复习题图形的平移和旋转

合集下载

北师大版八年级数学下册 第三章 图形的平移与旋转 单元复习题 (含答案)

北师大版八年级数学下册 第三章 图形的平移与旋转 单元复习题 (含答案)

北师版八年级数学下册图形的平移与旋转单元复习题(含答案)一、选择题1.(2019·河南期末)观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是(C)A B C D2.(2019·南阳唐河县期末)如图,△ABC经过平移得到△DEF,其中点A的对应点是点D,则下列结论不一定正确的是(D)A.BC∥EF B.AD=BE C.BE∥CF D.AC=EF 3.(2019·驻马店平舆县期末)如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是(A)A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格4.(2019·郑州新密市期中)下列四幅图片,是中心对称图形的是(B)A B C D5.如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是(A)A.O1 B.O2 C.O3 D.O46.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是(C) A.30°B.60°C.72°D.90°7.(2019·驻马店确山县期末)把点A(3,-4)先向上平移4个单位长度,再向左平移3个单位长度得到点B,则点B的坐标为(D)A.(0,-8) B.(6,-8) C.(-6,0)D.(0,0)8.(2019·邓州市期末)如图,∠1=68°,直线a平移后得到直线b,则∠2-∠3=(D)A.78°B.132°C.118°D.112°9.(2019·南阳社旗县一模)剪纸是我国传统的民间艺术,下列剪纸作品中,既是中心对称图形,又是轴对称图形的是(C)A B C D二、填空题10.(2018·张家界)如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为15°.11.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个相同的格点正方形,并涂上阴影,使这两个格点正方形无重叠部分,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.12如图,在△ABO中,AB⊥OB,OB=3,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A113.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是②.14.(2018·株洲)如图,O为坐标原点,△OAB是等腰直角三角形,∠OAB=90°,点B的坐标为(0,22),将该三角形沿x轴向右平移得到Rt△O′A′B′,此时点B′的坐标为(22,22),则线段OA在平移过程中扫过部分的图形面积为4.15.(2019·新疆)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为三、解答题16.如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°.若点A,B的对应点分别是点D,E,画出旋转后的三角形,并求点A与点D之间的距离.(不要求尺规作图)解:如图.连接AD.在Rt△ABC中,AB=5,BC=4,∴AC=AB2-BC2=3.由旋转的性质,得CD=AC=3,∠ACD=90°.∴AD=AC2+CD2=3 2.17.(2019·宁夏)已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.解:(1)如图所示,△A1B1C1即为所求,其中点C1的坐标为(-2,-1).(2)如图所示,△A2B2C1即为所求.18.(2019·邓州市期末)取一副三角板按图1拼接,其中∠ACD=30°,∠ACB=45°.(1)如图2,三角板ACD固定,将三角板ABC绕点A按顺时针方向旋转一定的角度得到△ABC′,当∠CAC′=15°时,请你判断AB与CD的位置关系,并说明理由;(2)如图3,三角板ACD固定,将三角板ABC绕点A按逆时针方向旋转一定的角度(0°<α<180°)得到△ABC′,猜想当∠CAC′为多少度时,能使CD∥BC′?并说明理由.解:(1)AB∥CD.理由如下:∵∠BAC=∠BAC′-∠CAC′=45°-15°=30°,∴∠BAC=∠C=30°.∴AB∥CD.(2)当∠CAC′=75°时,能使CD∥BC′.理由如下:延长BA交CD于点E.∵∠BAC′=45°,∴∠BAC=75°+45°=120°.又∵∠BAC=∠AEC+∠ACD,∴∠AEC=120°-30°=90°.又∵∠B=90°,∴∠B+∠AEC=90°+90°=180°.∴CD∥BC′.。

第二章《图形的运动》第三课:平移与旋转 期末学业考复习 三年级数学下册(解析版)北师大版

第二章《图形的运动》第三课:平移与旋转 期末学业考复习 三年级数学下册(解析版)北师大版

北师大版三年级下册重难点题型同步训练第二章《图形的运动》第三课:平移与旋转一、单选题1.(2020模拟三上·武城期末)图形平移后得到的图形是()。

A. B. C. D.【答案】 C【解析】【解答】图形平移后得到的图形是。

故答案分为:C。

【分析】注意平移不改变图形的形状和大小,平移后的图形与原图形上对应点连接的线段平行(或在同一条直线上)且相等。

2.(2020模拟三上·宁津期中)下面图案中,()是通过下图平移得到的。

A. B. C.【答案】 A【解析】【解答】解:平移不改变图形的形状和方向,所以A的图案是通过已知图形平移得到的。

故答案为:A。

【分析】平移不改变图形的形状和方向。

3.下图中,甲、乙两图的周长相比,结果是()。

A. 甲长B. 乙长C. 一样长【答案】 C【解析】【解答】根据图形可以看出,甲乙两图的周长一样长。

故答案为:C。

【分析】利用平移法,把甲图的线段向上,向右平移,刚好是一个长方形,和乙图一样。

4.(2020模拟三下·龙华期末)地球自转的运动现象是()。

A. 旋转B. 平移C. 对称【答案】 A【解析】【解答】解:地球自转的运动现象是旋转。

故答案为:A。

【分析】旋转是物体绕着一个中心点做圆周运动;平移是物体沿着一条直线运动。

5.下面是做平移运动的是()。

A. B. C.【答案】 C【解析】【解答】拉抽屉做的是平移运动,风车和轮子是旋转运动。

故答案为:C。

【分析】旋转就是指在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。

旋转改变的是图形的方向,不改变图形的形状和大小;平移就是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动。

平移不改变图形的形状和大小,改变的是图形的位置,平移可以不是水平的。

6.(2020模拟三下·龙华期中)轴对称、旋转、平移这三种图形变换的共同点是()。

A. 都是沿一定方向移动了一定的距离B. 都不改变图形的形状和大小C. 对应线段互相平行【答案】 B【解析】【解答】解:轴对称、旋转、平移这三种图形变换的共同点是都不改变图形的形状和大小。

北师大版八年级数学下册 《图形的平移与旋转》全章复习与巩固(提高)巩固练习 含答案解析

北师大版八年级数学下册 《图形的平移与旋转》全章复习与巩固(提高)巩固练习  含答案解析

《图形的平移与旋转》全章复习与巩固(提高)巩固练习【巩固练习】 一、选择题1.轴对称与平移、旋转的关系不正确的是( ).A .经过两次翻折(对称轴平行)后的图形可以看作是原图形经过一次平移得到的B .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过一次平移得到的C .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D .经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过一次平移得到的 2.在旋转过程中,确定一个三角形旋转的位置所需的条件是( ). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角. A .①②④ B .①②③ C .②③④ D .①③④3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( ).A B C D4.(2016·株洲)如图,在△ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 顺时针方向旋转后得到△A ’B ’C ’,若点B ’恰好落在线段AB 上,AC 、A ’B ’交于点O ,则∠COA ’的度数是( )A .50°B .60°C .70°D .80°5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处, 若90FPH =o∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ). A.20 B.22 C.24 D.30第4题 第5题6.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼 成如下图的一座“小别墅”,则图中阴影部分的面积是( ). A .2 B .4 C .8 D .107. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC=2,将Rt △ABC 绕A 点按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( ).A.6π B.3π C.16π+ D.18.如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE. 过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是( ). A .①③④ B .①②⑤ C .③④⑤ D .①③⑤二、填空题9. 如图,图B 是图A 旋转后得到的,旋转中心是 ,旋转了 .10.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.第9题第10题第12题11.(2016•大连)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .12. 如图,正方形ABCD经过顺时针旋转后到正方形AEFG的位置,则旋转中心是,旋转角度是度.13. 时钟的时针不停地旋转,从上午8:30到上午10:10,时针旋转的旋转角是 .14. 如图所示,可以看作是一个基本图形经过次旋转得到的;每次旋转了度.15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是 .16.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、…所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a 与数轴上的数5对应,则a=_________;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是_________(用含n的代数式表示).三、解答题17. 如图,在正方形ABCD中,F是AD的中点,E是BA延长线上一点,且AE=12 AB.①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF变到△ADE的位置?若是旋转,指出旋转中心和旋转角.②线段BF和DE之间有何数量关系?并证明.18.阅读:我们把边长为1的等边三角形PQR沿着边长为整数的正n(n>3)边形的边按照如图1的方式连续转动,当顶点P回到正n边形的内部时,我们把这种状态称为它的“点回归”;当△PQR回到原来的位置时,我们把这种状态称为它的“三角形回归”.例如:如图2,边长为1的等边三角形PQR的顶点P在边长为1的正方形ABCD内,顶点Q与点A重合,顶点R与点B重合,△PQR沿着正方形ABCD的边BC、CD、DA、AB…连续转动,当△PQR连续转动3次时,顶点P回到正方形ABCD内部,第一次出现P的“点回归”;当△PQR连续转动4次时△PQR回到原来的位置,出现第一次△PQR的“三角形回归”.操作:如图3,如果我们把边长为1的等边三角形PQR沿着边长为1的正五边形ABCDE的边连续转动,则连续转动的次数k= 时,第一次出现P的“点回归”;连续转动的次数k= 时,第一次出现△PQR的“三角形回归”. 猜想:我们把边长为1的等边三角形PQR 沿着边长为1的正n (n >3)边形的边连续转动, (1)连续转动的次数k= 时,第一次出现P 的“点回归”; (2)连续转动的次数k= 时,第一次出现△PQR 的“三角形回归”;(3)第一次同时出现P 的“点回归”与△PQR 的“三角形回归”时,写出连续转动的次数k 与正多边形的边数n 之间的关系.19.(2015春•凉山州期末)如图,长方形ABCD 在坐标平面内,点A 的坐标是A (2,1),且边AB 、CD 与x 轴平行,边AD 、BC 与x 轴平行,点B 、C 的坐标分别为B (a ,1),C (a ,c ),且a 、c 满足关系式c=++3.(1)求B 、C 、D 三点的坐标;(2)怎样平移,才能使A 点与原点重合?平移后点B 、C 、D 的对应分别为B 1C 1D 1,求四边形OB 1C 1D 1的面积;(3)平移后在x 轴上是否存在点P ,连接PD ,使S △COP =S 四边形OBCD ?若存在这样的点P ,求出点P 的坐标;若不存在,试说明理由.20. 如图,P 是等边三角形ABC 中的一点,PA =2,PB =32,PC =4,求BC 边得长是多少?【答案与解析】 一.选择题 1.【答案】B.【解析】A 、多次平移相当于一次平移,故正确;B 、必须是对称轴有偶数条且平行时,才可以看作是原图形经过一次平移得到的,故错误;C 、一个图形围绕一个定点旋转一定的角度,得到另一个图形,这种变换称为旋转变换,故正确;D 、对称轴有偶数条且平行时,可以看作是原图形经过一次平移得到的,故正确. 故选B . 2.【答案】A. 3.【答案】B.BP4.【答案】B.【解析】解:由题意知:∠A=90°-50°=40°,由旋转性质可知:∴BC=B C′,∴∠B=∠BB ’C=50°,∵∠BB ′C =∠A +∠ACB ’=40°+∠ACB ’, ∴∠ACB ’=10°,∴∠COA ’=∠AOB ’=∠OB ’C+∠ACB ’=∠B+∠ACB ’=60°. 故选B .5.【答案】C.【解析】Rt △PHF 中,有FH=10,则矩形ABCD 的边BC 长为PF+FH+HC=8+10+6=24,故选C . 6.【答案】B.【解析】阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一, 正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4. 故选B .7. 【答案】B.【解析】阴影部分的面积等于扇形DAB 的面积,首先利用勾股定理即可求得AB 的长,然后利用扇形的面积公式即可求得扇形的面积.8.【答案】D.【解析】①利用同角的余角相等,易得∠EAB=∠PAD ,再结合已知条件利用SAS 可证两三角形全等;③利用①中的全等,可得∠APD=∠AEB ,结合三角形的外角的性质,易得∠BEP=90°,即可证;②过B 作BF ⊥AE ,交AE 的延长线于F ,利用③中的∠BEP=90°,利用勾股定理可求BE ,结合△AEP 是等腰直角三角形,可证△BEF 是等腰直角三角形,再利用勾股定理可求EF 、BF ;⑤在Rt △ABF 中,利用勾股定理可求AB 2,即是正方形的面积;④S △APD +S △APB = S △AP E +S △EPB =12. 二.填空题 9.【答案】X ;180°.【解析】观察图形中Z 点对应点的位置是图A 绕旋转中心X 按逆时针旋转180°得到的.故答案为:X ;180°.10.【答案】30°.【解析】解法一、在Rt △ABC 中,∠A <∠B∵CM 是斜边AB 上的中线, ∴CM=AM , ∴∠A=∠ACM ,将△ACM 沿直线CM 折叠,点A 落在点D 处 设∠A=∠ACM=x 度, ∴∠A+∠ACM=∠CMB , ∴∠CMB=2x ,如果CD 恰好与AB 垂直 在Rt △CMG 中, ∠MCG+∠CMB=90°即3x=90°x=30°则得到∠MCD=∠BCD=∠ACM=30°根据CM=MD,得到∠D=∠MCD=30°=∠A∠A等于30°.解法二、∵CM平分∠ACD,∴∠ACM=∠MCD∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°11.【答案】2.12.【答案】A,45.【解析】∵正方形ABCD经过顺时针旋转后得到正方形AEFG,∴旋转中心为点A,旋转角为∠CAD,∵AC是正方形ABCD的对角线,∴∠CAD=45°,∴旋转角为45°.故答案为:A,45.13.【答案】50°.【解析】从上午8:30到上午10:10,共1个小时40分钟;时针旋转了536圆周,故旋转角的度数是50度.故答案为:50°.14.【答案】3;90.【解析】如图所示的图形可以看作按照逆时针(或顺时针)旋转3次,且每次旋转了90°而成的.故答案是:3;90.15.【答案】6.【解析】如图,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG=4,再根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.16.【答案】(1)a=2,(2)3n+1.【解析】根据正半轴上的整数与圆周上的数字建立的这种对应关系可以发现:圆周上了数字0、1、2与正半轴上的整数每3个一组012;345;678…分别对应.三.解答题17.【解析】解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;(2)线段BF和DE的数量关系是相等.理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAF=∠EAD,∵F是AD的中点,AE=12 AB,∴AE=AF,∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,∴BF与DE为对应线段,∴BF=DE.18.【解析】解:操作:3,5.猜想:(1)第一次点回归,连续转动的次数都是3次,故填3;(2)第一次出现△PQR的“三角形回归”,连续转动的次数就是多边形的边数,故填n;(3)当n不是3的倍数时,k=3n,当n是3的倍数时,k=n.19.【解析】解:(1)由题意得,a﹣6≥0且6﹣a≥0,所以,a≥6且a≤6,所以,a=6,c=3,所以,点B(6,1),C(6,3),∵长方形ABCD的边AB、CD与x轴平行,边AD、BC与x轴平行,∴点D(2,3);(2)∵平移后A点与原点重合,∴平移规律为向左2个单位,向下1个单位,∴B1(4,0),C1(4,2),D1(0,2);(3)平移后点C到x轴的距离为2,∵S△COP=S四边形OBCD,∴×OP×2=4×2,解得OP=8,若点P在点O的左边,则点P的坐标为(﹣8,0),若点P在点O的右边,则点P的坐标为(8,0).综上所述,存在点P(﹣8,0)或(8,0).20.【解析】解:如图,将△ABP绕点B逆时针旋转60°得△BCQ,连接PQ.再过B作CQ的延长线的垂线BD,垂足为D,∴BQ=PB=23,∠PQB =60°,∴△PBQ是等边三角形,∴PQ=PB=23,∠QPC=60°.在△PCQ中,∵CQ=PA=2,,PQ=23,PC=4,∴CQ2+ PQ2=PC2,∴∠PQC=90°,∴∠CQB=∠PQB+∠PQC=150°,∴∠BQD=30°.在Rt△BQD中,BD=12BQ=3,QD=3,则CD=5.在Rt△BCD中,BC=32527+=.。

新苏教版四年级下册数学《图形的平移、旋转和轴对称》专项复习试卷有答案

新苏教版四年级下册数学《图形的平移、旋转和轴对称》专项复习试卷有答案

新苏教版四年级下册数学《图形的平移、旋转和轴对称》专项复习试卷有答案期末复习冲刺卷专项复习卷4 图形的平移、旋转和轴对称一、填空。

(每空2分,共28分)1.在可以通过旋转得到的图案下面的括号里画“√〞。

2.(1)( )号梯形向左平移6格得到1号梯形。

(2)3号梯形向( )平移( )格得到1号梯形。

3.(1)上面的图形中,只有1条对称轴的图形是( )。

(2)只有2条对称轴的图形是( )。

(3)有超过2条对称轴的图形是( )。

(4)( )不是轴对称图形。

(5)( )有无数条对称轴。

4.在英文字母“A、S、H 、P 、M、N、Q〞中,是轴对称图形的有( )。

5.在汉字“王、田、品、工、用、水、清、甲〞中,是轴对称图形的有( )。

二、判断。

(对的在括号里打“√〞,错的打“×〞。

每题2分,共8分)1. 等腰三角形和等边三角形都只有一条对称轴。

( )2.梯形不可能是轴对称图形。

( )3.左图可以通过平移得到。

( )4.钟面上的时针指着数字“6〞,当时针逆时针旋转90°以后,时针指着数字“3〞。

( )三、选择。

(将正确答案的字母填在括号里。

每题3分,共15分)1.以下图形中对称轴最多的是( )。

A.正五边形B.正方形C.半圆形2.下面的图形中,没有对称轴的是( )。

A.长方形B.等腰三角形C.平行四边形3.从6:00到9:00,时针旋转了( )。

A.30° B.90° C.180°4.将一条长8厘米的线段,沿一个端点旋转180°后,所得线段长度( )。

A.比8厘米长 B.比8厘米短C.是8厘米5.一个图形在方格中先向右平移8格,再向下平移3格,然后向左平移5格,最后向左平移3格,此时图形位于( )。

A.原位置B.原位置向下6格处C.原位置向下3格处四、操作题。

(共49分)1.(9分)(1)把四边形绕点A顺时针旋转90°。

(2)把平行四边形绕点B逆时针旋转90°。

2020九年级数学总复习课题图形的平移与旋转中考真题归类同步练习试题解析课后作业

2020九年级数学总复习课题图形的平移与旋转中考真题归类同步练习试题解析课后作业

九年级数学总复习中考真题归类解析课题图形的平移与旋转试题解析一.试题(共15小题)1.(2019春•迁安市期末)如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A.5B.6C.10D.4 2.(2019•吉林)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°3.(2019•荆门)如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是()A.(,﹣1)B.(1,﹣)C.(2,0)D.(,0)4.(2019•毕节市)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方B.右方C.下方D.左方5.(2019•枣庄)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4B.2C.6D.2 6.(2019•天津)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 7.(2017•宜宾)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD的度数是.8.(2019春•九龙坡区期中)某酒店准备进行装修,把楼梯铺上地毯.已知楼梯的宽度是2米,楼梯的总长度为8米,总高度为6米,其侧面如图所示.已知这种地毯每平方米的售价是50元.请你帮老板算下,购买地毯至少需要花费元.9.(2019•包头)如图,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕A点逆时针旋转70°得到△ADE,连接EC,则tan∠DEC的值是.10.(2016•临沂一模)如图,在平面直角坐标系中,已知点A(2,0),B(0,3),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是()A.(﹣3,2)B.(﹣3,1)C.(2,1)D.(﹣2,1)11.(2019•梧州)如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是.12.(2019•宁夏)已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.13.(2019•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(﹣4,3);(3)在(2)的条件下,直接写出点A1的坐标.14.(2019•荆州)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=;(用含α的式子表示)(2)在图②中猜想AF与DE的数量关系,并证明你的结论.15.(2019•东营)如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.通城一典60-61页同学的平移与旋转试题解析参考答案与试题解析一.试题(共15小题)1.(2019春•迁安市期末)如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A.5B.6C.10D.4【解答】解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE,∴S△ABC=S△BCD=S△ACD=×10=5,∵DE∥BC,∴S△BCE=S△BCD=5.故选:A.2.(2019•吉林)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选:C.3.(2019•荆门)如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是()A.(,﹣1)B.(1,﹣)C.(2,0)D.(,0)【解答】解:如图,在Rt△OCB中,∵∠BOC=30°,∴BC=OC=×=1,∵Rt△OCB绕原点顺时针旋转120°后得到△OC′B',∴OC′=OC=,B′C′=BC=1,∠B′C′O=∠BCO=90°,∴点B′的坐标为(,﹣1).故选:A.4.(2019•毕节市)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方B.右方C.下方D.左方【解答】解:如图所示:每次旋转4个图形为一个周期,2019÷4=504…3,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.故选:C.5.(2019•枣庄)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4B.2C.6D.2【解答】解:∵△ADE绕点A顺时针旋转90°到△ABF的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴AD=DC=2,∵DE=2,∴Rt△ADE中,AE==2故选:D.6.(2019•天津)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 【解答】解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故A错误,C错误;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故D正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故B错误故选:D.7.(2017•宜宾)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD的度数是60°.【解答】解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=15°,∴∠AOD=45°+15°=60°,故答案为:60°.8.(2019春•九龙坡区期中)某酒店准备进行装修,把楼梯铺上地毯.已知楼梯的宽度是2米,楼梯的总长度为8米,总高度为6米,其侧面如图所示.已知这种地毯每平方米的售价是50元.请你帮老板算下,购买地毯至少需要花费1400元.【解答】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为8米,6米,即可得地毯的长度为6+8=14(米),地毯的面积为14×2=28(平方米),故买地毯至少需要28×50=1400(元).购买地毯至少需要1400元.故答案为:1400.9.(2019•包头)如图,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕A点逆时针旋转70°得到△ADE,连接EC,则tan∠DEC的值是1.【解答】解:由旋转的性质可知:AE=AC,∠CAE=70°,∴∠ACE=∠AEC=55°,又∵∠AED=∠ACB,∠CAB=55°,∠ABC=25°,∴∠ACB=∠AED=100°,∴∠DEC=100°﹣55°=45°,∴tan∠DEC=tan45°=1,故答案为:110.(2016•临沂一模)如图,在平面直角坐标系中,已知点A(2,0),B(0,3),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是()A.(﹣3,2)B.(﹣3,1)C.(2,1)D.(﹣2,1)【解答】解:作CD⊥y轴于点D,如图,∵A(2,0),B(0,3),∴OA=2,OB=3,∵线段AB绕点B顺时针旋转90°至CB,∴∠ABC=90°,BC=BA,∵∠ABO+∠A=90°,∠ABO+∠CBD=90°,∴∠CBD=∠A,在△ABO和△BCD中,∴△ABO≌△BCD,∴BD=OA=2,CD=OB=3,∴OD=OB﹣BD=3﹣2=1,∴C点坐标为(﹣3,1).故选:B.11.(2019•梧州)如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是﹣1.【解答】解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=∠BAD=30°,OA=OC,AC⊥BD,∴OB=AB=1,∴OA=OB=,∴AC=2,由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,∴CE=AC﹣AE=2﹣2,∵四边形AEFG是菱形,∴EF∥AG,∴∠CEP=∠EAG=60°,∴∠CEP+∠ACD=90°,∴∠CPE=90°,∴PE=CE=﹣1,PC=PE=3﹣,∴DP=CD﹣PC=2﹣(3﹣)=﹣1;故答案为:﹣1.12.(2019•宁夏)已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.【解答】解:(1)如图所示,△A1B1C1即为所求,其中点C1的坐标为(﹣2,﹣1).(2)如图所示,△A2B2C1即为所求.13.(2019•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(﹣4,3);(3)在(2)的条件下,直接写出点A1的坐标.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,(3)点A1的坐标为(2,6).14.(2019•荆州)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=90°﹣α;(用含α的式子表示)(2)在图②中猜想AF与DE的数量关系,并证明你的结论.【解答】解:(1)如图①,∵△OEF绕点O逆时针旋转α角,∴∠DOF=∠COE=α,∵四边形ABCD为正方形,∴∠AOD=90°,∴∠AOF=90°﹣α;故答案为90°﹣α;(2)AF=DE.理由如下:如图②,∵四边形ABCD为正方形,∴∠AOD=∠COD=90°,OA=OD,∵∠DOF=∠COE=α,∴∠AOF=∠DOE,∵△OEF为等腰直角三角形,∴OF=OE,在△AOF和△DOE中,∴△AOF≌△DOE(SAS),∴AF=DE.15.(2019•东营)如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.【解答】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC===2,∵点D、E分别是边BC、AC的中点,∴AE=AC=,BD=BC=1,∴=.②如图1﹣1中,当α=180°时,可得AB∥DE,∵=,∴==.故答案为:①,②.(2)如图2,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵==,∴△ECA∽△DCB,∴==..(3)①如图3﹣1中,当点E在AB的延长线上时,在Rt△BCE中,CE=,BC=2,∴BE===1,∴AE=AB+BE=5,∵=,∴BD==.②如图3﹣2中,当点E在线段AB上时,易知BE=1,AE=4﹣1=3,∵=,∴BD=,综上所述,满足条件的BD的长为或.。

初中数学图形的平移,对称与旋转的知识点总复习附解析

初中数学图形的平移,对称与旋转的知识点总复习附解析

初中数学图形的平移,对称与旋转的知识点总复习附解析一、选择题1.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P (-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A .【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.4.已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B 的对应点的坐标为( )A .(5,3)B .(﹣1,﹣2)C .(﹣1,﹣1)D .(0,﹣1)【答案】C【解析】【分析】根据点A 、点A 的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】∵A (1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B (2,1)的对应点的坐标为(﹣1,﹣1),故选C .【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.5.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.6.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣7b -,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( ) A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b =0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.7.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.在下列图案中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .【答案】A【解析】【分析】 根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、既是轴对称图形,又是中心对称图形,故本选项正确;B 、是轴对称图形,不是中心对称图形,故本选项错误;C 、不是轴对称图形,是中心对称图形,故本选项错误;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°【答案】C【解析】【分析】 根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.11.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.12.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.13.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三AOB角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形【答案】D【解析】【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D.【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=22=5,34作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.16.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO -∠CAO=90°.在等腰Rt △ABC 中,AB=6,则AC=BC=32.同理可求得:AO=OC=3.在Rt △AOD1中,OA=3,OD 1=CD 1-OC=4,由勾股定理得:AD 1=5.故选B .17.如图,平面直角坐标系中,已知点B (3,2)-,若将△ABO 绕点O 沿顺时针方向旋转90°后得到△A 1B 1O ,则点B 的对应点B 1的坐标是( )A .(3,1)B .(3,2)C .(1,3)D .(2,3)【答案】D【解析】【分析】 根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B 1的坐标即可.【详解】解:△A 1B 1O 如图所示,点B 1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.18.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A.10B.22C.3D.25【答案】B【解析】【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC,即可证得AE∥BC,得出2142EF AF AEFB FC BC====,即可求出BE.【详解】延长BE和CA交于点F∵ABC∆绕点A逆时针旋转90︒得到△AED ∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.19.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B 选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D 选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C 选项正确;故选D.20.如图,将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55oB .50oC .45oD .35o【答案】D【解析】【分析】根据旋转的性质可得AB AD =,BAD 110∠=o ,ADE ABC ∠∠=,根据等腰三角形的性质可得ABC ADE 35∠∠==o .【详解】如图,连接CD ,Q 将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,AB AD ∴=,BAD 110∠=o ,ADE ABC ∠∠=,∴∠ABC=∠ADB=(180°-∠BAD )÷2=35°,∴∠ADE=ABC 35∠=o ,故选D .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是解本题的关键.。

平移与旋转+第五章 图形的变换与作图+课件+2025年中考数学一轮总复习第五章

平移与旋转+第五章 图形的变换与作图+课件+2025年中考数学一轮总复习第五章
1
1
点在AC下方时,若B,P,M三点共
线,则BP有最大值,最大值为BM+MP=2
故答案为2
1
2+ .
2
1
2+ .
2
12.(2024·泰安)如图1,在等腰Rt△ABC中,∠ABC
=90°,AB=CB,点D,E分别在AB,CB上,DB=
EB,连接AE,CD,取AE的中点F,连接BF.
AP=BP'=2,
∴△PCP'是等边三角形,
∴PP'=1,∠CP'P=∠CPP'=60°.
∵PP'=1,P'B=2,PB= 3,
∴P'B2=PP'2+PB2,
∴∠P'PB=90°,∴∠CPB=150°.
′ 1
∵cos∠PP'B= = ,
′ 2
∴∠PP'B=60°,
∴∠CP'B=∠APC=120°,
第30课时
平移与旋转
1.(2024·巴蜀)如图,△ABC沿射线BC方向平移到
△DEF.若BC=7,CE=3,则平移的距离为( C
A.2
B.8
C.4
D.5

2.如图,在Rt△ABC中,∠ACB=90°,∠A=20°,
将△ABC绕点C逆时针旋转得到△EDC,其中点E与点A
是对应点,点D与点B是对应点.若点D恰好落在AB边
请根据数学老师的提示帮小明求出图1中线段PB
的长为 6

(2)【方法迁移】如图2,已知△ABC为正三角形,P
为△ABC内部一点.若PC=1,PA=2,PB= 3,求
∠APB的大小;
解:(2)如答案图1,将△PAC绕点C

七年级数学下册《平移旋转复习题》课件 新人教版

七年级数学下册《平移旋转复习题》课件 新人教版
H O
G EA F O H C
E
B D 图2
C
B
D
A D A D A N N B M (1 ) C B M (2) C M B (3) N
D
C
猜想: BM+DN=MN
A
D
如何证明一条线段等于两 条线段的和?
截长补短
在∠MAN旋转过程中哪些量保持 不变?
N C
E
B
M
∠BAM +∠DAN=45°
把△AND绕点A沿顺时针转90°,得 可得E, 的顶点B顺时针旋转,使得点A与 CB的延长线上的点E重合。则三角 15 尺旋转了 _______度,∠BDC= 150 _______度
由旋转变换性质 可知图中有哪些 等量关系? △BDC是什么 三角形?
A
D
C
B
E
2,P是正三角形 ABC 内的一点,且PA=6,PB =8,PC=10.若将△PAC绕点A逆时针旋转后,得 6 _______, 到△P‘AB ,则点P与点P’ 之间的距离为 150° . ∠APB=______
B
已知△APP′是等边三角形,由三 边的长度可以判定△BPP′是什么 特殊三角形?
P'
P C
由旋转变换性质可知图中 有哪些等量关系?进而可 以判断△P‘AP什么特殊三 角形?
A
3, (2008,黑龙江)已知正方形ABCD中, ∠MAN=45°,∠MAN绕点A沿顺时针旋转,它的 两边分别交CB,DC(或它们的延长线)于点M,N, 当∠MAN绕点A旋转到BM=DN时(如图1),通 过观察,测量,易知BM+DN=MN. (1)当∠MAN绕点A旋转到BM≠DN (如图2) 所示的位置时,通过观察,测量猜想线段BM,DN 和MN之间有怎样的数量关系?写出猜想,并加以证 明; (2)当∠MAN绕点A旋转到如图3时,通过观察, 测量判断线段BM,DN和MN之间又有怎样的数量 关系?请直接写出你的猜想.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,在平面直角坐标系中,已知A(2,0),B(5,0),点P为线段AB外一动点,且P A=2,以PB为边作等边△PBM,则线段AM的最大值为()A.3B.5C.7D.2.如图,在正n边形(n为整数,且n≥4)绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为正n边形的“叠弦角”,△AOP为“叠弦三角形”.以下说法,正确的是.(填番号)①在图1中,△AOB≌△AOD';②在图2中,正五边形的“叠弦角”的度数为360°;③“叠弦三角形”不一定都是等边三角形;④正n边形的“叠弦角”的度数为60°﹣.3.在△ABC中,AB=AC,∠BAC=100°.将线段CA绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<360°,连接AD、BD.(1)如图1,当α=60°时,∠CBD的大小为;(2)如图2,当α=20°时,∠CBD的大小为;(提示:可以作点D关于直线BC的对称点)(3)当α为°时,可使得∠CBD的大小与(1)中∠CBD的结果相等.4.探索新知:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.(1)一个角的平分线这个角的“巧分线”;(填“是”或“不是”)(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ=;(用含α的代数式表示出所有可能的结果)深入研究:如图2,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.(3)当t为何值时,射线PM是∠QPN的“巧分线”;(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.5.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.6.将一副直角三角板如图(1)放置,使含30°角的三角板的直角边和含45°角的三角板的直角边完全重合.(1)直接写出∠ADC的度数为;(2)含30°角的三角板位置保持不变,将含45°角的三角板绕点O顺时针方向旋转.①如图2,射线BA与射线DC交于点E,∠BED的平分线与∠BOD的平分线交于点F,求∠EFO的度数;②若将含45°角的三角板绕点O顺时针方向旋转一周至图2位置,在这一过程中,存在△COD的其中一边与AB平行,请你直接写出所有满足条件的平行关系及相应的旋转角度.7.如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,OE 平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.8.如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN=°.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,当边OC 旋转°时,边CD恰好与边MN平行.(直接写出结果)9.已知:BC∥OA,∠B=∠A=120°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,则∠EOC的度数是;(3)在(2)的条件下,若平行移动AC,其它条件不变,如图3,则∠OCB:∠OFB的值是.10.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN是锐角.(1)则a=,b=;(2)若两灯同时转动,90秒时,两束光线的位置关系是;(填“平行”或“垂直”或“相交”)(3)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?11.在等腰△ABC中,AB=AC,将线段BA绕点B顺时针旋转到BD,使BD⊥AC于H,连结AD并延长交BC的延长线于点P.(1)依题意补全图形;(2)若∠BAC=2α,求∠BDA的大小(用含α的式子表示);(3)小明作了点D关于直线BC的对称点点E,从而用等式表示线段DP与BC之间的数量关系.请你用小明的思路补全图形并证明线段DP与BC之间的数量关系.12.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.13.在一次数学课上,张老师让同学们独立完成课本第23页7.选择题(2)如图1,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=A.180°B.270°C.360°D.540°(1)请你也完成这道题;(2)在同学们都正确解答这道题后,张老师对这道题进行了变式:在(1)中AB∥EF不变,将点C移动到点C1位置(如图2所示),写出∠BAC1,∠AC1E,∠C1EF之间的数量关系,并证明.请你和这个班的同学一起解答这道题吧;(3)善于思考的小明想:将图1平移至与图2重合(如图3所示),当AC1,EC1分别平分∠BAC,∠CEF时,那么∠ACE与∠AC1E之间有怎样的数量关系?请你直接写出结果,不需要证明.14.如图,平移线段AB,使点A移动到点A1.(1)画出平移后的线段A1B1,分别连接AA1,BB1.(2)分别画出AC⊥A1B1于点C,AD⊥BB1于点D.(3)AA1与BB1之间的距离,就是线段的长度.(4)线段AB平移的距离,就是线段的长度.(5)线段BD的长度,是点B到直线的距离.15.如图,△ABC中,∠B=90°,把△ABC沿BC方向平移到△DEF的位置,若AB=4,BE=3,PE=2,求图中阴影部分的面积.16.如图,在等边△BCD中,DF⊥BC于点F,点A为直线DF上一动点,以B为旋转中心,把BA顺时针方向旋转60°至BE,连接EC.(1)当点A在线段DF的延长线上时,①求证:DA=CE;②判断∠DEC和∠EDC的数量关系,并说明理由;(2)当∠DEC=45°时,连接AC,求∠BAC的度数.17.已知:如图,在Rt△ABC中,∠ACB=90°,将这个三角形绕点A旋转,使点B落在边BC延长线上的点D处,点C落在点E处.求证:AD垂直平分线段CE.18.如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数;19.已知如图,△ADC和△BDE均为等腰三角形,∠CAD=∠DBE,AC=AD,BD=BE,连接CE,点G为CE的中点,过点E作AC的平行线与线段AG延长线交于点F.(1)当A,D,B三点在同一直线上时(如图1),求证:G为AF的中点;(2)将图1中△BDE绕点D旋转到图2位置时,点A,D,G,F在同一直线上,点H 在线段AF的延长线上,且EF=EH,连接AB,BH,试判断△ABH的形状,并说明理由.20.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.求证:△BCD≌△FCE.21.如图,在△ABC中,∠ACB=90°,BC=m,AB=3m,AC=n.(1)将△ABC绕点B逆时针旋转,使点C落在AB边上的点C1处,点A落在点A1处,在如图中画出△A1BC1;(2)求四边形ACBA1的面积;(用m、n的代数式表示)(3)将△A1BC1沿着AB翻折得△A2BC1,A2C1交AC于点D,写出四边形BCDC1与三角形ABC的面积的比值.22.如图,PQ∥MN,A、B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣5|+(b﹣1)2=0.(友情提醒:钟表指针走动的方向为顺时针方向)(1)a=,b=;(2)若射线AM、射线BQ同时旋转,问至少旋转多少秒时,射线AM、射线BQ互相垂直.(3)若射线AM绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动多少秒时,射线AM、射线BQ互相平行?23.如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC 的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.24.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.25.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的,若AB=2,求△ABC移动的距离BE的长.26.如图1,将一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.(1)如图1,求∠EFB的度数;(2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.①当旋转至如图2所示位置时,恰好CD∥AB,则∠ECB的度数为°;②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB 的大小;如果不存在,请说明理由.27.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.28.如图,已知点C是AB上一点,△ACM、△CBN都是等边三角形.(1)说明AN=MB;(2)将△ACM绕点C按逆时针旋转180°,使A点落在CB上,请对照原题图画出符合要求的图形;(3)在(2)所得到的图形中,结论“AN=BM”是否成立?若成立,请说明理由;若不成立,也请说明理由.29.如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.30.四边形ABDF中,点C、E分别在AF、DF上,且AB=AC,BD=DE,∠BDF=2∠ABC,M为CE的中点.(1)画出△ACM关于点M成中心对称的图形;(2)求证:AM⊥DM;(3)若AM=DM,求∠ABC的度数.31.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为1米,其它部分均种植花草.试求出种植花草的面积是多少?32.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB 重合,OA=OB=4,OC=OD=2,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)(1)当OC∥AB时,旋转角α=度,OC⊥AB时旋转角α=度.发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.应用:(3)当A、C、D三点共线时,求BD的长.拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC 的最大值与最小值.33.(1)如图1,E为等边△ABC内一点,CE平分∠ACB,D为BC边上一点,且DE=CD,连接BE,取BE中点P,连接AP,PD,AD,直接写出AP与PD的位置关系,并直接用等式表示AP与PD的数量关系;(2)如图2,把图1中的△CDE绕点C顺时针旋转α(60°<α<90°),其它条件不变,连接BE,点P为BE中点,连接AP,PD,AD,试问(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.34.如图,在平面直角坐标系中,△ABC顶点A的坐标是(1,3),顶点B的坐标是(﹣2,4),顶点C的坐标是(﹣2,﹣1),现在将△ABC平移得到△A′B′C′,平移后点B 和点A刚好重合.其中点A′,B′,C′分别为点A,B,C的对应点.(1)在图中画出△A′B′C′;(2)直接写出A′、C′点的坐标;(3)若AB边上有一点P,P点的坐标是(a,b),平移后的对应点是P′,请直接写出P′点的坐标.35.已知,在等边△ABC中,点E在BA的延长线上,点D在BC上,且ED=EC (1)如图1,求证:AE=DB;(2)如图2,将△BCE绕点C顺时针旋转60°至△ACF(点B、E的对应点分别为点A、F),连接EF.在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对线段长度之差等于AB的长.36.如图将△ABE向右平移3cm得到△DCF,已知△ABE的周长是16cm.(1)试判断AD与EF的关系,并证明.(2)求四边形ABFD的周长.37.如图,在△ABC中,∠B=90°,BC=6,AC=10,将△ABC绕点C顺时针旋转90°得到△DEC,并连接AE,求AE的长.38.Rt△ABC中,∠ABC=30°,将△ABC绕点C逆时针旋转至△A'B'C,使得点A'恰好落在AB上,A'B'交BC于点D,连接BB'.(1)求证:△A'B'C≌△A'B'B.(2)直接写出图中以点B为顶点的所有直角三角形.39.已知,如图,点C是AB上一点,分别以AC,BC为边,在AB的同侧作等边三角形△ACD和△BCE.(1)指出△ACE以点C为旋转中心,顺时针方向旋转60°后得到的三角形;(2)若AE与BD交于点O,求∠AOD的度数.40.(1)如图,它的周长是cm.(2)已知:|a|=2,|b|=5,且a>b,求a+b的值.。

相关文档
最新文档