牛顿迭代法求非线性方程的根
迭代法求非线性方程的根讲解

迭代法是求解非线性方程近似根的一 种方法,这种方法的关键是确定迭代函数 (x),简单迭代法 用直接的方法从原方程 中隐含的求出x,从而确定迭代函数(x), 这种迭代法收敛速度较慢,迭代次数多, 因此常用于理论中,Newton迭代法采用另一 种迭代格式, 具有较快的收敛速度,由牛顿 迭代法可以得到很多其他迭代格式。
( p ) ( )
p!
用条件(*),则有 ( x
k
) (x )
*
( xk x * ) p
*
注意到 ( xk ) xk 1, ( x * )
( p) ( ) * p * x x ( x x ) 由上式得 k 1 k x p!
11
下一页
返回
ek 1 ( p ) ( x*) 因此对迭代误差有: p 。这表明迭代过程 p! ek
1
下一页
迭代法
• • • • • • • 一、简单迭代法的概念与结论 二、 Newton迭代法的基本思想 三、牛顿法的几何意义 四、牛顿迭代法的步骤 五、例题 六、其他注意的事项
2
一、简单迭代法的概念与结论
• 简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求 得近似根。即由方程f(x)=0变换为x=(x), 然后建立迭代格式, •
x0 均收敛。证毕。 R
下一页
14
返回
二. Newton迭代法的基本思想
• 设X K 是f(x)=0的一个近似根,把f(x)在 X K 处作泰勒展开
的邻近连续,并且 / ( x* ) ( x* ) ( p1) ( x* ) 0 (*) ( p ) ( x * ) 0
则该迭代过程在点 x * 邻近是P阶收敛的。
非线性方程求根—牛顿迭代法(新)

非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。
设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。
(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。
解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。
解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。
求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。
牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。
本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。
我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。
我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。
我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。
通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。
二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。
其基本原理是利用泰勒级数的前几项来寻找方程的根。
如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。
给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。
每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。
牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。
然而,这种方法也有其局限性。
它要求函数在其迭代点处可导,且导数不为零。
牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。
因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。
解非线性方程组的牛顿迭代法

为克服这两个缺点,通常可用下述方法.
(1) 简化牛顿法,也称平行弦法.
xk 1 xk Cf ( xk )
其迭代公式为 (4.7)
C 0,1 ,.
迭代函数 ( x) x Cf ( x).
若在根 x * 附近成立 ( x) 1 Cf ( x) 1 ,即取 0 Cf ( x) 2,则迭代法(4.7)局部收敛.
8
xk
C 2 C
q2
k
1 q
2k
.
对任意 x0 0,总有 q 1,故由上式推知,当 k 时 xk C ,即迭代过程恒收敛. 例8 解 求 115 .
表7 6 计算结果 k 0 1 2 3 4 xk 10 10.750000 10.723837 10.723805 10.723805
f ( x) , f ( x)
由于
( x)
f ( x) f ( x) . 2 [ f ( x)]
假定 x *是 f ( x) 的一个单根,即 f ( x*) 0, f ( x*) 0 , 则由上式知 ( x*) 0 ,于是依据定理4可以断定,牛顿法 在根 x *的邻近是平方收敛的.
准备 迭代
x0 ,计算 f 0 f ( x0 ), 选定初始近似值
步骤2
按公式
x1 x0 f 0 / f 0
迭代一次,得新的近似值 x1,计算 f1 f ( x1 ), f1 f ( x1 ). 步骤3 控制
x1 满足 1 如果
f1 2 ,则终 或
5
止迭代,以 x1作为所求的根;否则转步骤4. 允许误差,而
3
又因
( x*)
f ( x*) , f ( x*)
最优化理论与方法——牛顿法

牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。
结合着matlab 可以对其进行应用,求解方程。
牛顿迭代法(Newton Newton’’s s method method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。
牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。
牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。
收敛。
牛顿法的几何解释:牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。
如下图:轴的焦点的横坐标。
如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点轴的交点 的横坐标1k x +作为*x 的新的近似值。
鉴于这种几何背景,牛顿法亦称为切线法。
牛顿法亦称为切线法。
2 牛顿迭代公式:(1)最速下降法:x-d gk k×Gg sks×GGd 101x x x -(1)令k k G v I k G -=+,其中:,其中:0k v =,如果k G 正定;0,k v >否则。
否则。
(2)计算_k G 的Cholesky 分解,_T k k k k G L D L =。
(3)解_k k G d g =-得k d 。
(4)令1k k k x x d +=+牛顿法的优点是收敛快,缺点一是每步迭代要计算()()'k k f x f x 及,计算量较大且有时()'k fx 计算较困难,二是初始近似值0x 只在根*x附近才能保证收敛,如0x 给的不合适可能不收敛。
数值分析课程第五版课后习题答案

数值分析课程第五版课后习题答案课后习题一:a) 求解非线性方程f(x) = x^3 - 2x - 5的根。
解答:可使用牛顿迭代法来求解非线性方程的根。
牛顿迭代法的迭代公式为:x_(n+1) = x_n - f(x_n)/f'(x_n),其中x_n为第n次迭代的近似解。
对于给定的方程f(x) = x^3 - 2x - 5,计算f'(x)的导数为f'(x) = 3x^2 - 2。
选择一个初始近似解x_0,并进行迭代。
迭代的终止条件可以选择两次迭代间的解的差值小于某个预设的精度。
b) 计算矩阵加法和乘法的运算结果。
解答:设A和B为两个矩阵,A = [a_ij],B = [b_ij],则A和B的加法定义为C = A + B,其中C的元素为c_ij = a_ij + b_ij。
矩阵乘法定义为C = A * B,其中C的元素为c_ij = ∑(a_ik * b_kj),k的取值范围为1到矩阵的列数。
c) 使用插值方法求解函数的近似值。
解答:插值方法可用于求解函数在一组给定点处的近似值。
其中,拉格朗日插值法是一种常用的方法。
对于给定的函数f(x)和一组插值节点x_i,i的取值范围为1到n,利用拉格朗日插值多项式可以构建近似函数P(x),P(x) = ∑(f(x_i) * l_i(x)),其中l_i(x)为拉格朗日基函数,具体表达式为l_i(x) = ∏(x - x_j)/(x_i - x_j),j的取值范围为1到n并且j ≠ i。
课后习题二:a) 解决数值积分问题。
解答:数值积分是求解定积分的数值近似值的方法。
常用的数值积分方法包括矩形法、梯形法和辛普森法。
矩形法采用矩形面积的和来近似曲边梯形的面积,梯形法采用等距离子区间上梯形面积的和来近似曲边梯形的面积,而辛普森法则利用等距离子区间上梯形和抛物线面积的加权和来近似曲边梯形的面积。
b) 使用迭代方法求解线性方程组。
解答:线性方程组的求解可以通过迭代方法来进行。
牛顿法解非线性方程组

一、求根方法原理把非线性函数f(x)=0在x0处展开成泰勒级数取其线性部分,作为非线性方程的近似方程,则有 , 设,则其解为,再把f(x)在x1处展开为泰勒级数,取其线性部分为的近似方程,若,则得,如此继续下去,得到牛顿法的迭代公式:,通过迭代,这个式子必然在的时候收敛。
整个过程如下图:牛顿法收敛很快,而且可求复根,缺点是对重根收敛较慢,要求函数的一阶导数存在。
二、求解步骤1. 选取一个接近函数零点的自变量 x 值作为起始点。
2. 使用如下的迭代公式更新近似解。
3. 如果得出的解满足误差要求,终止迭代,所得的值即视为方根根的近似解。
三、自定的非线性方程使用牛顿迭代法近似求解如下方程在[-1, 1]之间的根:四、源程序代码clear, close allclcf = @(x) cos(x) -x.^3;f_prime = @(x) -sin(x) -3*x.^2;error = 1; %初始化误差变量iter = 0; %初始化迭代次数变量max_iter = 5000; %定义最大允许迭代次数tol = 1e-8; %定义循环终止误差x0 = 0.5; %初始值while error > tol && iter <= max_iterx = x0 - f(x0)/f_prime(x0); %更新x的值error = abs((x-x0)/x0); %计算相对误差iter = iter +1; %更新迭代次数x0 = x; %计算出的x赋值给x0,继续迭代,直到达到误差条件。
end五、上机运行结果截图六、结论1.迭代法是求解非线性方程组的一种很好的方法,它可以反复校验根的近似值,直到得出符合精度的解。
从几何角度上来解释可以解释为两个函数的无限逼近2.我们为了加快迭代的速度,引入了牛顿法,牛顿法的收敛速度很快,但是其收敛性取决于牛顿法的取值。
3.。
牛顿迭代法在求解非线性方程重根问题中的研究

牛顿迭代法在求解非线性方程重根问题中的研究摘要:牛顿迭代法是求解非线性方程的根的常用方法。
在实际计算中往往会遇到重根情况,针对这种情况,我们在牛顿迭代法的理论基础上,探讨了三种不同的迭代格式。
为了对比这三种方法,本文进行了两个实验,分别是含有重根的非线性方程求解问题实例和牛顿迭代法在求解购房按揭利率的应用实例。
在分析运算结果后,得出了三种算法优势和劣势。
关键词:牛顿迭代法;MA TLAB;重根Abstract:Newton iteration method is a common method to solve the roots of nonlinear equations. In order to solve this problem, we discuss three different iteration schemes based on Newton iteration method. In order to compare the three methods, two experiments are carried out in this paper, one is the solving of nonlinear equations with heavy roots, and the other is the application of Newton iteration method in solving house mortgage interest rate. The advantages and disadvantages of three algorithms are obtained after analyzing the results.Key words:Newton iterative method;MA TLAB;Root weight目录摘要 (Ⅰ)Abstract (Ⅰ)目录 (Ⅱ)1 相关概念 (1)1.1 非线性方程 (1)1.2 重根问题 (1)1.3 不动点和不动点迭代法 (1)1.4 迭代法的收敛性 (2)2 牛顿迭代法 (2)2.1 牛顿迭代算法 (2)2.2 重根情形 (3)3 牛顿迭代法的数值实验 (5)3.1 实验一 (5)3.2 实验二 (7)4 结论 (8)参考文献: (9)附录 (10)附录A 算法1 (10)附录B 算法2 (10)附录C 算法3 (11)附录D 实验一程序 (11)附录E 算法1 (12)附录F 算法2 (12)附录G 算法3 (13)附录H 实验二程序 (13)1 相关概念1.1 非线性方程在科学和工程计算中存在大量的方程()0f x =求根的问题,比如代数方程10110n n n n a x a x a x a --++++=,其中00a ≠,当1,2n =时其解是熟知的,当3,4n =时解的公式可以在数学手册上查到,但是当5n ≥时,方程的跟是不能用四则运算和根式运算的公式表示出来的。