空间中的向量和必须为零。

2. 转矩为零:物体受到的所有力对于物体某一点的合力矩必须为零。

这意味着物体所受的各个力在空间中的转矩和必须为零。

满足这两个条件,物体才能实现静力平衡。

在实际工程中,静力平衡的原理被广泛应用于桥梁、建筑物、机械设备等的设计和施工中。

二、动力平衡与静力平衡不同,动力平衡是指物体在运动状态下所受力的平衡。

在动力平衡的条件下,物体可能发生运动或旋转,但其没有加速度。

动力平衡的核心原理是力矩的平衡,即合外力矩为零。

根据牛顿第二定律,当物体处于动态平衡时,合外力矩为零。

这意味着物体所受的合外力矩与其惯性力矩相平衡。

为了满足动力平衡,必须满足以下两个条件:1. 合外力矩为零:物体受到的所有外力矩的合力必须为零。

这意味着物体所受的各个力矩在空间中的矢量和必须为零。

2. 合外力为零:物体受到的所有外力的合力必须为零。

这意味着物体所受的各个力在空间中的矢量和必须为零。

满足这两个条件,物体才能实现动力平衡。

在工程实践中,动力平衡的原理被广泛应用于机械设备、交通工具、飞行器等的设计和运行中。

三、静力平衡与动力平衡的区别1. 状态不同:静力平衡是指物体处于静止状态下的力平衡,而动力平衡是指物体处于运动状态下且没有加速度的力平衡。

第二章--流体静力学PPT课件

第二章--流体静力学PPT课件
.
第二章 流体静力学
流体静力学着重研究流体在外力作用下处于平衡状态的 规律及其在工程实际中的应用。
这里所指的静止包括绝对静止和相对静止两种。以地球 作为惯性参考坐标系,当流体相对于惯性坐标系静止时, 称流体处于绝对静止状态;当流体相对于非惯性参考坐标 系静止时,称流体处于相对静止状态。
流体处于静止或相对静止状态,两者都表现不出黏性作 用,即切向应力都等于零,流体只存在压应力——压强。
Pd=22.6Kpa
将以上条件代入式(2-15)积分,便可得到同温层标准大气压分布
dppgdz pgdz
RT
RT d
p dp z g
dz
pa p
zd RTd
p22 .6ex1p1( 00z0) 6334
式中z得单位为m,11000m≤z≤25000m。
35
.
2.3.2气体压强分布
2.大气层压强的分布
2.3.3压强的度量
相对压强
绝对压强
真空度 绝对压强
绝对压强、相对压强和真空之间的关系
41
.
2.3.3压强的度量
相对压强
绝对压强
真空 绝对压强
绝对压强、相对压强和真空之间的关系
42
.
2.3.3压强的度量
立置在水池中的密封罩如图所示,试求罩内A、B、C三
点的压强。
【解】:
B点: pB p0
C
A点: pAghAB pB
从11-15km,温度几乎不变,恒为216.5K(-56.5℃), 这一层为同温层。
32
.
2.3.2气体压强分布
2.大气层压强的分布
(1)对流层
dpgdz dp pg dz
p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力矩的特性
1、力作用线过矩心,力矩为零;
2、力沿作用线移动,力矩不变。
合力矩定理
一个力对一点的力矩等于它的两个分力对
同一点之矩的代数和。
例 1 求图中荷载对A、B两点之矩
(a) 解: 图(a): MA = - 8×2 = -16 kN ·m
(b)
MB = 8×2 = 16 kN ·m
图(b): MA = - 4×2×1 = -8 kN ·m MB = 4×2×1 = 8 kN ·m
YA 4kN ( )
Y 0 :
YA RB 3q P 0 RB 3q P YA
【解】 1.研究对象:外伸梁。 2. 受力分析:如图示。 3. 列式求解:
m
X 0: X
9 ( F ) 3RB 5P q M 2 9 3 28 5 12 4 6 2 84 60 18 6 0 故计算正确无误。
A
A
0
讨论:若用二矩式,则情况如何?
【例4】一端为固定铰链,另一端为可动铰链的梁称之为简支梁,其上作用有 一均匀分布的荷载 q(简称均布荷载),试画出梁的受力图。
XA
YA 【解】1.研究对象:梁AB。 2.画受力图 —— 标力。 (1)主动力:均布荷载 q(照搬) (2)约束反力: (按约束类型来画)
YB
① 固定铰链 A:XA、YA (指向可设);
4 20kN + 0 50kN 20kN 5
2.1.4 支座的约束与反力
(1)固定铰支座
YC XC
约束特点:只能限制物体上下、左右的平动,而不能限制物体的转动(双向约束)。 反力方向:方位是两分力正交(如
YA 等);指向可以假设。 X C、 YC,或 X A、
(2)可动铰支座
NA
平面任意力系
X 0: XA 0 l m (F ) 0 : (ql ) 2 Y l 0 l 0 m (F ) 0 : Y l (ql ) 2
B
A
YA
A
B
1 ql 2 1 YB ql 2
校核: Y 0 : YA YB ql
ql ql ql 0 2 2
—— 正负号之规定:
① 若 a b ,与 x 轴同向, X 取正;反之取负;
② 若 a b,与 y 轴同向, Y 取正;反之取负。
(2)力的合成: 若已知 X 和 Y ,则力 F 的大小和方位角为:
F X 2 Y 2 tg Y X
(3)合力投影定理:合力在任一轴上的投影等于各分 力在该轴上之投影的代数和。
力偶系的平衡 显然,当物体平衡时,合力偶必须为零,
即:
M 0
上式称为力偶系的解析平衡条件。
2.2.3 力之平移定理
作用在 A 点的力
F ,是否可以平行移动至 B 点变成 F ?
问题:力在刚体上可沿其作用线滑动,但能否平行搬动?
在B点加一平衡力
( F , F )为一力偶
力偶矩为 m
3 m ( F ) 0 : ( 3 q ) M P 2 YA 3 0 B 2 1 9 YA ( q M 2 P) 3 2 1 9 ( 4 6 2 12) 4kN ( 3 2
X 0: X
B
A
0
)
( )
m (F ) 0 : m (F ) 0 :
O
基 本 式
X 0 Y 0 mO ( F ) 0
独立的平衡方程数

3
求解
三个未知量
2)平面汇交力系之平衡方程 设平面汇交力系 F1、F2、…Fn 交于 O 点,此时只能合成一个合力,不可能存在 合力偶。若取汇交点 O 为矩心,则
m
O
( F ) 0 自然满足。当该力系平衡时,有
基 本 式
X 0 Y 0
求解
独立的平衡方程数 = 2
二个未知量
2.3.3 平衡方程的应用 【例1】试求简支梁 A、B 两处的约束反力。
【解】1.研究对象:AB 梁
2.受力分析: A 处(XA,YA ) , B 处YB。 均布荷载 q , (q、XA、YA、YB) 3.列式求解: (1)基本式
例2
求图中力对A点之矩
解:将力F沿X方向和Y方向 等效分解为两个分力,由 合力矩定理得:
M A Fx d x Fy d y
由于 dx = 0 ,所以:
2 M A Fy d y 20 2 28.28kN m 2
2.2.2 力偶和力偶矩 力偶 —— 大小相等的二个反向平行力称之为一
由合力投影定理有: Rx=X1+X2+…+Xn=X Ry=Y1+Y2+…+Yn=Y
合力:
R Rx Ry
2
2
X Y
2
2
tan
Ry Rx

Y X
表示合力R与 x轴所夹的锐角, 合力的指向由∑X、∑Y的符号判定。
【例1】 试分别求出图2-6中各力的合力在x轴和y轴上投影。已知
2.3.2 力系的平衡方程 1)平面任意力系之平衡方程 设平面任意力系 F1、F2、…Fn ,当该力系平衡时,则有
R0
(各分力在 x 轴上投影之代数和为零) X 0 Y 0 (各分力在 y 轴上投影之代数和为零)
M 0
m (F ) 0(各分力对任意点 O 之矩代数和为零)
即,合力为原两力的矢量和。 矢量表达式:R= F1+F2
A F1
F2
R
四、三力平衡汇交定理 一刚体受不平行的三力作用而平衡时,此三力 的作用线必共面且汇交于一点。
五、作用力和反作用力定律 两个物体间的相互作用的一对力,总是大小相等, 方向相反,作用线相同,并分别而且同时作用于这 两个物体上。
[例] 吊灯
X 0:
XA 0
l 2 YA 1 ql 2 1 ql 2
mB (F ) 0 : (ql ) YAl 0
Y 0 :
YA YB ql 0
YB
(2)二矩式
【例2】已知外伸梁的 M = 6KN·m,q = 4KN/m,P =12KN,求 A、B 支座反力。
力是一矢量,用数学上的矢量记号来表示,如图。
F
2.1.2 静力学基本公理 一、二力平衡公理
作用于刚体上的两个力平衡的充分与必要 条件是这两个力大小相等、方向相反、作用线 在一条直线上。
二力体:只在两个力作用下平衡的刚体叫二力体。
二力杆
二、加减平衡力系公理 在作用于刚体上的已知力系上,加上或减 去任意一个平衡力系,不会改变原力系对刚体 的作用效应。
F1 20N
F2 40N F3 50N ,各力方向如图所示。
【解】 可得出各力的合力在x、y轴上的投影为
FRx Fx F1 cos90 F2 cos 0 F3
, ,
3 32 42
4 32 42
3 0 40kN + 50kN 10kN 5
FRy Fy F1 sin 90 F2 sin 0 F3
约束特点:只能限制物体沿法线方向的平动(单向约束)。
反力方向:方位为沿其法线,指向可以假设。
3)固定端支座
构件的一端被牢固地嵌住而不能动
车刀
P
XA
mA
P
YA
约束特点:既限制物体的平动,又限制物体的转动。 反力方向:限制平动,用约束反力( 如 XA 、YA )表示,指向可以假设; 限制转动,用约束反力偶(如 mA )表示,转向可以假设。
F F F

结论:
F F m 且 m mB ( F ) F d
力之平移定理
牛腿柱
2.3 力系的平衡
2.3.1 力系之平衡条件
刚体 平衡 (1)二力之平衡 两个力 刚体
必要且充分条件
不能平动
不能转动
R=0(合力为零)
M=0(合力矩为零)
刚体平衡之必 要且充分条件
个力偶。
力偶的作用效果是引起物体的转动,和力
矩一样,产生转动效应。
力偶的转动效应用力偶矩表示,它等于力偶 中任何一个力的大小与力偶臂d 的乘积,加上适
当的正负号,即
式中:F 是力的大小; d 是力偶臂,是力偶中两
个力的作用线之间的距离;
正负号规定与力矩统一。常
力偶的图例
用单位为 KN· m 。
力偶特性一:
2.1 力的基本概念
2.1.1 力和力系的概念 力是物体之间的相互作用,其效果使物体运动状态和形状 大小发生改变。 实践证明,力对物体的作用效应取决于以下三个要素: (1) 力的大小。指物体间相互作用的强弱程度。国际单位 制(SI)中,力的单位为牛[顿](N)或千牛[顿](KN)。 (2) 力的方向。通常包含力的方位和指向两个含义。例如 重力的方向是“铅垂向下”,“铅垂”是指力的方位;“向下” 是说力的指向。 (3) 力的作用点。力的作用点是指力在物体上作用的位置。 力系:物体所受的一群力总称为力系。
力偶的转动效应与转动中心的位置 无关,所以力偶在作用平面内可任意移 动。 力偶特性二: 力偶的合力为零,所以力偶的效应
只能与转动效应平衡,即只能与力偶或
力矩平衡,而不能与一个力平衡。
力偶系的合成 作用在一个物体上的一组力偶称为一个力偶
系。力偶系的合成结果为一个合力偶M。 即:
M M1 2 M n M
O
F3 c) 汇交力系
O
O
b) 力三角形
a) 平行四边形法则
相关文档
最新文档