直流调速系统报告.

合集下载

双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验报告
实验目的:
1. 理解双闭环不可逆直流调速系统的原理和特点。

3. 熟悉实验设备的使用和实验过程。

实验原理:
双闭环不可逆直流调速系统由速度环和电流环两个闭环组成,其基本原理如下:
1. 速度环控制
在速度环内部,输入为期望转速,输出为电压控制器的输出信号。

速度环主要根据实
际转速和期望转速之间的差异,计算出电压控制器的控制量,并根据电压控制器的输出改
变电机的电压,以达到调速的目的。

实验步骤:
1. 准备实验设备:电机、电压变压器、电流反馈电阻、示波器、信号源、功率放大器、控制器等。

2. 按照实验原理中的模型,建立电机的电压-转速模型和电机的电流-转矩模型。

3. 根据模型,编写控制算法。

4. 将实验设备连接好,将模型和算法输入控制器。

5. 设置期望转速和电流控制量,并启动电机。

6. 分析实验结果,评估控制系统的性能。

实验结果:
本次实验中,我们成功建立了双闭环不可逆直流调速系统的模型,并利用控制器实现
了系统的控制。

我们通过改变期望转速和电流控制量,观察了系统的实际转速和转矩变化。

实验结果表明,双闭环控制系统的性能稳定,具有较好的调速性能和响应速度。

结论:。

晶闸管直流调速系统参数的测定 实验报告

晶闸管直流调速系统参数的测定 实验报告

晶闸管直流调速系统参数的测定实验报告晶闸管直流调速系统是一种常见的电力调节系统,它能够实现对电机转速的精确控制。

为了确保系统的性能和稳定性,需要对系统的参数进行准确测定。

本文将介绍晶闸管直流调速系统参数的测定方法及实验结果。

我们需要测定晶闸管的触发脉冲宽度和触发脉冲延时角。

触发脉冲宽度是指晶闸管导通的时间长度,而触发脉冲延时角是指晶闸管导通时刻相对于交流电压波形的相位差。

测定触发脉冲宽度和触发脉冲延时角的方法是使用示波器测量晶闸管的导通时间和相位差,并通过调节触发电路中的电阻和电容来调整触发脉冲的宽度和延时角。

我们需要测定晶闸管的关断时间和关断电流。

关断时间是指晶闸管从导通到关断所需的时间,而关断电流是指晶闸管关断时的电流大小。

测定关断时间和关断电流的方法是使用示波器测量晶闸管的关断时间和关断电流,并通过调节触发电路中的电阻和电容来调整关断时间和关断电流。

我们还需要测定晶闸管的导通电流和导通电压。

导通电流是指晶闸管导通时的电流大小,而导通电压是指晶闸管导通时的电压大小。

测定导通电流和导通电压的方法是使用电流表和电压表分别测量晶闸管的导通电流和导通电压。

我们还需要测定晶闸管的整流电压和整流电流。

整流电压是指晶闸管整流时的电压大小,而整流电流是指晶闸管整流时的电流大小。

测定整流电压和整流电流的方法是使用电压表和电流表分别测量晶闸管的整流电压和整流电流。

通过以上几个步骤的测定,我们可以得到晶闸管直流调速系统的各项参数。

这些参数的准确测定对于系统的调节和控制至关重要。

在实际应用中,我们可以根据测定结果来调整系统的参数,以达到所需的控制效果。

总结起来,晶闸管直流调速系统参数的测定是一项重要的实验工作。

通过测定晶闸管的触发脉冲宽度、触发脉冲延时角、关断时间、关断电流、导通电流、导通电压、整流电压和整流电流,可以得到系统的各项参数,从而实现对电机转速的精确控制。

这些参数的准确测定对于系统的性能和稳定性具有重要意义,为系统的调节和控制提供了基础。

双闭环直流调速实验报告

双闭环直流调速实验报告

双闭环直流调速实验报告双闭环直流调速实验报告引言:直流电机作为一种常见的电动机类型,广泛应用于工业生产和日常生活中。

为了提高直流电机的调速性能,双闭环直流调速系统应运而生。

本实验旨在通过搭建双闭环直流调速系统,对其性能进行测试和评估。

一、实验目的本实验的主要目的是研究和掌握双闭环直流调速系统的工作原理和性能特点,具体包括以下几个方面:1. 了解双闭环直流调速系统的组成和工作原理;2. 掌握双闭环直流调速系统的参数调节方法;3. 测试和评估双闭环直流调速系统的调速性能。

二、实验原理双闭环直流调速系统由速度环和电流环组成,其中速度环负责控制电机的转速,电流环负责控制电机的电流。

具体工作原理如下:1. 速度环:速度环通过测量电机的转速,与给定的转速进行比较,计算出转速误差,并将误差信号经过PID控制器进行处理,最终输出控制信号给电流环。

2. 电流环:电流环通过测量电机的电流,与速度环输出的控制信号进行比较,计算出电流误差,并将误差信号经过PID控制器进行处理,最终输出控制信号给电机。

三、实验步骤1. 搭建实验平台:将直流电机与电机驱动器连接,并将驱动器与控制器相连。

2. 参数设置:根据实验要求,设置速度环和电流环的PID参数。

3. 测试电机转速:给定一个转速值,观察电机的实际转速是否与给定值一致。

4. 测试电机负载:通过改变电机负载,观察电机的转速是否能够稳定在给定值附近。

5. 测试电机响应时间:通过改变给定转速,观察电机的响应时间,并记录下来。

6. 测试电流控制性能:通过改变电机负载,观察电机电流的变化情况,并记录下来。

四、实验结果与分析1. 电机转速测试结果表明,双闭环直流调速系统能够准确控制电机的转速,实际转速与给定值之间的误差较小。

2. 电机负载测试结果表明,双闭环直流调速系统能够在不同负载下保持电机的转速稳定,具有较好的负载适应性。

3. 电机响应时间测试结果表明,双闭环直流调速系统的响应时间较短,能够快速响应给定转速的变化。

单闭环直流调速系统的设计与仿真实验报告

单闭环直流调速系统的设计与仿真实验报告

单闭环直流调速系统的设计与仿真实验报告摘要:本文基于基本原理和方法,设计和仿真了一个单闭环直流调速系统。

首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,包括PID控制器的参数调整方法。

接下来使用Matlab/Simulink软件进行系统仿真实验,对系统的性能进行评估。

最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。

关键词:直流电机调速、单闭环控制系统、PID控制器、仿真实验一、引言直流电机广泛应用于机械传动系统中,通过调节电机的电压和电流实现电机的调速。

在实际应用中,需要确保电机能够稳定运行,并满足给定的转速要求。

因此,设计一个高性能的直流调速系统至关重要。

本文基于单闭环控制系统的原理和方法,设计和仿真了一个直流调速系统。

首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,并采用PID控制器进行调节。

接着使用Matlab/Simulink软件进行系统仿真实验,并对系统的性能进行评估。

最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。

二、直流电机调速的基本原理直流电机调速是通过调节电机的电压和电流实现的。

电压变化可以改变电机的转速,而电流变化可以改变电机的转矩。

因此,通过改变电机的电压和电流可以实现电机的调速。

三、控制系统设计和参数调整根据系统的要求,设计一个单闭环控制系统,包括传感器、控制器和执行器。

传感器用于测量电机的转速,并将信息传递给控制器。

控制器根据测量的转速和给定的转速进行比较,并调节电机的电压和电流。

执行器根据控制器的输出信号来控制电机的电压和电流。

在本实验中,采用PID控制器进行调节。

PID控制器的输出信号由比例项、积分项和微分项组成,可以根据需要对各项参数进行调整。

调整PID控制器的参数可以使用试错法、频率响应法等方法。

四、系统仿真实验使用Matlab/Simulink软件进行系统仿真实验,建立直流调速系统的模型,并对系统进行性能评估。

小直流电机调速实验报告

小直流电机调速实验报告

小直流电机调速实验报告【前言】小直流电机调速是电动机控制的基础,也是电力电子技术中的一个重要实验项目,本实验通过对小直流电动机调速系统的搭建和调试,了解电力电子技术在电动机控制中的应用,提高学生对电动机控制的认识和理解。

【实验目的】1. 熟悉小直流电动机的电路结构和性能特点;2. 掌握控制小直流电机转速的方法;3. 学会使用单相可控硅控制直流电机;4. 掌握直流电动机调速原理及其控制策略;5. 了解直流电动机调速系统的工作流程和控制方法。

1. 小直流电机2. 可控硅触发电路3. 脉冲宽度调制器(PWM)模块4. 直流电源5. 数字万用表小直流电动机调速的基本原理是通过改变电动机的电压和电流来改变转速,实现精度调速。

当调整电动机电源的电压时,电动机转速会相应地变化。

可控硅是被广泛应用的电力半导体器件之一,使用可控硅控制电动机启动和停止,可以实现对电动机的精确控制。

触发电路通过贝尔定律、黎曼和华氏定理结合可控硅的工作原理将正弦波信号转换成脉冲波信号,从而使可控硅转导角度和电流变化。

PWM模块控制可控硅导通时间,间断时间和工作周期,从而实现电机转速的精确调节。

1. 搭建电路:将可控硅触发电路和小直流电动机连接到直流电源上;2. 打开电源开关,将电压调节到合适的值;3. 启动可控硅触发电路,使电机开始运转;4. 使用数字万用表,测量电机运转的转速,记录结果;5. 按照实验要求,改变PWM模块的各种参数,观察电动机转速的变化;6. 记录实验过程和结果,写出实验报告。

【实验结果与分析】通过实验,成功地搭建了小直流电动机调速系统,实现了对电机的转速精确控制。

在调节可控硅导通角度的过程中,电机转速随着导通角度的变化而发生变化,证明控制电机转速的方法是可行的。

在调节PWM模块参数的过程中,也可以看到电机转速的变化。

实验结果表明,小直流电动机调速采用可控硅和PWM模块控制,可以实现高精度、高效率的电机转速调节。

【结论】【改进方向】本实验中使用的是单相可控硅,受限于控制系统的复杂度和硬件成本,只能实现单向控制,控制效果相对较差。

单闭环直流调速系统实验报告

单闭环直流调速系统实验报告

单闭环直流调速系统实验报告单闭环直流调速系统实验报告一、引言直流调速系统是现代工业中常用的一种电机调速方式。

本实验旨在通过搭建单闭环直流调速系统,探究其调速性能以及对电机转速的控制效果。

二、实验原理单闭环直流调速系统由电机、编码器、电流传感器、控制器和功率电路等组成。

电机通过功率电路接受控制器的指令,实现转速调节。

编码器用于测量电机转速,电流传感器用于测量电机电流。

三、实验步骤1. 搭建实验电路:将电机、编码器、电流传感器、控制器和功率电路按照实验原理连接起来。

2. 调试电机:通过控制器设置电机的运行参数,如额定转速、最大转矩等。

3. 运行实验:根据实验要求,设置不同的转速指令,观察电机的响应情况。

4. 记录实验数据:记录电机的转速、电流等数据,并绘制相应的曲线图。

5. 分析实验结果:根据实验数据,分析电机的调速性能和控制效果。

四、实验结果分析1. 转速响应特性:通过设置不同的转速指令,观察电机的转速响应情况。

实验结果显示,电机的转速随着指令的变化而变化,且响应速度较快。

2. 稳态误差分析:通过观察实验数据,计算电机在不同转速下的稳态误差。

实验结果显示,电机的稳态误差较小,说明了系统的控制效果较好。

3. 转速控制精度:通过观察实验数据,计算电机在不同转速下的控制精度。

实验结果显示,电机的转速控制精度较高,且随着转速的增加而提高。

五、实验总结本实验通过搭建单闭环直流调速系统,探究了其调速性能和对电机转速的控制效果。

实验结果表明,该系统具有较好的转速响应特性、稳态误差较小和较高的转速控制精度。

然而,实验中也发现了一些问题,如系统的抗干扰能力较弱等。

因此,在实际应用中,还需要进一步优化和改进。

六、展望基于本实验的结果和问题,未来可以进一步研究和改进单闭环直流调速系统。

例如,可以提高系统的抗干扰能力,提升转速控制的稳定性和精度。

同时,还可以探索其他调速方式,如双闭环调速系统等,以满足不同的工业应用需求。

双闭环晶闸管不可逆直流调速系统实验报告

双闭环晶闸管不可逆直流调速系统实验报告

双闭环晶闸管不可逆直流调速系统实验报告一、实验目的本次实验的目的是通过搭建双闭环晶闸管不可逆直流调速系统并进行调试,了解其原理及实现方法,并通过实验数据观察系统的性能表现,进一步掌握电力电子技术及调速技术。

二、实验原理1. 双闭环调速系统双闭环调速系统是将速度控制回路和电流控制回路嵌套在一起,形成一个复杂的反馈系统。

在双闭环调速系统中,速度环的作用是根据给定的基准速度和实际速度之间的误差,输出相应的调节量,修改电压环的参考电压,从而使电机电压得到调整,达到所期望的速度。

而电流环的作用是监视电机输出的电流和给定电流之间的误差,并根据误差的大小调整电压环输出的电压,以便保证输出电流能够达到给定值。

2. 晶闸管调速晶闸管调速是目前最常用的调速方法之一。

其基本原理为对电机施加可调电压,改变电机绕组的通电时间与通电有效值,从而改变电机的转速。

控制晶闸管的导通角度可以控制电压大小,达到调速的目的。

3. 不可逆调速系统不可逆调速系统是指在调节速度的过程中,无法颠倒电机的运动方向。

该系统一般采用半控桥或全控桥电路驱动电机,晶闸管只能单向导通和封锁,从而保证电机的运动方向不会发生改变。

三、实验设备本次实验所用设备包括电机、电力电子实验箱、双闭环调速控制器、示波器、稳压电源等。

四、实验步骤1. 首先搭建实验电路,将电机与电力电子实验箱相连。

2. 打开稳压电源,将其输出调至所需的电压值。

3. 将示波器接至电力电子实验箱输出端口,用于观察系统状态和输出波形。

4. 将双闭环调速控制器与电力电子实验箱相连,并对控制器进行参数设置,包括速度环和电流环的比例、积分和微分系数等。

5. 启动电机,记录电机转速。

6. 通过调节控制器的参数和动态响应曲线,调整电机的速度和转矩,观察系统的性能表现。

7. 对实验数据进行分析总结,得出实验结论。

五、实验结果通过实验数据分析发现,双闭环晶闸管不可逆直流调速系统在调速过程中,可以准确实现给定速度的稳定运行,并且电机的运动方向始终不发生变化。

直流脉宽调速实验报告

直流脉宽调速实验报告

直流脉宽调速实验报告直流脉宽调速实验报告引言直流脉宽调速是一种常见的电机调速方法,通过改变电机供电的脉宽来控制电机转速。

本实验旨在通过搭建直流脉宽调速系统,研究不同脉宽对电机转速的影响,并探讨调速系统的性能。

实验装置与原理本实验采用直流电源、直流电机、脉宽调制器、功率放大器和速度检测装置构成的调速系统。

直流电源为调速系统提供稳定的电压,直流电机作为被调电机,脉宽调制器负责改变电机供电的脉宽,功率放大器用于放大脉宽调制器输出的信号,速度检测装置用于测量电机转速。

实验步骤1. 将实验装置按照电路连接图连接好,确保电路无误。

2. 调整直流电源的输出电压,使其满足电机的额定电压要求。

3. 通过脉宽调制器设置不同的脉宽,记录下不同脉宽对应的电机转速。

4. 分析实验数据,得出不同脉宽对电机转速的影响规律。

实验结果与分析实验中我们选择了不同的脉宽值,分别为10%、30%、50%、70%和90%。

通过实验测量,得到了如下数据:脉宽(%) 电机转速(rpm)10 100030 200050 300070 400090 5000从实验结果可以看出,随着脉宽的增加,电机转速也呈现出逐渐增加的趋势。

这是因为脉宽调制器改变了电机供电的脉宽,使得电机得到的平均电压增加,从而提高了电机的转速。

这种调速方法具有调节范围广、响应速度快等优点。

然而,脉宽调制器也存在一些问题。

首先,当脉宽过大时,电机容易受到过电压的损害,因此在实际应用中需要进行合理的限制。

其次,在低速调节时,脉宽调制器的分辨率较低,难以实现精确的调速效果。

因此,在实际应用中需要结合其他调速方法,如PID控制,来提高调速系统的性能。

结论通过本次实验,我们搭建了直流脉宽调速系统,并研究了不同脉宽对电机转速的影响。

实验结果表明,脉宽调制器能够有效地改变电机供电的脉宽,实现电机的调速。

但是,脉宽调制器在实际应用中还存在一些问题,需要综合其他调速方法来提高调速系统的性能。

总结直流脉宽调速是一种常见的电机调速方法,具有调节范围广、响应速度快等优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.2 速度调节器设计 ...................................................................................................... 7 3.2.2.1 确定时间常数 .............................................................................................. 7 3.2.2.2 选择转速调节器结构 .................................................................................. 7 3.2.2.3 计算转速调节器参数 .................................................................................. 7 3.2.2.4 校验近似条件 .............................................................................................. 7 3.2.2.5 计算调节器电阻和电容 .............................................................................. 8 3.2.2.6 校核转速超调量 .......................................................................................... 8
宁德师范学院
电气工程实践报告
实习项目 : 转速电流双闭环调速系统 系 别: 物理与电气工程系 专 业: 电气工程及其自动化 学 号: B2013052244 姓 名: 指导老师: 日 期: 2014 年 12 月 5 日
0
主要内容:
此设计利用晶闸管、 二极管等器件设计了一个转速、 电流双闭环直流调速系 统。该系统中设置了电流检测环节、 电流调节器以及转速检测环节、 转速调节器, 构成了电流环和转速环, 前者通过电流元件的反馈作用稳定电流, 后者通过转速 检测元件的反馈作用保持转速稳定, 最终消除转速偏差, 从而使系统达到调节电 流和转速的目的。 该系统起动时, 转速外环饱和不起作用, 电流内环起主要作用, 调节起动电流保持最大值,使转速线性变化,迅速达到给定值 ;稳态运行时,转 速负反馈外环起主要作用, 使转速随转速给定电压的变化而变化, 电流内环跟随 转速外环调节电机的电枢电流以平衡负载电流。
2.1 设计任务 ............................................................................................................................. 3 2.2 设计要求 ............................................................................................................................. 4 3 方案论证及系统 ........................................................................................................................... 4 3.1 方案论证 ............................................................................................................................. 4 3.2 系统设计 ............................................................................................................................. 5
3.2.1 电流调节器设计 ...................................................................................................... 5 3.2.1.1 确定时间常数 ............................................................................................... 5 3.2.1.2 选择电流调节器结构 .................................................................................. 5 3.2.1.3 计算电流调节器参数 ................................................................................... 6 3.2.1.4 校验近似条件 .............................................................................................. 6 3.2.1.5 计算调节器电阻和电容 .............................................................................. 6
1
目录
1 引 言........................................................................................................................................ 3 2 设计任务及要求 ............................................................................................... 3
相关文档
最新文档