勾股定理的有关证明PPT课件
合集下载
《勾股定理》PPT课件 图文

∴ a2 b2 c2
D
N
E
“新娘的轿椅”或“修士的头巾”
一、鲁迅是一个非常勤奋的人 鲁迅的勤奋,我想不用我细说大家都是 很明白 的。在 鲁迅的 散文《 百草园 和三味 书屋》 中,鲁 迅讲过 关于上 学迟到 的故事 ,后来 他在桌 子上刻 了个“ 早”字 ,当作 了他一 生的座 右铭。
鲁迅写作的勤奋也是出了名的。为了工 作他常 常工作 到深夜 ,点燃 一支烟 便又来 了工作 激情。 二、鲁迅是一个性格非常刚强的人
总而言之,鲁迅的优点是多于缺点的, 而且, 最让笔 者敬佩 鲁迅的 是他有 一颗永 远和劳 苦大众 在一起 的赤子 之心。 他的一 生付出 的多, 索取的 少,这 就是他 的可贵 之处, 也是他 不朽崇 高的地 方。
然后是鲁迅先生长什么样: 浓黑的一字须,根根向上的头发,吸着 烟斗、 面目严 肃冷峻 ,这是 鲁迅通 常留给 我们的 印象, 他似乎 “对一 切人都 怀有忧 虑和敌 意”, 但实际 上,伟 人也和 普通人 一样, 拥有喜 怒哀乐 。他活 着的时 候,周 围有许 多文学 青年愿 意“亲 近”他 ,鲁迅 先生的 笑声是 明朗的 ,是从 心里的 欢喜。 若有人 说了什 么可笑 的话, 鲁迅先 生笑得 连烟卷 都拿不 住了, 常常是 笑得咳 嗽起来 。然后 是长相 。黄里 带白的 脸:瘦 得让人 担心: 头上竖 着寸把 长的头 发;牙 黄羽纱 的长杉 ;隶体 “一” 字似的 胡须; 手里捏 着一枝 黄色烟 嘴。 知道你的漫画将出版,正中下怀, 满心欢 喜。
你总该记得,有一个黄昏,白马湖上的 黄昏, 在你那 间天花 板要压 到头上 来的, 一颗骰 子似的 客厅里 ,你和 我读着 竹久梦 二的漫 画集。 你告诉 我那篇 序做得 有趣, 并将其 大意译 给我听 。我对 于画, 你最明 白,彻 头彻尾 是一条 门外汉 。但对 于漫画 ,却常 常要像 煞有介 事地点 头或摇 头;而 点头的 时候总 比摇头 的时候 多—— 虽没有 统计, 我肚里 有数。 那一天 我自然 也乱点 了一回 头。 点头之余,我想起初看到一本漫画,也 是日本 人画的 。里面 有一幅 ,题目 似乎是 《aa子 爵b泪》 (上两 字已忘 记), 画着一 个微侧 的半身 像:他 严肃的 脸上戴 着眼镜 ,有三 五颗双 钩的泪 珠儿, 滴滴答 答历历 落落地 从眼睛 里掉下 来。我 同时感 到伟大 的压迫 和轻松 的愉悦 ,一个 奇怪 的矛盾 !梦二 的画有 一幅— —大约 就是那 画集里 的第一 幅—— 也使我 有类似 的感觉 。那幅 的题目 和内容 ,我的 记性真 不争气 ,已经 模糊得 很。只 记得画 幅下方 的左角 或右角 里,并 排地画 着极粗 极肥又 极短的 一个“ !”和 一个“ ?”。 可惜我 不记得 他们哥 儿俩谁 站在上 风,谁 站在下 风。我 明白( 自己要 脸)他 们俩就 是整个 儿的人 生的谜 ;同时 又觉着 像是那 儿常常 见着的 两个胖 孩子。 我心眼 里又是 糖浆, 又是姜 汁,说 不上是 什么味 儿。无 论如何 ,我总 得惊异 ;涂呀 抹的几 笔,便 造起个 小世界 ,使你 又要叹 气又要 笑。叹 气虽是 轻轻的 ,笑虽 是微微 的,似 一把锋 利的裁 纸刀, 戳到喉 咙里去 ,便可 要你的 命。而 且同时 要笑又 要叹气 ,真是 不当人 子,闹 着玩儿 !
勾股定理数学优秀ppt课件

实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
勾股定理公开课PPT课件

国清末数学家华蘅芳就提供了二十多种精彩的证法。
在这数百种证明方法中,有的十分精彩,有的十分简洁,
有的因为证明者身份的特殊而非常著名。
现在在网络上看到较多的是16种,包括前面的6种,还有:
欧几里得证明、
利用相似三角形性质证明、
杨作玫证明、
李锐证明、
利用切割线定理证明、
利用多列米定理证明、
作直角三角形的内切圆证明、利用反证法证明、
编辑版pppt
C Aa c
b B
SA+SB=SC探
SA=a2 索
SB=b2 勾
SC=c2 股
a2+b2=c2
定 理
猜想
7
编辑版pppt
如果直角三角形的两条直角边
长分别为a,b,斜边长为c,那么 探
c2=a2+b2.
索
勾
勾a
c弦 股 定
b股
理
试一试?
8
编辑版pppt
请利用此图象,证明勾股定理 :
a2+b2=c2
角的手臂的上半部分称为“勾”,下半部分称为“股”。商高那段
话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4 (长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事
实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的
话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五
编辑版pppt
13
勾股定理,想得再多一点
如图,受台风莫拉克影响,一棵树在离地面4 米处断裂,树的顶部落在离树跟底部3米处,这棵 树折断前有多高?
4米
3米
编辑版pppt
人教版八年级数学下册《勾股定理》PPT精品教学课件

13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
《勾股定理》PPT课件图文

ca b
S正
?(a
?
b)2
?
4?
1 2
ab
?
c2 ,
化简得: a 2 ? b 2 ? c 2
方法三:
c
b b-a c
a c
c
S正
?
c2?
4?
1 2
ab
?
(b
?
a)2,
化简得: a 2 ? b2 ? c 2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
角的BC方向上的点C测得CA=130米,CB=120米,
则AB为 ( )
A
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
某楼房在 20米高处的楼层失火
,消防员取来 25米长的云梯救
火,已知梯子的底部离墙的距
ቤተ መጻሕፍቲ ባይዱ
离是15米。问消A防队员能否进
入该楼层灭火?
已知两直角 边求斜边
则 a2 ? b2 ? c2
议一议:判断下列说法是否正确,并说明理由: (1)在△ABC中,若a=3,b=4,则c=5 (2)在Rt△ABC中,如果a=3,b=4,则c=5. (3)在Rt△ABC中,∠C=90° , 如果a=3,b=4,则c=5.
勾 股
在中国古代,人们把弯曲成直角的手臂的上 半部分称为 勾 ,下半部分称为 股 。我国古代 学者把直角三角形较短的直角边称为“勾”,较 长的直角边称为“股”,斜边称为“弦”.
B
系吗?
图2
(图中每个小方格代表一个单位面积) SA+SB=SC
(精选幻灯片)勾股定理ppt课件

2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
17.1勾股定理的证明(比较全的证明方法)_课件
a
b
c2 4 1abc2 b2 4 1ab
2
2
bc b
b
c2 a2 b2
a
b
观察下面的图形,你还能发现什么吗?
1.传说中毕达哥拉斯的证法 2.赵爽弦图的证法 3.刘徽的证法 4.美国第20任总统茄菲尔德的证法 5.其他证法
A
B
这棵树漂亮吗?如果在树上挂上 几串彩色灯泡,再挂上些小铃铛、小 彩球、小礼盒、小的圣诞老人,是不 是更像一棵圣诞树.
也许有人会问:“它与勾股定理 有什么关系吗?〞
仔细看看,你会发现,微妙在树 干和树枝上,整棵树都是由下方的这 个根本图形组成的:一个直角三角形 以及分别以它的每边为一边向外所作 的正方形.
E
使AH=Байду номын сангаасG,裁下△ADH,移至
D
C
F
△CDI,裁下△HGF,移至△IEF,
是为“出入相补,各从其类〞,其
余不动,那么形成弦方正方形
A
DHFI.勾股定理由此得证.
BH
G
返回
总统巧证勾股定理
学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广 泛.迄今为止,关于勾股定理的证明方法已有500余种.其中,美国第二十任总统伽 菲尔德的证法在数学史上被传为佳话.
A
b
E aB
1
∵ S 梯形ABCD
= a+b 2 2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= ( a 2 +2ab+ 2
又∵ S 梯形ABCD
b 2) = S AED + S EBC + S CED
了的证明,就把 这一证法称为
八下数学第十七章勾股定理全章课件
在Rt△ABM中,AB2+AM2=BM2.
在Rt△MDB′中,MD2+DB′2=MB′2.
B′
∵MB=MB′,∴AB2+AM2=MD2+DB′2,
即92+x2=(9-x)2+(9-3)2,
解得x=2.即AM=2.
探究新知
方法点拨
折叠问题中结合勾股定理求线段长的方法:
(1)设一条未知线段的长为x(一般设所求线段的长为x); (2)用已知线段或含x的代数式表示出其他线段长; (3)在一个直角三角形中应用勾股定理列出一个关于x的
D
3m,宽2.2m的薄木板能否从门框内
通过?为什么?
C 2m
解:如图,连接AC。 在Rt△ABC 中,根据勾股定理,
AC AB2 BC2 12 22
AB
1m
5
5 2.236 2.2
∴木板可以从门框内通过。
巩固练习
如图,池塘边有两点A,B,点C是与BA方向成直角的AC方 向上一点,测得BC=60 m,AC=20m.求A,B两点间的距离
在Rt△AFD′中,AF2=D′F2+AD′2,
(8-x)2=x2+42, 解得x=3. ∴AF=AB-FB=8-3=5, ∴S△AFC= AF•BC=10.
互逆命题:
两个命题中, 如果第一个命题的题设是第 二个命题的结论, 而第一个命题的结论又是第 二个命题的题设,那么这两个命题叫做互逆命 题.
A的面 B的面 C的面
积
积
积
C A
图1
9
9 18
B 图2-1
C A
B 图2-2
图2
4
48
A、B、C 面积关系
SA+SB=SC
直角三角形 两直角边的平方和 三边关系 等于斜边的平方
勾股定理ppt
勾股定理与两直线垂直的关系
如果一个直角三角形的斜边为c,其中一条直角边为a,另一条直角边为b,那么 以a和b为直径的圆与斜边c相切。
勾股定理与三角函数的联系
勾股定理与正弦函数的关系
正弦函数是三角函数的一种,它表示直角三角形中锐角度数 的对边与斜边的比值,即sinA=a/c。
勾股定理与余弦函数的关系
勾股定理的逆定理
逆定理的表述
勾股定理的逆定理是指如果三角形的三边长a、b、c满足a²+b²=c²,那么这 个三角形是直角三角形。
逆定理的证明方法
勾股定理逆定理的证明方法比较简单,可以通过三角形全等的判定方法“边 边边”进行证明。也可以通过反证法进行证明,假设三角形不是直角三角形 ,则可以推导出矛盾的结果,从而证明了逆定理的正确性。
间的距离、求圆的直径等。
勾股定理在日常生活中的应用
建筑学
勾股定理在建筑学中有着广泛的应用,例如确定建筑物的结构、设计建筑物的外 观等。
制作直角工具
勾股定理可以用来制作直角工具,例如勾股尺、勾股定理板等。
勾股定理在金融和投资领域的应用
确定投资组合
在金融和投资领域中,勾股定理可以用来确定投资组合,以 实现最大收益和最小风险。
勾股定理的一般形式
勾股定理不仅仅适用于直角三角形,对于一般的三角形同样适用,其一般形 式为:c² = a² + b² - 2abcosθ,其中θ为两直角边的夹角。
勾股定理与平面几何的联系
勾股定理与三角形面积的关系
勾股定理可以用来求三角形的面积,其中一条直角边为底边,另外两条为高,三 角形的面积为1/2底边乘以高。
学习技巧
学习技巧包括制定学习计划、合理安排时间、掌握学习重点 和难点、积极参与课堂讨论等。同时,需要注重实践和应用 ,将理论知识应用到实际问题的解决中。
如果一个直角三角形的斜边为c,其中一条直角边为a,另一条直角边为b,那么 以a和b为直径的圆与斜边c相切。
勾股定理与三角函数的联系
勾股定理与正弦函数的关系
正弦函数是三角函数的一种,它表示直角三角形中锐角度数 的对边与斜边的比值,即sinA=a/c。
勾股定理与余弦函数的关系
勾股定理的逆定理
逆定理的表述
勾股定理的逆定理是指如果三角形的三边长a、b、c满足a²+b²=c²,那么这 个三角形是直角三角形。
逆定理的证明方法
勾股定理逆定理的证明方法比较简单,可以通过三角形全等的判定方法“边 边边”进行证明。也可以通过反证法进行证明,假设三角形不是直角三角形 ,则可以推导出矛盾的结果,从而证明了逆定理的正确性。
间的距离、求圆的直径等。
勾股定理在日常生活中的应用
建筑学
勾股定理在建筑学中有着广泛的应用,例如确定建筑物的结构、设计建筑物的外 观等。
制作直角工具
勾股定理可以用来制作直角工具,例如勾股尺、勾股定理板等。
勾股定理在金融和投资领域的应用
确定投资组合
在金融和投资领域中,勾股定理可以用来确定投资组合,以 实现最大收益和最小风险。
勾股定理的一般形式
勾股定理不仅仅适用于直角三角形,对于一般的三角形同样适用,其一般形 式为:c² = a² + b² - 2abcosθ,其中θ为两直角边的夹角。
勾股定理与平面几何的联系
勾股定理与三角形面积的关系
勾股定理可以用来求三角形的面积,其中一条直角边为底边,另外两条为高,三 角形的面积为1/2底边乘以高。
学习技巧
学习技巧包括制定学习计划、合理安排时间、掌握学习重点 和难点、积极参与课堂讨论等。同时,需要注重实践和应用 ,将理论知识应用到实际问题的解决中。
《勾股定理》PPT课件
AC 2 6
1.在△ABC中,∠C=90°.
练 习
(1)若a=6,c=10,则b=
;
(2)若a=12,b=9,则c= (3)若c=25,b=15,则a=
; ;
2.等边三角形边长为10,求它的高及面积。 C 3.如图,在△ABC中,C=90°,
CD为斜边AB上的高,你可以得 b 出哪些与边有关的结论? A m h
c2
;
a c
c a
b a
∵ c2= 4•ab/2 +(b-a)2 =2ab+b2-2ab+a2 =a2+b2 ∴a2+b2=c2
a
b
b c
b c
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为 c2 +4•ab/2
a b
a
b
c
c
a
b
c
∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab ∴a2+b2=c2
a
B D n
如图,在△ABC中,AB=AC,D点在CB延长线上, A 求证:AD2-AB2=BD· CD
证明:过A作AE⊥BC于E ∵AB=AC,∴BE=CE D 在Rt △ADE中, AD2=AE2+DE2 在Rt △ABE中, AB2=AE2+BE2 ∴ AD2-AB2=(AE2+DE2)-(AE2+BE2) B E C
a b
c
勾股定理的证明
证明方法3:赵爽弦图,动手拼图
勾股定理的证明
证明方法4:美国总统加菲尔德的证明方法
a b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青方
青 出
朱入 朱入
朱 朱 出 朱方 出
华罗庚
青入
青出
证明十
II
I III
注意:
面积 I :面积II :面积III = a2 : b2 : c2
证明十
I
II III
注意:
面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
I III II
注意:
面积 I : 面积 II : 面积 III = a2 : b2 : c2
c
b
a
可得: a2 + b2 = c2
大正方形的面积该怎样表示?
证明三
c2
a2 b2
对比两个图形,你能直接观察验 证出勾股定理吗?
a2
a2 c2 b2 a 2 + b 2 = c2
证明六 印度婆什迦羅的 證明
c b a
c2 = b2 + a2
证明七 “总统”证法
a
b
c c b
½(a + b)(b + a) = ½c2 + 2×½ab a2 + 2ab + b2 = c2 +2 ab
证明十
注意:
面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
注意:
面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
注意:
面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
注意:
面积 I : 面积 II : 面积 III = a2 : b2 : c2 由此得,面积 I + 面积 II = 面积 III 因此,a2 + b2 = c2 。
c c
a
(2)
(a-b)2 (3) (2) c
证 明 一
1 ab 2
c (3)
(a-b)2
(4)
=
C2-4×
a2+b2-2ab = c2-2ab
可得:a2 + b2 = c2
b
a
c b (a+b )2
证 明 二
a
c
c
1 = c 4 2 ab
2
a2 + b2 + 2ab = c2+2ab
b 角形两直角边的平方和等于斜边的平方
a2+b2=c2
b2 a2
1
1
美丽的勾股树
2002年,在北京举行的国际 数学家大会会标
早在公元3世纪,我国 数学家赵爽就用左边的图 形验证了“勾股定理” 思考:你能验证吗?
赵爽的“弦图”
b
C
(1)
想一想:这四个直角三角形还能怎样拼?
方法 小结
(4) 已知: a:b=3:4, c=15,求a、b.
(1)在直角三角形中,已知两边,可求第三边;
(2)可用勾股定理建立方程.
试一试:
3、一个直角三角形的三边长为三个连续 偶数,则它的三边长分别为 ( B )
A 2、4、6 C 4、 6、 8
B 6、8、10
D 8、10、12
a
a2 + b2 = c2
证明八
证明八
证明八
证明八
证明八
证明九
a2
b2
证明九
证明九
证明九
证明九
a2 + b2 = c2 c2
证明九
证明九
证明九
拼 图 游 戏
拼图游戏
无字证明
青出
青 入
青方
青 出
朱入
朱 朱方 出
青入
青出
④
⑤
b
c
a
③
①
②
无字证明
青朱出入图
青出
青 入
在从“面积到乘法公式”一章 的学习中,我们把几个图形拼成一 个新的图形,通过图形面积的计算 得到了许多有用的式子。这节课同 样地我们用多种方法拼图验证了勾 股定理,你有什么感受?
例题分析
例 .在Rt△ABC中,∠C=90°.
(1) 已知:a=6,b=8,求c; (2) 已知:a=40,c=41,求b; (3) 已知:c=13,b=5,求a;