弹性模量的测量实验报告

合集下载

弹性模量实验报告

弹性模量实验报告

弹性模量实验报告弹性模量实验报告引言:弹性模量是描述固体材料在受到外力作用后能够恢复原状的能力的物理量,也是衡量材料抗弯曲和抗拉伸能力的重要参数之一。

本实验旨在通过测量不同材料的应力-应变关系,计算出它们的弹性模量,并比较不同材料的强度和刚度。

实验装置和步骤:实验装置主要包括弹性体、测力计、刻度尺、千分尺和实验台等。

实验步骤如下:1. 将弹性体固定在实验台上,保证其稳定性。

2. 在弹性体上施加不同的拉力,并记录下对应的应变值。

3. 根据测得的数据,绘制应力-应变曲线。

4. 根据应力-应变曲线的斜率,计算出弹性模量。

实验结果与分析:通过实验测得的数据,我们绘制了不同材料的应力-应变曲线,如图1所示。

从图中可以清楚地看出,不同材料的应力-应变曲线具有不同的形状和斜率。

图1:不同材料的应力-应变曲线根据实验数据计算得到的弹性模量如下表所示:材料弹性模量(GPa)材料A 100材料B 150材料C 200从表中可以看出,材料C的弹性模量最大,表明该材料具有较高的刚度和强度。

而材料A的弹性模量最小,说明该材料相对较柔软。

结论:通过本实验,我们成功地测量了不同材料的弹性模量,并比较了它们的强度和刚度。

实验结果表明,不同材料的弹性模量存在较大差异,这与材料的物理性质和结构有关。

弹性模量的大小可以反映材料的刚度和强度,对于工程设计和材料选择具有重要意义。

进一步讨论:在实际应用中,我们常常需要选择合适的材料来满足特定的工程要求。

弹性模量是评估材料性能的重要指标之一,但并不是唯一的指标。

除了弹性模量,还需要考虑其他因素,如材料的密度、热膨胀系数、耐腐蚀性等。

此外,弹性模量的测量方法也有多种,本实验采用了拉伸实验的方法。

除了拉伸实验,还可以通过压缩实验、弯曲实验等方法来测量材料的弹性模量。

不同的实验方法可能会得到不同的结果,因此在实际应用中需要选择适合的实验方法来准确测量材料的弹性模量。

总结:弹性模量是描述材料抗弯曲和抗拉伸能力的重要参数,本实验通过测量不同材料的应力-应变关系,计算出它们的弹性模量,并比较了它们的强度和刚度。

弹性模量的测定实验报告

弹性模量的测定实验报告

弹性模量的测定实验报告弹性模量的测定实验报告引言:弹性模量是材料力学性质的一个重要参数,用于描述材料在受力后的变形程度。

本实验旨在通过测定金属材料的拉伸变形,计算其弹性模量,并探讨不同因素对弹性模量的影响。

实验装置与方法:实验中使用的装置主要包括拉伸试验机、测量仪器和金属试样。

首先,选择一根长度为L、直径为d的金属试样,并对其进行表面处理以确保试样表面光滑。

然后,在拉伸试验机上夹住试样的两端,使其处于拉伸状态。

通过加载装置施加拉力,同时使用测量仪器记录试样的变形程度。

实验步骤:1. 准备工作:清洁金属试样表面,确保试样无明显缺陷。

2. 安装试样:将试样放入拉伸试验机夹具中,调整夹具使试样两端固定。

3. 测量初始长度:使用游标卡尺等测量工具测量试样的初始长度L0。

4. 施加拉力:通过加载装置施加逐渐增加的拉力,同时记录下相应的拉伸变形量。

5. 测量最终长度:当试样断裂时,使用测量工具测量试样的最终长度L1。

6. 数据处理:根据测得的拉伸变形量和试样的几何参数,计算弹性模量。

结果与讨论:根据实验数据,我们计算得到了金属试样的弹性模量。

在本实验中,我们选择了不同材料的试样进行测试,包括铜、铝和钢等。

通过对比不同材料的弹性模量,我们可以发现不同材料具有不同的弹性特性。

此外,我们还探究了温度和应变速率对弹性模量的影响。

实验结果表明,随着温度的升高,金属材料的弹性模量会发生变化。

这是因为温度的变化会导致材料内部晶格结构的改变,进而影响材料的弹性性质。

另外,应变速率也会对弹性模量产生影响。

较高的应变速率会导致材料内部的位错运动增加,从而使材料的弹性模量降低。

结论:通过本实验,我们成功测定了金属材料的弹性模量,并探究了不同因素对弹性模量的影响。

实验结果表明,不同材料具有不同的弹性特性,且温度和应变速率对弹性模量有一定的影响。

这对于材料科学和工程应用具有重要的意义,可为材料选择和设计提供参考依据。

总结:本实验通过测定金属材料的拉伸变形,计算其弹性模量,并探讨了不同因素对弹性模量的影响。

弹性参数测定实验报告(3篇)

弹性参数测定实验报告(3篇)

第1篇一、实验目的1. 熟悉弹性参数测定的基本原理和方法;2. 掌握测定材料的弹性模量、泊松比等弹性参数的实验步骤;3. 培养实验操作技能和数据分析能力。

二、实验原理弹性参数是描述材料在受力后发生形变与应力之间关系的物理量。

本实验采用拉伸试验方法测定材料的弹性模量和泊松比。

1. 弹性模量(E):在弹性范围内,应力(σ)与应变成正比,比值称为材料的弹性模量。

其计算公式为:E = σ / ε其中,σ为应力,ε为应变成分。

2. 泊松比(μ):在弹性范围内,横向应变(εt)与纵向应变(εl)之比称为泊松比。

其计算公式为:μ = εt / εl三、实验仪器与材料1. 仪器:材料试验机、游标卡尺、引伸计、应变仪、万能试验机、数据采集器等;2. 材料:低碳钢拉伸试件、标准试样、引伸计、应变仪等。

四、实验步骤1. 准备工作:将试样安装到材料试验机上,调整好试验机夹具,检查实验设备是否正常;2. 预拉伸:对试样进行预拉伸,以消除试样在安装过程中产生的残余应力;3. 拉伸试验:按照规定的拉伸速率对试样进行拉伸,记录拉伸过程中的应力、应变等数据;4. 数据处理:根据实验数据,计算弹性模量和泊松比;5. 结果分析:对比实验结果与理论值,分析误差产生的原因。

五、实验结果与分析1. 弹性模量(E)的计算结果:E1 = 2.05×105 MPaE2 = 2.00×105 MPaE3 = 2.03×105 MPa平均弹性模量E = (E1 + E2 + E3) / 3 = 2.01×105 MPa2. 泊松比(μ)的计算结果:μ1 = 0.296μ2 = 0.293μ3 = 0.295平均泊松比μ = (μ1 +μ2 + μ3) / 3 = 0.2943. 结果分析:实验结果与理论值较为接近,说明本实验方法能够有效测定材料的弹性参数。

实验过程中,由于试样安装、试验机夹具等因素的影响,导致实验结果存在一定的误差。

弹性模量的测量实验报告

弹性模量的测量实验报告

弹性模量的测量实验报告一、实验目的1、掌握测量弹性模量的基本原理和方法。

2、学会使用相关实验仪器,如拉伸试验机等。

3、加深对材料力学性能的理解,培养实验操作能力和数据处理能力。

二、实验原理弹性模量是描述材料在弹性变形阶段应力与应变关系的比例常数,通常用 E 表示。

对于一根长度为 L、横截面积为 S 的均匀直杆,在受到轴向拉力 F 作用时,其伸长量为ΔL。

根据胡克定律,在弹性限度内,应力(σ = F/S)与应变(ε =ΔL/L)成正比,比例系数即为弹性模量E,即 E =σ/ε =(F/S)/(ΔL/L) = FL/(SΔL)。

在本实验中,通过测量施加的拉力 F、试件的初始长度 L、横截面积 S 和伸长量ΔL,即可计算出弹性模量 E。

三、实验仪器1、拉伸试验机:用于施加拉力并测量力的大小。

2、游标卡尺:测量试件的直径,以计算横截面积。

3、钢尺:测量试件的长度。

四、实验材料选用圆柱形的金属试件,如钢材。

五、实验步骤1、测量试件尺寸用游标卡尺在试件的不同部位测量其直径,测量多次取平均值,计算横截面积 S =π(d/2)^2,其中 d 为平均直径。

用钢尺测量试件的初始长度 L。

2、安装试件将试件安装在拉伸试验机的夹头上,确保试件与夹头同轴,且夹持牢固。

3、加载测量缓慢启动拉伸试验机,逐渐施加拉力 F,记录下不同拉力下试件的伸长量ΔL。

加载过程应均匀缓慢,避免冲击。

4、数据记录记录每次施加的拉力 F 和对应的伸长量ΔL,至少测量 5 组数据。

5、实验结束实验完成后,缓慢卸载拉力,取下试件。

六、实验数据处理1、计算应变根据测量得到的伸长量ΔL 和初始长度 L,计算应变ε =ΔL/L 。

2、计算应力由施加的拉力 F 和横截面积 S,计算应力σ = F/S 。

3、绘制应力应变曲线以应力为纵坐标,应变为横坐标,绘制应力应变曲线。

4、计算弹性模量在应力应变曲线的弹性阶段,选取线性较好的部分,计算其斜率,即为弹性模量 E 。

杨氏弹性模量的测定实验报告

杨氏弹性模量的测定实验报告

杨氏弹性模量的测定实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 弹性模量的定义
1.1.2 杨氏弹性模量的计算公式
1.2 实验仪器
1.3 实验步骤
1.4 数据处理
1.5 实验结果与分析
1.6 实验结论
1. 实验目的
通过本实验,旨在掌握杨氏弹性模量的测定方法,了解弹性模量的物理意义,以及实验中应注意的问题。

1.1 实验原理
1.1.1 弹性模量的定义
弹性模量是材料抗拉伸性能的指标,是描述材料抵抗拉伸形变的能力的物理量。

1.1.2 杨氏弹性模量的计算公式
杨氏弹性模量可以通过测得的外力、拉伸长度和截面积等参数,使用以下公式进行计算:
$$
E = \frac{
F \cdot L}{A \cdot \Delta L}
$$
1.2 实验仪器
本实验所需的仪器包括拉伸试验机、标尺、外力计等。

1.3 实验步骤
1. 将试样放置于拉伸试验机上,并进行固定。

2. 施加外力,逐渐增加拉伸长度,记录相应数据。

3. 根据实验数据计算杨氏弹性模量。

1.4 数据处理
利用实验中测得的数据,按照计算公式进行处理,求解杨氏弹性模量。

1.5 实验结果与分析
根据实验测得的杨氏弹性模量数值,进行结果分析,比较实验数据之
间的差异,探讨可能的原因。

1.6 实验结论
总结实验过程中的得失,对实验结果进行概括,并讨论可能存在的误
差和改进方法。

材料弹性模量的测定实验报告

材料弹性模量的测定实验报告

材料弹性模量的测定实验报告材料弹性模量的测定实验报告引言:弹性模量是材料力学性质的重要指标之一,它反映了材料在受力时的变形能力。

本实验旨在通过测定材料在不同受力状态下的应力和应变关系,计算出材料的弹性模量。

实验仪器与原理:本实验使用了弹性模量测定仪,该仪器由弹簧、测量装置和数据采集系统组成。

实验原理基于胡克定律,即应力与应变成正比。

实验步骤:1. 准备工作:清洁实验仪器,确保其工作正常。

2. 安装试样:将待测材料样品固定在测量装置上,确保其受力均匀。

3. 施加载荷:通过调节弹簧的拉伸或压缩,使试样受到一定的力。

4. 测量应变:使用应变计测量试样在受力状态下的应变值。

5. 记录数据:记录不同受力状态下的应力和应变数值。

6. 数据处理:根据记录的数据,绘制应力-应变曲线,并计算出材料的弹性模量。

实验结果与分析:根据实验数据计算得出的应力-应变曲线如下图所示:[插入应力-应变曲线图]从图中可以看出,材料在受力状态下呈现线性关系,符合胡克定律。

根据线性段的斜率,即弹性模量的定义式E=σ/ε,可以计算出材料的弹性模量。

实验误差分析:在实验过程中,存在一定的误差来源。

首先,由于测量仪器的精度限制,测量结果可能存在一定的偏差。

其次,试样的制备和安装也可能引入误差。

此外,实验环境的温度和湿度变化也可能对测量结果产生一定的影响。

结论:通过本实验测定得到的材料弹性模量为XMPa。

实验结果表明,该材料具有较高的弹性,能够在受力时保持较小的变形。

实验的局限性与改进:本实验仅考虑了单一材料的弹性模量测定,未考虑材料的温度和湿度等因素对弹性模量的影响。

进一步的研究可以考虑引入多种材料的对比实验,以及对温度和湿度等因素进行更加详细的控制和分析。

总结:本实验通过测定材料的应力和应变关系,计算出了材料的弹性模量。

实验结果表明,该材料具有较高的弹性,能够在受力时保持较小的变形。

实验过程中存在一定的误差来源,需要进一步改进实验设计和控制条件。

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告

2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。

单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。

实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。

弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。

E的单位是Pa。

本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。

钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。

δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。

通过多次测量并用逐差法处理数据达到减少随机误差的目的。

(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。

其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。

三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。

由物镜和测微目镜构成。

测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。

故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。

四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。

调节底座螺钉使夹具不与周围支架碰蹭。

(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。

材料力学弹性模量E测定试验报告

材料力学弹性模量E测定试验报告

材料力学弹性模量E测定试验报告实验目的:测定不同材料的弹性模量E,了解材料的刚性和弹性性质。

实验原理:弹性模量E是材料在外力作用下产生弹性变形的能力衡量指标。

弹性模量E的计算公式为:E=(F/A)/((dL/L0),其中F是作用力,A是横截面面积,dL是拉伸量,L0是原始长度。

实验中,通过施加外力,测量材料的拉伸量和变形力来计算材料的弹性模量E。

实验器材和材料:1.弹性体样品2.弹簧秤3.测量尺4.弹力计5.电子天平实验步骤:1.准备好实验器材和材料。

2.制备不同材料的弹性体样品。

3.将弹性体样品固定在拉伸装置上。

4.使用测量尺测量弹性体样品的原始长度L0。

5.通过拉伸装置施加一个作用力F,记录施加力F的数值。

6.使用测量尺测量拉伸之后的长度L。

7.使用电子天平测量弹性体样品的质量m。

8.根据公式E=(F/A)/((dL/L0)计算弹性模量E。

实验结果与分析:在进行实验过程中,我们选取了不同材料的弹性体样品,依次测量了原始长度L0、施加力F和拉伸后的长度L,并使用电子天平测量了弹性体样品的质量m。

根据计算公式,我们得到了材料的弹性模量E。

通过对实验结果的分析,我们可以发现不同材料的弹性模量E具有很大的差异。

这是因为材料的成分、结构和制备方法都会影响材料的弹性性质。

例如,金属材料通常具有较高的弹性模量E,而弹性体材料则具有较低的弹性模量E。

结论:通过本次实验,我们成功测定了不同材料的弹性模量E。

实验结果表明,不同材料具有不同的弹性性质,对于不同的应用领域具有不同的适用性。

熟悉材料的弹性模量E可以在工程设计和材料选择中提供重要的参考依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性模量的测量实验报告
一、拉伸法测量弹性模量 1、实验目的
(1) 学习用拉伸法测量弹性模量的方法; (2) 掌握螺旋测微计和读数显微镜的使用; (3) 学习用逐差法处理数据。

2、实验原理
(1)、杨氏模量及其测量方法
本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸 长的形变(称拉伸形变)。

设有一长度为L ,截面积为S 的均匀金属丝,沿长度方向受一外力F 后金属 丝伸长δL 。

单位横截面积上的垂直作用力F /S 成为正应力,金属丝的相对伸长δL /L 称为线应变。

实 验结果指出,在弹性形变范围内,正应力与线应变成正比,即
L
L E S F δ= 这个规律称为胡克定律,其中L
L S
F E //δ=
称为材料的弹性模量。

它表征材料本身的性质,E 越大的材料,要使他发生一定的相对形变所需 的单位横截面积上的作用力也越大,E 的单位为Pa(1Pa = 1N/m 2; 1GPa = 109Pa)。

本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D ,则可以进一步把E 写成:
L
D FL
E δπ2
4=
测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量δL ,即可求出E 。

钢丝长度L 用钢尺测量,钢丝直径D 用螺旋测微计测量,力F 由砝 码的重力F = mg 求出。

实验的主要问题是测准δL 。

δL 一般很小,约10−1mm 数量级,在本实验中用 读数显微镜测量(也可利用光杠杆法或其他方法测量)。

为了使测量的δL 更准确些,采用测量多个δL 的 方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记 录伸长位置。

通过数据处理求出δL 。

(2)、逐差法处理数据
如果用上述方法测量10 次得到相应的伸长位置y1,y2,...,y10,如何
处理数据,算出钢丝的伸长量δL呢?
我们可以由相邻伸长位置的差值求出9 个δL,然后取平均,则
从上式可以看出中间各y i都消去了,只剩下y10 −y1 9,用这样的方法处理数据,中间各次测
量结果均未起作用。

为了发挥多次测量的优越性,可以改变一下数据处理的方法,把前后数据分成两组, y1,y2,y3,y4,y5一组,y6,y7,y8,y9,y10为另一组。

讲两组中相应的数据想见得出5 个l i,l i= 5δL。


这种数据处理的方法称为逐差法,其优点是充分利用的所测数据,可以减小测量的随机误差, 而且也可以减少测量仪器带来的误差。

因此是实验中常用的一种数据处理的方法。

3.数据表格
(1)、测钢丝长度L及其伸长量δL
仪器编号 1 ;钢丝长度L=998 ㎜
(2)、测钢丝直径D
测定螺旋测微计的零点d(单位㎜)
测量前 -0.015 , -0.018 , -0.017 ;
测量后 -0.018 , -0.020 , -0.019 。

平均值d= -0.018 ㎜
钢丝的平均直径D= 0.204 ㎜
二、动力学法测量弹性模量 1、实验目的

(1) 学习一种更实用,更准确的测量弹性模量的方法; (2) 学习用实验方法研究与修正系统误差。

2、实验原理
细长棒的振动满足如下动力学方程:04422=∂∂+
∂∂x S EI t
η
ρη 棒的轴线沿x 方向,式中η为棒上距左端x 处截面的z 方向位移,E 为该棒的弹性模量,ρ为材料密度,S 为棒的横截面积,I 为某一截面的惯性矩64
4
2
d dS z
I S
π=
=
⎰⎰
该方程的通解为
称为频率公式,它对任意形状截面的试样,不同的边界条件下都是成立的。

我们只要根据特定的边 界条件定出常数K ,代入特定界面的惯量矩I ,就可以得到具体条件下的关系式。

对于用细线悬挂起来的棒,若悬线位于棒作横振动的节点若悬线位于棒作振动的节点J、J1
点附近,并且棒的两端均处于自由状态,那么在两端面上,横向作用力F与弯矩均为零。

横向作用力
用数值解法可求得满足上式的一系列根K n l,其值为K n l=0,4.730,7.853,10.966,14.137,…其中K0l = 0的根对应于静止状态。

因此将K1l = 4.730记作第一个根,对应的振动频率称为基振频率,此时棒的振幅分布如图3(a)所示,K2l、K3l对应的振形依次为图3(b)、(c)。

从图3(a)
可以看出试样在作基频振动的时候,存在两个节点,根据计算,它们的位置分别距端面在0.224l 和0.776l 处。

对应于n=2 的振动,其振动频率约为基频的2.5~2.8 倍,节点位置在0.132l,0.500l,0.868l处。

T1 可根据d/l的不同数值和材料的泊松比查表得到。

我们试验中用到了四种几何尺寸的黄铜、紫铜圆杆,T1随d、l变化如下
d = 5mm ,l =210 mm, T1=1.0031
d = 5mm ,l =200 mm, T1=1.0035
d = 6mm ,l =210 mm, T1=1.0046
d = 6mm ,l =200 mm, T1=1.0050
3、实验装置
4、实验任务
(1) 连接线路,阅读信号发生器及示波器的有关资料,学习调节和使用方法。


(2) 测量被测样品的长度、直径(在不同部位测6 次取平均值)及质量。

质量测量用数显电子天平。

记录样品是黄铜还是紫铜。

(3) 测样品的弯曲振动基振频率。

理论上样品作基频共振时,悬点应置于节点处,即悬点应置于距棒两端面分别为0.224l 和0.776l 处。

但是在这种情况下,棒的振动无法被激发。

欲激发棒的振动,悬点必须离开节点位置。

这样又与理论条件不一致,势必产生系统误差。

故实验上采用下述方法测棒的弯曲振动基频频率:在基频节点处正负30mm 范围内同时改变两悬线位置,每隔5mm~10mm
测一次共振频率。

画出共振频率与悬线位置关系曲线。

由该图可准确求出悬线在节点位置
的基频共振频率,其值约在几百赫兹量级。

5、数据处理
材料:紫铜
(1)、不同悬点的基振频率
画出f-x图线如下:
于是得到基振节点位置x=46.68㎜,基振频率为f=443.2Hz
(2)、测量棒的质量、长度、直径
棒的质量 m= 51.66g
棒的长度 l= 208.40mm
定螺旋测微计的零点(单位㎜)
测量前 -0.012, -0.013 , -0.016 ;
测量后 -0.014 , -0.012 , -0.012 。

平均值d’= -0.013 ㎜。

相关文档
最新文档