原油脱硫技术 PPT

合集下载

石油脱硫技术

石油脱硫技术

石油生物催化脱硫石油及其产品的燃烧产生大量的有毒气体SO进入大气,造成严重的空气污染,同时也2是产生酸雨的主要原因,因此需要对含硫量高的石油燃料进行脱硫处理.化学脱硫方法——S气体,反应在加氢脱硫hydrodesulfurizationHDS法通过催化过程将有机硫化物转化成H2高温高压下进行,费用较高,而且难以脱除石油燃料中的噻吩类物质,而生物催化脱硫biodesulfurizationBDS在常温常压就可以进行,并且具有高度专一性,因此发展石油生物催化脱硫方法是十分必要的.由于世界范围内可开发的低硫原油日益减少,人们不得不重视对高硫石油的利用.因此对石油中含硫化合物的化学分析也随之越来越被重视起来.石油中的硫是以有机硫和无机S、FeS等溶解或悬浮在油中.硫两种形式存在的,其中主要是有机硫,也存在少量元素硫、H2有人对4种不同产地的原油进行了化学分析,分离出13类包括176种不同化学结构的有机硫化合物,如图1-1.原油中的硫醇大部分是低分子量,在石油的炼制过程中易被除去,200℃以上沸点的石油产品中几乎很少存在.脂肪族硫化物是沸点200℃以上石油产品如柴油中硫化物的主要成分,芳香族硫化物在较重的馏分中含量较低.虽然喳吩在原油中很少见,但唾吩的衍生物很多,苯唾吩、二苯唆吩、蔡唾吩是高硫原油的重要组成.而且这些含硫化合物在原油加工过程中不同程度地分布于各馏分油中.在流化床催化裂化Fluldeaatlyti..arkce,Fcc汽油中,唆吩和各种取代唆吩是主要的含硫化合物,其中苯并唾吩BeZnohtiophene,BTH占30%.催化柴油馏分中的含硫化合物主要是BHT和二苯并唆吩Dibenzothi0Phene,DBT及各种烷基取代物.随着唾吩类含硫化合物的环数的增加,多环唾吩因空间位阻效应使加氢脱硫催化剂反应活性迅速降低.从炼油角度来看,非活性硫的化合物一般比活性硫的化合物更难脱除,而原油中的硫大部分都是以硫醚类和噻吩类硫的形态存在于沸点较高的石油馏分中,这是含硫原油加工过程中所面临的主要问题.1石油脱硫技术概述碱洗法长期以来,炼油厂大多采用碱洗的办法来去除原油中的硫化物,这一方法较为简单,通过碱洗,可以除去原油中的绝大部分硫化物,但它却产生大量的含硫废水,如果不加以妥善处理,对环境的危害是相当严重的.此外,由于碱洗对有机硫化物的脱除率不高,致使成品油中还含有不同程度的有机硫化物,如果不进一步对成品油进行精制处理,会严重的影响成品油的使用价值.萃取法成品油中的有机硫化物可通过萃取法来去除,常用的萃取剂是碱液,但有机硫化物在碱液和成品油中的分配系数并不高,为了提高萃取效率,可在碱液中加入极性有机溶剂,如DMF、DMSOD等,这样可以大大提高萃取的脱硫效率1.夏道宏、苏贻勋2等提出了MDS-H2O-KOH 化学萃取法.用3种萃取剂对胜利炼油厂催化裂化FCC汽油进行萃取率及回收率的考察.结果表明,该方法既能将油品中的硫醇萃取出来,达到脱硫目的,又可高效回收萃取液中的单一硫醇以及混合硫醇,得到硫醇浓缩液.在同一套脱硫装置中既可高效脱硫又可得到高纯度的硫醇副产品,增加炼厂经济效益和社会效益.福建炼油化工公司3把萃取与碱洗两种工艺结合起来,采用甲醇-碱洗复合溶剂萃取法显着提高了催化裂化FCC柴油的储存安定性,色度由18号降到8号,萃取溶剂经蒸馏回收甲醇后可循环使用.此方法投资不高,脱硫效率较高,对一般炼油厂是可行的.1.3络合法用金属氯化物的DMF溶液处理含硫的石油产品4,可使有机硫化物与金属氯化物作用,生成水溶性的络合物而加以去除.能与有机硫化物生成络合物的金属离子很多,而其中以CdCl2的效果最佳,但由于Cd2+的毒性较大,也可用CoCl2或NiCl2来代替.不同金属氯化物与有机硫化物的络合反应活性依次为5:Cd2+>Co2+>Ni2+>Mn2+>Cr3+>Cu2+>Zn2+>Li+>Fe3+.络合法脱硫无法脱除油品中的酸性组分,而剩余的氮化物、硫化物可在酸性物质的催化作用下聚合、氧化.因此工业上采用络合萃取与碱洗精制相结合的办法,可使油品的安定性最好.在经济上,与萃取法同样具有较好经济效益.1.4吸附法KonyukhovaT.P.6把一些天然沸石如丝光沸石、钙十字石、斜发沸石等经酸性活化后,可用于吸附去除成品油中的乙基硫醇和二甲基硫,而ZSM-5和NaX沸石则分别适用于对硫醚和硫醇的去除.徐志达、陈冰7等用聚丙烯腈基活性炭纤维NACF吸附汽油中的硫醇,但只能把汽油中一部分硫醇脱除,不能把硫醇硫的含量降到10 g/g以下.吸附法脱硫效率不高,而且若吸附剂上吸附了胶质等物质,其脱硫效率更低,所以大多炼油厂不采用此种方法.1.5催化法催化法去除有机硫化合物的方法主要有以下三种:1用沉积在碳纤维或石墨纤维上的酞菁催化剂,在碱性水溶液中对石油馏分进行氧化处理,可以去除其中的硫醇8.在这一体系中,如果不加碱性溶液,而改用碱性多孔性固体催化剂9由碱性硅酸铝、活性碳、金属螯合剂、有机或矿物粘合剂等物质组成,也能有效地去除成品油中的有机硫化物.2用一个固体碱固定床和一个载体于非碱性固体上的金属螯合剂组成的处理系统10对含硫成品油进行处理,在处理时,使含有硫醇且酸性中等的烃类馏分首先与固体碱接触,然后在氧气和极性化合物的存在下,硫醇与载体上的金属螯合剂接触,发生催化氧化反应,可有效地去除成品油中的有机硫化物.3在没有外加氢的条件下,含硫成品油与酸性催化剂ZSM系列、MCM系列、沸石Y、沸石及其混合物在流动床中接触,可使有机硫化物转化为HS,从而可以较容易地从成品油2中去除硫化物10.1.6加氢脱硫hydrodesulfurization,HDS图1-2苯并噻吩的HDS反应机理Cat=催化剂图1-3二苯并噻吩的HDS反应机理Cat=催化剂加氢脱硫从广义上讲也是催化脱硫的方法之一,它是在金属催化剂的作用下,进行高温高压并加氢的脱硫处理,将有机硫化合物转化为硫化氢HS,再从系统中分离出来的方法.该2方法已在工业生产中得到普遍的应用.但是,这种方法本身也存在许多的问题:1加氢脱硫反应的操作温度通常为270~420℃,较高的操作温度可降低产品中的硫含量,但是会缩短催化剂寿命,提高成本费用.2加氢脱硫的操作压力为以下均为表压 2.0~3.45MPa,粗柴油为2.8~12.4MPa:而对重组分如渣油,操作压力需要高达20.7MPa.加氢脱硫的程度随氢气分压的增加而增加,但当氢气分压超过10.3MPa后,压力变化对加氢脱硫反应速率的影响已不太明,而烷基类DBT化合物中芳环的加氢较为显着.此外,裂解汽油反应生成的链烃也会发生加的消耗.3这种方法对石油氢反应,链烃加氢不仅会降低FCC汽油的辛烷值,而且也增加了H2中某些含硫分子无影响,特别是对重组分中的聚芳烃硫杂环PASHs不起作用11;4HS存在会2S的排放会污染大气.毒害脱硫系统的催化剂,使得高含硫石油的HDS变得复杂化;5H21.7生物脱硫石油炼厂的废水、焦油污染的土壤里的硫化合物在自然条件下,其中的一部分会发生生物降解,这是自然界中存在着细菌的作用.细菌脱硫MDS是在温和的条件下,利用适宜的细菌代谢过程使石油脱硫,在生化过程中,脱硫剂可以再生或自身补充.这种脱硫操作中,有机硫分子的代谢仍要以烃作碳源,而不是选择性或专一性地代谢硫,有机硫化合物只是从非水溶性转变成水溶性,随后从石油中被分离出来,但有价值的烃也被部分地损失掉了.MDS对诸如硫醇、硫醚等分子量较小的有机硫化合物较为有效.对于带有硫杂环的芳香族化合物,据报导12,13迄今只有少数几个细菌菌株能够将其代谢为水溶性的化合物,如亚臭假单胞菌和P.alcaligens等,这样就大大地限制了MDS法的商业利用价值.在细菌脱硫法基础上90年代国外迅速发展起来了石油的生物催化脱Biodesulfurization,BDS技术.BDS技术是利用微生物所产生的酶催化特定的C-S断键反应,释放出可溶性硫,而留下碳氢化合物,也就是酶催化反应基本不破坏石油的骨架烃链.BDS与HDS相比较,具有如下优点:1可在低温低压下操作;2成本较低BDS比HDS投资少50%、操作费用少10%~15%;3灵活性好,可用于处理各种油品,如原油、石脑油、中馏分油、FCC汽排放量,对环境保护极为有利;5能有油、残渣燃料油等;4不需要氢气,节省能源,减少CO2效脱除HDS装置难于处理的含硫杂环化合物,而这是传统的脱硫技术HDS很难解决.因此,酶催化反应脱硫法是一种很有前途的脱硫方法.2生物催化脱硫代谢途径2.1以二苯并噻吩表征的生物脱硫代谢途径由于加氢脱硫难以除去二苯并噻吩DBT及其衍生物,而DBT又广泛存在于化石颜料中,所以生物脱硫多以DBT作为模型化合物来进行研究.目前公认的BDS脱硫的有效性是以二苯并噻吩DBT为模型化合物来表征的,并且搞清楚了它们的作用机制是由于微生物酶的作用,因此,对于酶脱硫路线,研究者进行了深入的研究确定了其脱硫路线,并且发现此路线与其它脱硫路线相比,最具有商业化应用价值.酶脱硫路线主要有两种,一种是还原路线,另一种是氧化路线.在还原路线脱硫过程中, S,然后进一步被氧化成为单质硫.此过程由于没有氧的存在,可以防止烃有机硫被转化成H2类物质的氧化,减少油品热值的损失.但是这种方法脱硫能力比较差,很难把它应用于工业化生产.因此,常常采用氧化路线脱硫.在氧化路线中其代谢途径有以下几种:1以碳代谢为中心的Kodama途径14如图2-1所示.图2-1Kodama途径这一路线是在从土壤中分离出的假单胞菌Pseudomonas15,拜叶林克氏菌beijerinckia16及不动杆菌acintobacter和根瘤菌rhizobium17的混合培养中发现的.Kadama路线是在两相油/水生物反应器中通过酶选择性地DBT分子中的C-C键断裂而C-S键保留下来,脱去3个或4个碳的碎片,生成溶于水的小分子有机硫化合物,并不破坏含硫化合物基体.由于是整个含硫化物转入水相,虽可从石油中分离出去,但也损失了有机烃,故油品的液体收率有所下降.若油中含硫化合物以DBT计算,则其质量约为硫原子的5.3倍,即硫质量分数为0.2%的油品脱硫后收率约损失1.0%18,因此,工业化价值小.2以硫代谢为中心的4S途径1989年Kilbane在研究IGTS8细菌脱除煤中有机硫时,从理论上提出了生物降解DBT 的“4S”途径.在该途径中,二苯并噻吩中的硫经过4步氧化,反应的硫中间体分别是DBT-亚砜,DBT-砜,DBT-羟基磺酸,最终生成SO42-和2-羟基联苯2-HBP.硫是以SO42-的形式从有机物中除去的,对烃不发生降解.对不同的菌株,4S途径并不完全相同,被认为有两种脱硫途径19如图2-2所示,但共同的特点都是对C-S键作用.图2-24S途径根据4S脱硫路线Monticello20提出了生物催化脱硫代谢机理,在Cx-DBT代谢过程中,第一步有时起速率控制作用是Cx-DB从油相进入细胞,然后发生一系列氧化反应,最后脱掉含硫的2-羟基联苯2-HBP,移出细胞回到油相中去,保持了油的燃烧值.在此过程中,有两个问题目前还不清楚:1憎水性的Cx-DBT分子从油相到第一个酶的传递过程中,究竟有多少步骤发生还不清楚.研究发现,传质过程并没有受到中间步骤油-水,水-细胞的限制.2Cx-HBP 或Cx-HBPS如何移出细胞也不清楚.微生物氧化有机硫化合物的生化机理也有两种21:①有机化合物的同系化,随后转移至细胞内;②有机化合物在细胞外解离,转化为可溶性产物进入细胞内.前一途径是微生物与典型的不溶性基质如苯并噻吩或二苯并噻吩相互作用;后一途径则要求微生物必须具有所需要的胞外酶.苯并噻吩在细胞内主要沉积在细胞中,而在酵母中主要沉积在线粒体中.同样,二苯并噻吩降解及进入细胞与细胞脂质和脂蛋白有关,二苯并噻吩的氧化可发生在膜结构上.芳环在细菌细胞中的解离可能通过酶的作用发生羟基化,起诱导作用的加氧酶可能是细胞素P450或依赖性黄素.2.2其它含硫化合物的代谢过程2.2.1苯并噻吩的代谢过程苯并噻吩是FCC汽油中的主要含硫化合物.早在198年就有人对苯并噻吩中硫的去除进行了研究22,1994年,Kropp经过实验发现一些假单胞菌属细菌可以把苯并噻吩代谢为苯并噻吩亚砜、苯并噻吩砜和苯甲酸萘噻吩23.这些隔离种群从在苯环上含有甲基取代物的甲基苯并噻吩中生成了类甲基取代苯甲酸萘噻吩,该反应是一个Diels-Alder二分子的亚砜缩合反应,反应同时失去了二原子的氢、氧和一原子的硫,其中,亚砜分子来自于被细菌分解的苯并噻吩、当亚砜分子被带有细胞色素c和氢过氧化物的苯并噻吩酶化合成时,也可得到上述缩和产物.2.2.2噻吩的代谢过程噻吩是最简单的硫杂环化合物,目前没有多少微生物能够对噻吩进行分解.Amphlett24和Cripps25研究发现只有一种自发的反应可以对噻吩完全降解,该反应可以把噻吩中的碳和硫分别转化成二氧化碳和硫酸盐,因此反应由于损失了部分碳而损失了部分热量.对噻吩的生物脱硫技术还在继续研究之中.2.2.3硫醇和烷基硫醇的代谢过程某些需氧和厌氧微生物可以对硫醇和其它的有机硫化物进行代谢,例如:噬硫杆菌thiobacillusthioparus生丝微菌hyphomicrobium都可以通过甲基硫醇氧化酶把甲基硫醇氧化为甲醛、硫单质和氢过氧化物26.3生物脱硫技术的实际应用3.1生化反应器的设计3.1.1搅拌式反应器1953年和1979年的两个专利提出当硫还原菌SRB存在时加氢脱硫,前者只给出了过程与方法,后者处理Romaschlino原油,经2~3d厌氧培养后,40%的有机硫被还原.1974年,前东德VEB公司用未定性混合菌在间歇式发酵罐中与不同的油作用,结果是既脱除了硫,但也引起了油品中碳氢化合物的大量损失27.1978年,加拿大Alberta大学微生物系利用三种不同的海洋环境水样处理PrudhoeBay原油,油中有机硫化合物被降解28.1982年,澳大利亚申请专利使用Bacillus菌脱除原油中的硫,提出此过程为C-S键断裂过程29.1987年Unocal公司在加入表面活性剂使油水相充分接触条件下,用Pseudomonas菌使杂环硫羟基化,生成水溶性产品30,该过程引起杂环馏分在水相中的损失且作用前水相的处理费用较高.从以上实例可以看出,生物催化脱硫大都处于实验室研究阶段,尚未投入工业化使用.要使生物脱硫技术得以在工业应用中扩大,还必须设计适用于生物过程的反应器,目前研究较多的主要有搅拌釜反应器、气升式反应器、流化床反应器、固定床反应器和膜反应器,这些反应器各有优缺点.生物催化脱硫反应受底物和产物抑制,pH值也会影响反应,所以反应器和控制系统的设计必须相适应.由于生物脱硫研究大多处在基础研究阶段,仅有几个反应器的研究.美国EBS公司31设计了使用搅拌槽的生物反应流程如图3-1,过程中生物催化剂、进料油、空气及少量水一起被加入搅拌反应器中,在其中高硫油被氧化,硫被沉积在水相,离开反应器时,油、水、生物催化剂及硫副产品被分离、精制、再利用.这个流程现在仍在不断发展图3-1生物脱硫流程图Eric32等在生物脱硫过程中使用电喷射反应器,通过静电乳化技术减少样品混合能耗,该系统可产生大的表面积却不产生抑制传质的表面活性还原物质,从而节省很大的费用.由此可以看出生物脱硫的反应器有待进一步研究.3.1.2乳化液相接触器BDS过程的产物一般由高纯度的油相、溶有生物催化剂的水相以及油、水、生物催化剂乳化液等三相组成,能否从乳化液相中回收高纯度的油、使生物催化剂循环利用和分离副产品对BDS技术的经济可行性有重要影响.为了提高脱硫反应速率和脱硫效率,一般脱硫反应要求在高催化剂浓度和高油水比条件下运行,这进一步增加了乳化液分离难度.YuLi一Qun等1998开发了一种很有效的油/水/生物催化剂三相分离方法和设备,采用水力旋流器来进行多相分离.该水力旋流器是一种高lm直径5-10cm的圆锥形管.流体加入旋流管中开始旋转,由于油和水的密度不同,密度轻的油相会从管的顶部或者宽的一端溢出,密度大的将会从管的底部或窄的一端溢出.主要步骤有:①将来自乳化液罐中以水为连续相的油/水/生物催化剂乳化液送入第一水力旋流器,②转化来自第一水力旋流器顶部的富油乳化液,形成以油为连续相的乳化液,③使以油为连续相的乳化液通过一个或多个串联的水力旋流器;④收集水相和油相.步骤②中的相转化可采用静态在线搅拌器或在乳化液进入水力旋流器前用泵加压形成压降来实现.在加压条件下可以得到体积百分数为9.999%~100%的高纯度的油,采用静态在线搅拌器也可回收体积百分数为90%的油.也可将以水为连续相的乳化液儿次通过旋流器,得到含油1%-3%的生物催化剂水溶液.该分离方法能回收高纯度的油,生物催化剂可以循环使用,系统效率高,泵是唯一的传动设备,操作简单,运行费用低,很有工业化应用前景.对于高催化剂的系统,利用反应器中乳化现象的优势,还可以加入化学试剂使乳化液暂时失稳,来实现高催化剂浓度下的乳化液相分离.乳化液相接触器能产生很小的水/油/生物催化剂的液滴,从而减少水进入油相,然而这种系统的脱硫效率很低MFcarlnad等,1998.图3-2EPC结构示意图Erie等1998采用一种电力驱动的乳化液相接触器emulsionphaseeonatcter,EPC作为反应器进行生物脱硫过程研究,有机油相为连续相,含催化剂的水相为分散相.该反应器采用两个不同的电极区提高处理能力,结构如图2一8所示.上面是喷嘴区,在喷口处产生分散液滴进入连续油相;下面部分是操作管道,通过平行金属板间的水平振荡电场控制分散相的停留时间,并不断连续的分散液滴,使液滴在反应器中曲折流动.这样就为两相之间的接触提供了足够的表面积.以这种方式,液滴又不断结合,在相界面的分离能力也得到提高.该装置与搅拌反应器相比,能耗减小,形成直径为5μm的液滴,能耗为3W/l.但由于实验中生物催化剂的活性不够高,虽然有足够的反应表面,脱硫率没有明显增加.如果生物催化剂的活性不断得到提高,在传质成为脱硫反应限制因素的条件下,EPC将是一种操作费用低,传质效果好的很有应用前景的生物脱硫反应器.如果采用固定化细胞为催化剂,则反应器为流化床.催化剂固定化的结构优势是操作连续化和产物容易分离,但是固定化的催化剂脱硫性能需要进一步改进.对于一个有效的生物脱硫过程来说,流化床中生物催化剂的反应时间和寿命分别是1和400小时Pacheco 等,1999.3.1.3气升式反应器气升式反应器ALR是用于气一液两相或气一液一固三相过程的接触反应装置.它通过压缩空气膨胀提供能量,依靠含气泡液体与纯液体的密度差造成的升力使流体沿特定的流道循环流动,属于气力搅拌反应器.己工业应用的ALR有外循环式和内循环式两种类型.在低通气量下,仅仅是液相循环;高通气量下则有气泡跟随液相循环.这两类ALR还有其它结构形式,例如气体分布器有的采用喷嘴等;但作用原理基本上相同.可以看出,与传统的鼓泡塔相比,气升式反应器增加了流体循环的流动结构,从而大大改善了相间混合与接触条件,有利于传质和反应过程.其可操作的气体和液体流速范围也大得多.由于其独特的流体力学特性,反应器具有下列突出优点:l热、质传递速率高.2供气效率高,与输入能量关系不大.3结构简单,内部没有运动部件.4通气量高,在有气体循环的条件下,上升室中通气量可大于反应器进气量.5流化效果极佳,可以使固体颗粒甚至较重的颗粒完全保持悬浮状态,这对许多气一液一固三相反应体系具有重要意义.近年来,内循环ALR通过在环隙中增加旋流,这一特性己得到大幅度提高.6能量耗散很均匀,与通气搅拌式反应器形成鲜明的对照.这一优点对剪切力敏感物料例如细胞养殖等反应过程具有特别重要的意义.当然,气升式反应器也存在某些缺点.一是用于高粘性液体效果不够理想,主要是相间混合接触较差.相比之下,通气搅拌反应器依靠机械搅拌作用帮助分散气体.能适应高粘度液体操作.另一缺点是混合与通气是祸合问题.换言之,很难在不改变通气的条件下改善混合状况;反之亦然.3.2生物脱硫工艺近年来,国外生物催化处理工艺发展得很快,下面是几个由EBC公司研制运行的处理工艺Pahcec.,1999,从中可以看出生物脱硫技术的一些优点.lHDS顺流连接BDS图3-3为HDS顺流连接BDS脱硫工艺.在处理含20%轻质催化循环油LCCO的进料混合物时,通过在HDS装置后串接BDS装置不仅大大减少了深度脱硫所需的氢气、避免了过饱和芳香族化合物同加氢脱硫后产生的沸腾燃料混合物相结合,而且减少了燃料的损耗和COZ的排放量.该工艺可使柴油脱硫率达到65一70%,硫排放含量低于50μg/ml.图3-3HDS顺流连接BDS工艺2BDS代替HDs图3-4为BDS代替HDS直接脱硫工艺.使用该工艺处理中度含硫燃料,其脱硫率在40-70%之间.该工艺不仅节省了氢气、减少了燃料的损耗和CO:的排放量.而且不需要二段脱硫和尾气处理装置,大大降低了成本,适用于小型炼油厂使用.图3-4BDS单独脱硫工艺3BDs去除高含硫裂化原料中的硫图3-5为高含硫裂化原料的BDS脱硫工艺.在此工艺中进料多为高含硫轻质催化循环油Hs一Lcco,若BDs顺流连接HDs,不仅节省了大量的氢气、改善了加氢脱硫和脱氮率以及芳香族化合物的饱和度ASAT,而且与l相比还减少BDs装置的规模.产物主要为可在表面活性剂和其它化学产品中作为化学中间体的亚磺酸盐,该工艺的总脱硫效率可达到75-90%.图3-5BDS高含硫裂化原料脱硫上述的3种工艺代表了国外BDS_J几艺目前研究发展的基本情况,对BDS在炼油厂的工艺组合及最优化的设计研究还在进行之中.4生物脱硫实现工业化的关键技术4.1生物催化剂性能的改善生物脱硫技术至今还没有广泛应用的原因之一,是在原生菌中的脱硫酶浓度太低以至影响了反应速度和活性,即脱硫酶的寿命、选择性都还不能满足工业化催化反应所需的基本要求.为此EBC公司从1990年开始对催化剂的活性、寿命及选择性进行了研究并取得了长足的进步:1990年优化了红球菌生长条件,将活性提高到自然菌株的5倍;1992一1993年通过基因工程技术提高了DszA,B,C的表达量;19%年用四种酶优化催化剂设计;1997年通过敲除dszB,将脱硫活性提高200倍,进而开辟了利用携带不完整Dsz酶生物催化剂的新领域,。

原油脱硫剂

原油脱硫剂

原油脱硫剂简介原油脱硫剂是一种广泛用于工业领域的化学物质,用于去除原油中的硫化物。

硫化物是一种常见的污染物,对环境和人类健康带来威胁。

原油脱硫剂通过特定的化学反应,将硫化物转化为无害物质,从而降低原油中的硫含量。

工作原理原油脱硫剂的工作原理基于化学反应。

主要有以下几个步骤:1.吸附:原油脱硫剂吸附硫化物分子到其表面。

2.反应:吸附在原油脱硫剂上的硫化物分子与原油脱硫剂中的活性基团发生反应,形成新的化合物。

3.脱附:脱硫剂上形成的新化合物分离出来,原油中的硫化物被转化为无害物质。

原油脱硫剂通常是特制的化学配方,具有高效去除硫化物的能力。

它们可以根据原油中的硫含量和其他条件进行调整,以达到最佳的脱硫效果。

应用领域原油脱硫剂主要用于石油炼制和天然气加工过程中。

以下是一些常见的应用领域:炼油厂炼油厂是主要的原油脱硫剂使用地点之一。

原油中的硫化物会对炼油过程中的催化剂和设备产生腐蚀作用,降低炼油效率。

通过使用原油脱硫剂,可以降低原油中的硫含量,减少对催化剂的腐蚀,提高炼油效率。

石油储运石油储运过程中,原油中的硫化物会与金属管道和设备中的水分反应,形成腐蚀性物质,从而对管道和设备造成损坏。

使用原油脱硫剂可以去除原油中的硫化物,减少对管道和设备的腐蚀,延长其使用寿命。

天然气加工天然气中的硫化物会对天然气加工设备产生腐蚀作用,并在存储和运输过程中产生硫化氢气体,对环境和人类健康造成威胁。

原油脱硫剂可以用于去除天然气中的硫化物,减少对设备和环境的腐蚀,提高天然气的质量。

使用注意事项在使用原油脱硫剂时,需要注意以下几点:1.安全操作:原油脱硫剂可能会对人体产生刺激性和有害性。

在使用时,应佩戴适当的防护设备,避免直接接触皮肤和眼睛。

2.使用指导:根据不同的应用领域和硫含量,使用合适的原油脱硫剂型号和用量。

遵循生产商提供的使用指南和安全操作手册。

3.废物处理:处理用过的原油脱硫剂和产生的废物时,需遵循相关法规和规定。

通常废物需交由专业机构进行处理。

原油脱硫技术汇报22

原油脱硫技术汇报22
5220.477
184611.728
顺北1-8拉油流程
12
6月
6.219
776.734
4830.509
顺北7拉油站
13
6月
9.144
3565.534
32603.243
顺北51X拉油站
三季度脱硫工作量统计表
现场脱硫案例
1、顺北1-1H拉油点生产情况:
2018年4月5日,该拉油点有2口井的原油进行脱硫,这两口井的井号是:顺北 1-1H和顺北1-7H,2口井井的原油日产量分别是:110方和120方(合计230 方左右,按密度0.8计算合184吨),前期每小时加药量是在55---60升上下浮 动(随温度变化和现场操作人员控制),每天加药量合计:57X24=1368 升。 加药浓度为6‰。
原油中硫含量决定脱硫剂的用量(根据等摩尔反应原理)。 脱硫剂的硫容大小反映产品脱硫能力的大小。 2、反应温度、速度问题
在原油中除硫化氢,短时间内要连续不断地净化大量原油, 反应速度要求要快,一般几秒内就完成。按化学反应原理,温 度越高,反应越快。优质的原油脱硫剂反应温度宽泛(0-50℃) ,脱硫速度适当。 3. 能耗问题
3 现场技术培训14会次,培训现场操作人员28人次。开展脱硫剂原 理讲解和安全防护讲解24人次,收取现场脱硫剂改进意见6条,建立 脱硫剂改进意见登记台账,整改脱硫剂意见6条,整改率100%。
顺北油田二季度脱硫工作量表
序号
时间
单价(元/ 吨)
工作量
结算价款(元)
备注(各站名)
1
4月
33.588
4004.986
用化学吸收法进行脱硫化氢,技术上比较成熟,操作简单 ,实用性强,已成为应用最多、最普遍的脱硫化氢技术。

脱硫技术培训幻灯片

脱硫技术培训幻灯片

山东黄台发电厂烟气脱硫工程培训材料基建工程办公室二OO一年三月目录1.0工程概况2.0石灰石-石膏湿法脱硫工艺2.1烟气系统2.2吸收塔系统2.3工艺水系统2.4吸收剂制备系统2.5石膏脱水系统2.6DCS 控制系统2.7电气系统3.0石膏炒制系统4.0几种脱硫工艺比较1 黄台电厂烟气脱硫工程概况•黄台电厂烟气脱硫技改工程是国家300MW发电机组等级湿法脱硫国产化示范项目。

•该项目对7、8号两台300MW燃煤机组的全烟气进行脱硫。

采用石灰石-石膏湿法烟气脱硫工艺。

主要包括烟气系统、吸收塔系统、氧化空气系统、吸收剂制备系统、石膏脱水系统、事故浆罐系统、工艺水系统、石膏炒制系统等。

•本项目由龙源电力环保技术开发公司和山东电力工程咨询院分工设计。

2 石灰石-石膏湿法脱硫工艺•石灰石-石膏湿法脱硫工艺•该工艺采用石灰石或石灰作脱硫吸收剂,石灰石破碎与水混合,磨细成粉状,制成吸收浆液(当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆) 。

在吸收塔内,烟气中的SO2 与浆液中的CaCO3以及鼓入的氧化空气进行化学反应生成二水石膏,SO2被脱除。

脱硫后的烟气经除雾器去水、换热器加热升温后进入烟囱排向大气。

脱硫石膏浆经脱水装置脱水后回收。

该工艺适用于任何含硫量的煤种的烟气脱硫,脱硫效率可达到95%以上。

脱硫原理•烟气从吸收塔下侧进入,与吸收浆液逆流接触,在塔内CaCO 3与SO 2 、H 2O 进行反应,生成CaSO 3·1/2H 2O 和CO 2 ↑;对落入吸收塔浆池的CaSO 3·1/2H 2O 和O 2、H 2O 再进行氧化反应,得到脱硫副产品二水石膏。

•这两个过程的化学反应方程式如下:•2CaCO 3+H 2O+2SO 2=2CaSO 3·1/2H 2O+2CO 2↑•2CaSO 3·1/2H 2O+O 2+3H 2O =2CaSO 4·2H 2O主要技术参数•1)处理烟气量约1300000Nm3/h(标况、湿态);•2)脱硫效率≥95%(燃煤含硫率1.6%);•3)设备国产化率达到80%以上;•4)装置利用率≥95%;•5)保护投入率100%;•6)自动投入率100%;•7)钙硫比≤1.05;•8)电耗:脱硫系统厂用电率≤1.236%;考虑进石膏炒制部分,厂用电率≤1.302%。

油气水分离及原油脱水技术.ppt

油气水分离及原油脱水技术.ppt

二、油田矿场集输处理的主要发展历程
选油站阶段(30年代末至50年代)
随着玉门油田扩大开发,地面工程开始形 成较完整的系统:数口油井的油气产物一起收 集在一个站(即选油站)上进行油气分离,原油 在开式罐中沉淀脱水后泵输到集油站装车外运。 油田油气收集处理以管线和有关设备构成了一 个开式流程——选油站流程。这种流程因俄罗 斯巴鲁宁首次采用,又称巴鲁宁流程。50年代 开发的克拉玛依油田也基本上采用这种流程。
完成这种分离过程的 处理设备我们称其为两相 分离器。
油气分离器原理示意图
油气水分离及原油脱水技术
二、油田矿场集输处理的主要发展历程 油井产物中常含有水,特别在油井生产的 中后期,含水量逐渐增多。为满足生产工艺上 的需要,除将天然气分离出来外,还需将液相 中的原油和水分离开来,这种分离称为三相分 离。完成这种分离过程的处理设备我们称其为 三相分离器。
(2)重力沉降分离
粒的自由沉降、絮凝(碰撞聚结)颗粒的
(3)机械处理
自由沉降、拥挤沉降(高浊度水的沉淀)
(4)化学破乳
和压缩沉降(污泥的浓缩)等。
(5)加热处理 (6)电、磁聚结 (7)超声波聚结 (8)蒸发处理 (9)气浮法
分散颗粒的自由沉降速度计算根据 流态不同,可以采用Stokes、Allen、 Newton公式计算。
(6)电、磁聚结
过程和破乳机理的研究仍然处于较低的水
(7)超声波聚结
平,流行的说法有顶替说、反相说、分散
(8)蒸发处理
说、中和说。
(9)气浮法
化学破乳受药剂种类、加药位置、破
(10)水洗
乳温度、加药量等诸多因素的影响。(11)管Biblioteka 破乳发展方向:低温高效破乳剂。

脱硫技术 ppt课件

脱硫技术 ppt课件

直接向锅炉炉膛内喷入石灰石
炉内喷钙-
6
尾部 增湿

粉,石灰石粉在高温下分 解为氧化钙,氧化钙与烟 气中的SO2反应生成亚硫酸 钙。为了提高脱硫率,在 尾部喷入水雾,增加氧化
优点:工艺流程比石灰石-石膏法简单,投资 也较小。
缺点:脱硫率较低:约70%、操作弹性较小、 钙硫比高,运行成本高、副产物无法利用 且易发生二次污染(亚硫酸钙分解)。
燃烧前脱硫技术主要有物理洗选煤法、化学洗选 煤法、煤的气化和液化、水煤浆技术等
微生物脱硫技术目前常用的脱硫细菌有:属硫杆菌 的氧化亚铁硫杆菌、氧化硫杆菌、古细菌、热硫化 叶菌等。
煤的气化,是指用水蒸汽、氧气或空气作氧化剂, 在高温下与煤发生化学反应,生成H2、CO、CH4 等可燃混合气体(称作煤气)的过程
1、湿式石灰/石灰石-石膏法
利用石灰或石灰石浆液作为洗涤液吸收净化 烟道气中的SO2并有副产石膏
优点:吸收剂价廉易得;副产物石膏可回收 用作建筑材料;
缺点:易发生设备结垢堵塞或磨损设备。解 决这个问题最有效的办法是在吸收液中加入添 加剂
(1)反应原理:分为吸收和氧化两个工序
吸收过程: S2O Ca 31 S 2H O 2 O
着火,其着火温度比干煤粉还低
目前我国广泛采用的是物理选煤方法.
物理选煤:主要是利用清洁煤,灰分,黄铁矿的比 重不同,以去除部分灰分和黄铁矿硫,但不能去除 煤中的有机硫.煤炭中的有机硫尚无经济可行的 去除技术.
在物理选煤技术中应用最广泛的是跳汰选煤.
跳汰选煤指物料在垂直脉动为主的介质中,按其 物理—力学性质(主要是按密度)实现分层和重 力选煤方法,物料在固定运动的筛面上连续进行 的跳汰过程,由于冲水、顶水和床层水平流动的 综合作用,在垂直和水平流的合力作用下分选。

《原油脱硫技术》课件


中国石油的原油脱硫技术路线
揭示中国石油在原油脱硫方面的技术路线和实践。
技术方案分析
1
原油脱硫技术的成本分析
分析原油脱硫技术的投入产出比,以及对加工企业的经济影响。
2
各种脱硫技术的优缺点比较
比较不同脱硫技术的优缺点,探讨如何选择最合适的技术方案。
结论与未来方向
1 原油脱硫技术的未来方向
展望原油脱硫技术在未来的发展趋势和可能的创新方向。
2 可能的改进措施
提出改进原油脱硫技术的建议和创新点。
参考资料
相关文献和实验资料
介绍本课件参考的专业文献和相关实验资料。
外部专家的意见及建议
总结外部专家对原油脱硫技术的意见和建议。
《原油脱硫技术》PPT课 件
欢迎大家来到本次关于原油脱硫技术的课件!原油脱硫是石油加工过程中非 常重要的一环,本课件将介绍其概念、发展历程、常用方法、应用案例、技 术方案分析以及未来方向。
原油脱硫技术简介
概念和作用
介绍原油脱硫的定义和在石油加工中的重要 作用。
技术发展历程
追溯原油脱硫技术的发展历史和里程碑。
常用脱硫方法
1 水洗法
2 湿式氧化脱硫法
探索使用水洗法进行原油脱硫的原理和应 用。
详解湿式氧化脱硫法及其在工业中的应用。
3 生物脱硫法
4 燃料油脱硫技术
介绍利用生物方法进行原油脱硫的原理和 实践。
探讨燃料油中的脱硫技术及其对环境的影 响。
应用案例
国内外原油脱硫工艺比较
对比国内外原油硫工艺,分析其优缺点和适用 范围。

石油焦脱硫技术

石油焦是原油通过炼制经过焦化后所得到的一种副产物。

根据其含硫量不同可分为高硫焦(含硫量>3%),中硫焦(1.5%-3.0%)和低硫焦(含硫量<1.5%)。

石油焦含硫量的不同决定了石油焦的用途的不同。

高硫焦多用来作为水泥厂和发电厂的燃料,低硫焦可作为电解铝制备预焙阳极糊和预焙阳极的原料,还可制备石墨电极,但石油焦中的硫经高温后以SO2的形式析出并排放到大气中,对环境造成了污染。

因此,研究一种高效,低廉且条件温和的石油焦脱硫技术对工业的生产发展具有重要意义。

1.研究的目的和意义石油焦是伴随石油炼制的副产物之一,石油焦质量受原油的品质及加工工艺的影响,随着近年来进口高硫石油焦比例增大,导致石油焦质量严重下滑,尤其是电解铝行业对石油焦的需求量也不断增加。

但含硫量高的预焙阳极对铝电解的生产过程有重要的影响,即石油焦中的硫除了腐蚀生产设备,增加阳极的电阻率,还会增加电耗和阳极消耗量。

石油焦中的硫经煅烧以及电解消耗后,以SO2的形式排出,造成大气环境污染。

据统计,石油焦的含硫量每增加1%,电解铝的烟气中SO2浓度将增加133mg/m3。

因此加强对石油焦脱硫的研究有重要意义。

2.石油焦概括(1)石油焦来源及分类石油焦主要来源于延迟焦化装置,其生产流程为:原油→常减压蒸馏装置→延迟焦化装置→石油焦。

它是一种黑色坚硬固体石油产品,带有金属光泽,呈多孔性。

石油焦主要成分除了含有大量的碳和部分氢之外,还含有少部分氮,氯,硫和其他金属化合物。

石油焦被广泛应用于石油化工,钢铁冶炼,电解铝等各个领域。

根据石油焦的结构和外观,石油焦又可被分为针状焦,海绵焦,弹丸焦和粉焦。

(2)石油焦现状和发展趋势近年来我国石油焦的产量不断增加。

截至2019年末,国内石油焦总产量高达2766.75万吨,同比增长了2.47%。

由于工业上对石油焦的需求量大幅度上升,我国每年生产的石油焦供不应求,每年都需进口大量的石油焦。

进口的石油焦大部分是高硫焦,燃烧后危害较多。

原油脱硫工艺技术的评价与优化课件

详细描述
通过对现有工艺流程进行分析,找出瓶颈和低效环节, 优化流程设计,减少不必要的环节和操作,提高整体脱 硫效率和降低能耗。
总结词
降低投资成本
详细描述
在工艺流程优化过程中,应充分考虑设备选型、工艺布 置和管道设计等因素,以降低投资成本,提高经济效益 。
总结词
提高产品质量
详细描述
通过对工艺流程的优化,可以进一步改善脱硫效果,提 高产品质量,满足环保要求和市场需求。
该新型脱硫工艺技术具有较高的脱硫效率和较低的能耗,同时避免了加 氢脱硫工艺中氢气的消耗和催化剂的更换等问题。
该炼油厂应用该新型脱硫工艺技术后,成功地降低了原油加工过程中的 硫排放,提高了产品质量,取得了良好的经济效益和社会效益。
某炼油厂脱硫工艺技术优化实践
为了提高脱硫效率和降低能耗,某炼 油厂对其加氢脱硫工艺进行了技术优 化。
02 原油脱硫工艺技术评价
评价标准与指标
环保性
评价脱硫工艺对环境的影响程 度,包括排放物的种类和数量 ,以及是否符合相关环保法规

经济性
评估脱硫工艺的成本效益,包 括原料消耗、能源消耗、设备 投资和运行维护费用等。
技术成熟度
评价脱硫工艺的可靠性、稳定 性和可操作性,以及在工业生 产中的实际应用效果。
高成本
目前许多脱硫工艺需要使 用大量化学试剂,导致处 理成本较高。
环保压力
随着环保法规的日益严格, 传统脱硫工艺可能无法满 足低排放或零排放的要求。
技术局限性
现有脱硫技术对于某些特 定类型的硫化物去除效果 不佳,需要进一步改进。
未来原油脱硫工艺技术的发展趋势
绿色环保
未来的脱硫技术将更加注 重环保,减少化学试剂的 使用,降低对环境的影响。

原油处理工艺简介ppt课件


w

d
2 w
g
(w

o )
18o
由斯托克斯公式可知,通过增大水分密度,
扩大油水密度差,减小油液粘度可以提高
沉降分离速度,从而提高分离效率。
11
1904年Hazen根据实践经验提出了“ 浅池理 论”。以这一理论为基础,1950年美国壳牌 公司研制成功第1台平行板捕集器,其可去除 水中最小为60μm的油滴。上世纪70年代Fram 公司开发了V型板分离器,上世纪80年代CENATCO公司开发了板式聚结器,这是一种错流 式组合波纹板, 经过不断改进,这种设备在 油气分离、油水分离和含油污水净化方面都 得到了应用。
21
国内在超声波原油破乳方面的研究起步较晚,20世纪90年 代中后期陆续有文献报道。 耿连瑞等发明了一种原油电场脱水的超声波破乳装置,用 超声波在液体中空化效应产生的大量空化气泡破裂时的爆 破力作为破乳的动力,对油水混合液进行破乳处理,再进 行电场脱水,不需添加化学破乳剂。
22
叶国祥等考察了超声强化原油预处理工艺中的部 分影响因素,包括电场强度、超声波频率、超声 波功率、破乳剂用量、注水量等。超声波功率和 电场强度增加均可使原油的脱盐脱水效率增加, 采用体积分数为5%左右的注水量能取得较理想的 脱水脱盐效果 。
14
乳化水的粗粒化蒸发
利用油水对固体物质亲和状况的不同,常用亲水憎 油的固体物质制成各种蒸发装置。 例如大港油田的陶粒蒸发器,用陶粒作填料,当油 水混合物流经陶粒层时,被迫不断改变流速和方向, 增加了水滴的碰撞聚结几率,使小液滴快速聚结沉 降。
15
气浮分离
依靠水中形成微小气泡,携带絮粒上浮至液面使水 净化的一种方法。 条件是附在油滴上的气泡可形成油-气颗粒。由于 气泡的出现使水和颗粒之间密度差加大,且颗粒直 径比原油油滴大,所以用颗粒密度代替油密度可使 上升速度明显提高。即当1个气泡(或多个气泡)附 在1个油滴上可增加垂直上升速度,从而可脱除直 径比50μm小得多的油滴。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含硫原油——硫的存在形式
含硫原油——硫化物的性质
通过比较,H2S化学性能最稳定,其他硫化物在一定条件下都转化为H2S 。自然 条件下,原油中的活性硫也主要以硫化氢形式存在,脱硫剂主要脱除硫化氢。
含硫原油——安全和环保的要求
原油中的硫化物些物质在原油集输、运输、加工过程中, 分解产生低级硫化物,使设备在其作用下会发生化学腐蚀、应 力腐蚀,造成设备、管线泄漏,严重影响安全生产;
在集输过程中,原油脱硫剂加注通过计量泵,能耗很小; 原油脱硫剂在常温下就可以发生脱硫反应,消除硫化氢的过程 是放热过程,一般不需要消耗能量。
原油脱硫剂
4. 反应产物化学降解问题 水溶性的原油脱硫剂,与H2S反应后,所生成的反应物为水
溶性稳定的有机多硫化物,在联合站破乳脱水工艺处理后,随 水排出-可注回油井,或排入废水处理厂,不随原油带入炼油厂。
干法脱硫:通过固体脱硫剂固定床脱硫。间歇操作,设备笨重,投 资高。
如Fe2O3的吸收原理如下: Fe2O3+H2S =FeSx+S+H2O
细菌、微生物法脱硫:操作费用低,不排放有毒物质,无废液排放, 选择性高,无腐蚀问题。 加氢脱硫:原油中的S约有80—90%留于重馏分中。硫以复杂的环状 结构存在,而需去除的仅是硫原子,故不能用物理方法分离硫化物。 采用高压下的催化加氢破坏C—S—C键形成H2S气体,可达目的,但 费用很高。
原油脱硫剂选择一般要考虑以下因素 1. 脱硫容量(硫容)
原油中硫含量决定脱硫剂的用量(根据等摩尔反应原理)。 脱硫剂的硫容大小反映产品脱硫能力的大小。 2、反应温度、速度问题
在原油中除硫化氢,短时间内要连续不断地净化大量原油, 反应速度要求要快,一般几秒内就完成。按化学反应原理,温 度越高,反应越快。优质的原油脱硫剂反应温度宽泛(0100℃),脱硫速度适当。 3. 能耗问题
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
9
原油脱硫原理
化学吸收法的基本原理 若被吸收的组分与吸收液的组分发生化学反应,则称为
化学吸收。在化学吸收过程中,被吸收组分与吸收液的组分 发生化学反应,有效的降低了溶液表面上被吸收组分的分压, 增加了吸收过程的推动力,即提高了吸收效率又降低了被吸 收组分的气相分压。因此,化学吸收速率比物理吸收速率大 得多。
油溶性的原油脱硫剂与H2S反应后,所生成的反应物为油 溶性稳定的有机多硫化物,所产生的多硫化物,经过催化裂化 和气体精制车间与原油中原有的其他硫化物一起分离出来,还 原为硫磺。 5. 下游装置的要求:
不易造成结盐、结垢; 不影响催化剂的活性 6. 脱硫效率 根据现场加药要求,一般要求脱硫处理后硫化氢含量在 10PPm以下。原油脱硫剂效率很高,1PPm药剂一般要处理 5-20PPm的硫化氢,效率都在85%以上。
用化学吸收法进行脱硫化氢,技术上比较成熟,操作简 单,实用性强,已成为应用最多、最普遍的脱硫化氢技术。
脱硫的方法
原油脱硫的方法
湿法脱硫:采用脱硫剂物理吸收和化学吸收脱硫。处理量大,操 作连续,选择性好,投资和操作费用低。水在湿法脱硫中起着重要 作用。
如MDEA的吸收原理如下
H2S+R2NCH3=R2CH3NH++HS-
原油脱硫原理
原油脱硫属于湿法脱硫。 湿法脱硫可分为吸收法和氧化法。吸收法又分为物理吸
收、化学吸收和化学-物理吸收三种。 物理吸收的基本原理
如果吸收过程不发生显著的化学反应,单纯是被吸收气 体溶解于液体的过程,称为物理吸收。物理吸收的特点是, 随着温度的升高,被吸气体的吸收量减少。物理吸收的程度, 主要取决于气--液平衡,只要气相中被吸收的气体分压大于 液相平衡时该气体分压时,吸收过程就会进行。由于物理吸 收过程的推动力很小,吸收速率较低,在现代很少单独采用 物理吸收法。
原油脱硫的方法
通过对上述含硫原油及脱硫原理和方法的认识得出,有效脱除 原油中的硫化氢 ,应该从两个方面着手: 1、原油脱硫剂药剂的开发; 2、原油和药剂混合效率的提高。
目录
含硫原油 脱硫原理和方法 原油脱硫剂 原油脱硫工艺 原油脱硫问题及办法
原油脱硫剂
原油脱硫剂的开发,一般对湿法脱硫单体化学品进行了筛 选,得出优选单体组分;对单体组分复配,优化组合,发挥各 组份协同作用,使药剂效果达到最佳,减少药剂用量。
原油脱硫技术
目录
含硫原油 脱硫方法和原理 原油脱硫剂的选择 原油脱硫工艺 原油脱硫问题及办法
原油含硫情况
在含硫油气田开采过程中,原油中含一定量的硫化氢 和有机硫化合物。含硫对原油性质的影响很大,对管线有 腐蚀作用,对人体健康有害。
含硫量是指原油中所含硫(硫化物或单质硫分)的百 分数。根据原油中的硫含量不同,可以分为低硫、含硫、 高含硫原油。含硫量不超过0.5%的叫低硫原油,含硫量在 0.5%-1%之间的叫做含硫原油,含硫量超过1%的叫做高含 硫原油《加工高含硫原油安全管理规定(2004)》 —中国 石化)。
产品具有脱硫速度快,效率高的特点。在塔里木油田多口单井 使用,含硫原油脱硫处理后均能合格交油。
该原油脱硫剂通过塔里木油田质量检测中心的检验(见检验报 告),是用户可以信赖的产品。
原油脱硫剂
目录
含硫原油 脱硫原理和方法 原油脱硫剂 原油脱硫工艺 原油脱硫的问题和办法
原油脱硫工艺
原油脱硫属湿法脱硫,一般采取直接注入原油中, 在三相分 离器后加药,设备需要一台注入泵和一个分散器或雾化器装在管 道中央,上游的注入点和下游的分离器之间要有足够的距离,以 确保有充足的反应时间,处理后原油逸出H2S的指标低于15PPm以下。 生成产物一般为多硫化合物盐,性能稳定,随联合站破乳脱水过 程,随污水排出,施工安全,操作简便。处理后,可回注井下。
原油脱硫剂
原油脱硫剂PST系列产品,主要组分为有机胺硷类物质,复配 以优良的缓蚀单体,兼有多种助溶剂、催化剂成分,充分发挥各组 分的协同作用,可有效的去除原油中的硫化氢。
PST-1原油脱硫剂经济性好, 可以按硫化氢的含量,调整原油 脱硫剂的加药量。一般使用经济加量,处理后硫化氢的逸出量小于 10mg/m3,满足下游用户的要求。
硫化氢是有毒气体,对人体健康构成威胁,需安全排放。 生产现场一般要求在10PPm以下;
燃烧产物和工业装置驰放气排入大气危害人体健康,污染 环境(燃烧后生产SO2,可导致酸雨,污染环境)。
因此,当代在环保要求愈发严格,要尽可能的去除硫化物。
目录
含硫原油 脱硫原理和方法 原油脱硫剂 原油脱硫工艺 原油脱硫问题及办法
相关文档
最新文档