学习矩阵的心得

合集下载

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会一、学习方法今天先谈谈对线形空间和矩阵的几个核心概念的理解..这些东西大部分是凭着自己的理解写出来的;基本上不抄书;可能有错误的地方;希望能够被指出..但我希望做到直觉;也就是说能把数学背后说的实质问题说出来..首先说说空间space;这个概念是现代数学的命根子之一;从拓扑空间开始;一步步往上加定义;可以形成很多空间..线形空间其实还是比较初级的;如果在里面定义了范数;就成了赋范线性空间..赋范线性空间满足完备性;就成了巴那赫空间;赋范线性空间中定义角度;就有了内积空间;内积空间再满足完备性;就得到希尔伯特空间..总之;空间有很多种..你要是去看某种空间的数学定义;大致都是“存在一个集合;在这个集合上定义某某概念;然后满足某些性质”;就可以被称为空间..这未免有点奇怪;为什么要用“空间”来称呼一些这样的集合呢大家将会看到;其实这是很有道理的..我们一般人最熟悉的空间;毫无疑问就是我们生活在其中的按照牛顿的绝对时空观的三维空间;从数学上说;这是一个三维的欧几里德空间;我们先不管那么多;先看看我们熟悉的这样一个空间有些什么最基本的特点..仔细想想我们就会知道;这个三维的空间:1. 由很多实际上是无穷多个位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动;这里我们所说的运动是从一个点到另一个点的移动变换;而不是微积分意义上的“连续”性的运动;认识到了这些;我们就可以把我们关于三维空间的认识扩展到其他的空间..事实上;不管是什么空间;都必须容纳和支持在其中发生的符合规则的运动变换..你会发现;在某种空间中往往会存在一种相对应的变换;比如拓扑空间中有拓扑变换;线性空间中有线性变换;仿射空间中有仿射变换;其实这些变换都只不过是对应空间中允许的运动形式而已..因此只要知道;“空间”是容纳运动的一个对象集合;而变换则规定了对应空间的运动..下面我们来看看线性空间..线性空间的定义任何一本书上都有;但是既然我们承认线性空间是个空间;那么有两个最基本的问题必须首先得到解决;那就是:1. 空间是一个对象集合;线性空间也是空间;所以也是一个对象集合..那么线性空间是什么样的对象的集合或者说;线性空间中的对象有什么共同点吗2. 线性空间中的运动如何表述的也就是;线性变换是如何表示的我们先来回答第一个问题;回答这个问题的时候其实是不用拐弯抹角的;可以直截了当的给出答案..线性空间中的任何一个对象;通过选取基和坐标的办法;都可以表达为向量的形式..通常的向量空间我就不说了;举两个不那么平凡的例子:L1. 最高次项不大于n次的多项式的全体构成一个线性空间;也就是说;这个线性空间中的每一个对象是一个多项式..如果我们以x0; x1; ...; x n为基;那其么任何一个这样的多项式都可以表达为一组n+1维向量;其中的每一个分量ai实就是多项式中x i-1项的系数..值得说明的是;基的选取有多种办法;只要所选取的那一组基线性无关就可以..这要用到后面提到的概念了;所以这里先不说;提一下而已..下面来回答第二个问题;这个问题的回答会涉及到线性代数的一个最根本的问题..线性空间中的运动;被称为线性变换..也就是说;你从线性空间中的一个点运动到任意的另外一个点;都可以通过一个线性变化来完成..那么;线性变换如何表示呢很有意思;在线性空间中;当你选定一组基之后;不仅可以用一个向量来描述空间中的任何一个对象;而且可以用矩阵来描述该空间中的任何一个运动变换..而使某个对象发生对应运动的方法;就是用代表那个运动的矩阵;乘以代表那个对象的向量..简而言之;在线性空间中选定基之后;向量刻画对象;矩阵刻画对象的运动;用矩阵与向量的乘法施加运动..是的;矩阵的本质是运动的描述..如果以后有人问你矩阵是什么;那么你就可以响亮地告诉他;矩阵的本质是运动的描述..chensh;说你呢可是多么有意思啊;向量本身不是也可以看成是n x 1矩阵吗这实在是很奇妙;一个空间中的对象和运动竟然可以用相类同的方式表示..能说这是巧合吗如果是巧合的话;那可真是幸运的巧合可以说;线性代数中大多数奇妙的性质;均与这个巧合有直接的关系..接着理解矩阵、、、我们说“矩阵是运动的描述”;到现在为止;好像大家都还没什么意见..但是我相信早晚会有数学系出身的网友来拍板转..因为运动这个概念;在数学和物理里是跟微积分联系在一起的..我们学习微积分的时候;总会有人照本宣科地告诉你;初等数学是研究常量的数学;是研究静态的数学;高等数学是变量的数学;是研究运动的数学..大家口口相传;差不多人人都知道这句话..但是真知道这句话说的是什么意思的人;好像也不多..简而言之;在我们人类的经验里;运动是一个连续过程;从A点到B点;就算走得最快的光;也是需要一个时间来逐点地经过AB之间的路径;这就带来了连续性的概念..而连续这个事情;如果不定义极限的概念;根本就解释不了..古希腊人的数学非常强;但就是缺乏极限观念;所以解释不了运动;被芝诺的那些著名悖论飞箭不动、飞毛腿阿喀琉斯跑不过乌龟等四个悖论搞得死去活来..因为这篇文章不是讲微积分的;所以我就不多说了..有兴趣的读者可以去看看齐民友教授写的《重温微积分》..我就是读了这本书开头的部分;才明白“高等数学是研究运动的数学”这句话的道理..“矩阵是线性空间里跃迁的描述”..可是这样说又太物理;也就是说太具体;而不够数学;也就是说不够抽象..因此我们最后换用一个正牌的数学术语——变换;来描述这个事情..这样一说;大家就应该明白了;所谓变换;其实就是空间里从一个点元素/对象到另一个点元素/对象的跃迁..比如说;拓扑变换;就是在拓扑空间里从一个点到另一个点的跃迁..再比如说;仿射变换;就是在仿射空间里从一个点到另一个点的跃迁..附带说一下;这个仿射空间跟向量空间是亲兄弟..做计算机图形学的朋友都知道;尽管描述一个三维对象只需要三维向量;但所有的计算机图形学变换矩阵都是4 x 4的..说其原因;很多书上都写着“为了使用中方便”;这在我看来简直就是企图蒙混过关..真正的原因;是因为在计算机图形学里应用的图形变换;实际上是在仿射空间而不是向量空间中进行的..想想看;在向量空间里相一个向量平行移动以后仍是相同的那个向量;而现实世界等长的两个平行线段当然不能被认为同一个东西;所以计算机图形学的生存空间实际上是仿射空间..而仿射变换的矩阵表示根本就是4 x 4的..又扯远了;有兴趣的读者可以去看《计算机图形学——几何工具算法详解》..一旦我们理解了“变换”这个概念;矩阵的定义就变成:“矩阵是线性空间里的变换的描述..”到这里为止;我们终于得到了一个看上去比较数学的定义..不过还要多说几句..教材上一般是这么说的;在一个线性空间V 里的一个线性变换T;当选定一组基之后;就可以表示为矩阵..因此我们还要说清楚到底什么是线性变换;什么是基;什么叫选定一组基..线性变换的定义是很简单的;设有一种变换T;使得对于线性空间V中间任何两个不相同的对象x和y;以及任意实数a和b;有:Tax + by = aTx + bTy;那么就称T为线性变换..接着往下说;什么是基呢这个问题在后面还要大讲一番;这里只要把基看成是线性空间里的坐标系就可以了..注意是坐标系;不是坐标值;这两者可是一个“对立矛盾统一体”..这样一来;“选定一组基”就是说在线性空间里选定一个坐标系..就这意思..好;最后我们把矩阵的定义完善如下:“矩阵是线性空间中的线性变换的一个描述..在一个线性空间中;只要我们选定一组基;那么对于任何一个线性变换;都能够用一个确定的矩阵来加以描述..”同样的;对于一个线性变换;只要你选定一组基;那么就可以找到一个矩阵来描述这个线性变换..换一组基;就得到一个不同的矩阵..所有这些矩阵都是这同一个线性变换的描述;但又都不是线性变换本身..但是这样的话;问题就来了如果你给我两张猪的照片;我怎么知道这两张照片上的是同一头猪呢同样的;你给我两个矩阵;我怎么知道这两个矩阵是描述的同一个线性变换呢如果是同一个线性变换的不同的矩阵描述;那就是本家兄弟了;见面不认识;岂不成了笑话..好在;我们可以找到同一个线性变换的矩阵兄弟们的一个性质;那就是:若矩阵A与B是同一个线性变换的两个不同的描述之所以会不同;是因为选定了不同的基;也就是选定了不同的坐标系;则一定能找到一个非奇异矩阵P;使得A、B之间满足这样的关系:A = P-1BP线性代数稍微熟一点的读者一下就看出来;这就是相似矩阵的定义..没错;所谓相似矩阵;就是同一个线性变换的不同的描述矩阵..按照这个定义;同一头猪的不同角度的照片也可以成为相似照片..俗了一点;不过能让人明白..而在上面式子里那个矩阵P;其实就是A矩阵所基于的基与B矩阵所基于的基这两组基之间的一个变换关系..关于这个结论;可以用一种非常直觉的方法来证明而不是一般教科书上那种形式上的证明;如果有时间的话;我以后在blog里补充这个证明..这样一来;矩阵作为线性变换描述的一面;基本上说清楚了..但是;事情没有那么简单;或者说;线性代数还有比这更奇妙的性质;那就是;矩阵不仅可以作为线性变换的描述;而且可以作为一组基的描述..而作为变换的矩阵;不但可以把线性空间中的一个点给变换到另一个点去;而且也能够把线性空间中的一个坐标系基表换到另一个坐标系基去..而且;变换点与变换坐标系;具有异曲同工的效果..线性代数里最有趣的奥妙;就蕴含在其中..理解了这些内容;线性代数里很多定理和规则会变得更加清晰、直觉..二、学习心得线性代数是一门对理工科学生极其重要数学学科..线性代数主要处理的是线性关系的问题;随着数学的发展;线性代数的含义也不断的扩大..它的理论不仅渗透到了数学的许多分支中;而且在理论物理、理论化学、工程技术、国民经济、生物技术、航天、航海等领域中都有着广泛的应用..同时;该课程对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用..线代课本的前言上就说:“在现代社会;除了算术以外;线性代数是应用最广泛的数学学科了..”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少;课本上涉及最多的只能算解线性方程组了;但这只是线性代数很初级的应用..我自己对线性代数的应用了解的也不多..但是;线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用..没有应用到的内容很容易忘;就像现代一样;我现在高数还基本记得..因为高数在很多课程中都有广泛的应用;比如在开设的大学物理课中..所以;如果有时间的话;要尽可能地到网上或图书馆了解线性代数在各方面的应用..如:《线性代数》居余马等编;清华大学出版社上就有线性代数在“人口模型”、“马尔可夫链”、“投入产出数学模型”、“图的邻接矩阵”等方面的应用..也可以试着用线性代数的方法和知识证明以前学过的定理或高数中的定理;如老的高中解析几何课本上的转轴公式;它就可以用线性代数中的过渡矩阵来证明..线性代数被不少同学称为“天书”;足见这门课给同学们造成的困难..在这门课的学习过程中;很多同学遇到了上课听不懂;一上课就想睡觉;公式定理理解不了;知道了知识但不会做题;记不住等问题..我认为;每门课程都是有章可循的;线性代也不例外;只要有正确的方法;再加上自己的努力;就可以学好它..一定要重视上课听讲;不能使线代的学习退化为自学..上课时干别的会受到老师讲课的影响;那为什么不利用好这一小时四十分钟呢上课时;老师的一句话就可能使你豁然开朗;就可能改变你的学习方法甚至改变你的一生..上课时一定要“虚心”;即使老师讲的某个题自己会做也要听一下老师的思路..上完课后不少同学喜欢把上课的内容看一遍再做作业..实际上应该先试着做题;不会时看书后或做完后看书..这样;作业可以帮你回忆老师讲的内容;重要的是这些内容是自己回忆起来的;这样能记得更牢;而且可以通过作业发现自己哪些部分还没掌握好..作业尽量在上课的当天或第二天做;这样能减少遗忘给做作业造成的困难..做作业时遇到不会的题可以问别人或参考同学的解答;但一定要真正理解别人的思路;绝对不能不弄清楚别人怎么做就照抄..适当多做些题对学习是有帮助的..数学上的方法是相通的..比如;考虑特殊情况这种思路..线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组;这些都是先考虑特殊情况..高数上解二阶常系数线性微分方程时先解其对应的齐次方程;这用的也是这种思路..方法真的很难讲;而方法包含许多细节的内容很难讲出来甚至我都意识不到;但它们会对学习起很大的作用..我感觉“做完题要总结”;“上课想到老师前面”;“注重知识之间的联系”很重要..以上就是我学习线性代数的心得..。

结构矩阵分析原理与程序设计上机心得

结构矩阵分析原理与程序设计上机心得

结构矩阵分析原理与程序设计上机心得在结构分析中,把各项计算公式表达称矩阵形式,进行矩阵运算,称为矩阵方法。

再利用计算机对矩阵进行运算,就可以很快得到计算结果。

我们所编写的程序就是进行这项工作。

整个程序由各个子块组成:数组变量的定义,原始数据的输入、输出(input1),组集总刚(wsiff)、综合结点荷载的计算(load)、支承条件的引入(bound)、解方程的结点位移(gauss)、各单元最后杆端力的计算(nqm)。

这些就是结构矩阵分析的总体思路和流程.在程序编写中,首先是要细致,要在理解程序的基础上输入程序,知道每个变量的定义,每个子块的作用及其运算原理,结合PAD图理解,程序输错时可以在电脑提示下修改,最后使程序运行成功。

再者就是数据输入时的问题。

数据输入前要对结构中的节点单元进行编号,结构中的单元划分必须使个单元均质,等截面直杆;结点编号先编可动支座,再编不可动支座,这主要是因为程序使用前后处理结合法。

单元局部坐标系由小号到大号。

输入荷载时,若荷载与杆件成一定夹角,则需要把荷载分解成沿杆轴方向和垂直于杆轴方向的荷载,变成一个杆件上的两个荷载,按照表2.3进行两次输入,局部坐标系下荷载的正负也需要注意,例如例4.1中从结点左到右的单元上的荷载向上但是负值。

在输入直接结点荷载时若某非固定支座上有结点荷载,则该结点上与约束相对应的荷载分量可以输入任意值。

该结点上数据输入时需把各字母代表的含义搞清楚按照input1中的程序编写的输入顺序输入。

最后,我所做的修改程序题中一个是改为主一付零法,首要是知道其原理,即先把总刚中主元素换为1,使用r(k,k)数组,使用循环语句时i,j的循环范围,例如i是从1 到n,n是总刚阶数,在前面程序中已给出,可以直接使用。

修改弹性支座的过程中,关键是弹性支座输入时的处理,要先撤去弹性支座,使该支座在弹性约束方向上自由移动;第二步则需要把弹性支座信息输入,输入其弹性支座个数,编号(i),对应的位移变量编号(ibd(i)),刚度系数(sk(nk)),最后在结构刚度矩阵中【k】中与⊿i相对应的主元素kii加上弹性刚度系数k。

数值分析实验报告心得(3篇)

数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。

通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。

以下是我对数值分析实验的心得体会。

一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。

2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。

3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。

4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。

二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。

(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。

最后,我们将插值多项式与原始函数进行比较,分析误差。

2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。

(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。

最后,比较不同方法的收敛速度和精度。

3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。

(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。

最后,比较不同方法的计算量和精度。

4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。

(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。

培训矩阵营销心得体会范文

培训矩阵营销心得体会范文

在当今这个快速发展的时代,营销策略对企业的发展至关重要。

近期,我有幸参加了公司组织的矩阵营销培训,通过这次培训,我对矩阵营销有了更加深刻的理解和认识。

以下是我对这次培训的心得体会。

首先,矩阵营销的核心在于整合资源,提高效率。

在培训中,讲师详细讲解了矩阵营销的原理和操作方法,使我认识到,矩阵营销并非简单的市场推广手段,而是将企业内部资源与外部资源进行有效整合,实现资源共享、优势互补的一种营销模式。

通过矩阵营销,企业可以充分发挥自身优势,降低营销成本,提高市场竞争力。

其次,矩阵营销强调客户导向。

在培训过程中,讲师强调了以客户为中心的重要性,并介绍了如何通过数据分析、客户需求调研等手段,了解客户需求,为客户提供个性化、精准化的产品和服务。

这使我意识到,企业要想在激烈的市场竞争中立于不败之地,必须关注客户需求,为客户提供优质的产品和服务。

再次,矩阵营销注重团队协作。

培训中,讲师通过实际案例分析,展示了矩阵营销在团队协作方面的优势。

矩阵营销要求企业内部各部门、各岗位之间紧密协作,共同推进营销工作。

这使我认识到,团队协作是企业成功的关键,只有各部门、各岗位之间相互支持、相互配合,才能实现营销目标。

此外,培训还让我了解到,矩阵营销需要不断创新。

在市场竞争日益激烈的今天,企业要想保持竞争优势,必须不断创新营销策略。

培训中,讲师介绍了矩阵营销的创新方法,如跨界合作、跨界营销等,使我认识到,创新是企业发展的不竭动力。

在这次培训中,我还学到了以下几方面的内容:1. 如何制定合理的营销策略,确保营销工作的顺利进行。

2. 如何运用现代营销工具,提高营销效果。

3. 如何分析市场趋势,把握市场机遇。

4. 如何提升团队执行力,确保营销目标实现。

总之,这次矩阵营销培训让我受益匪浅。

在今后的工作中,我将把所学知识运用到实际工作中,不断提升自身能力,为企业的发展贡献自己的力量。

同时,我也将积极分享所学,与同事共同进步,为企业创造更多价值。

线性代数心得体会精选6篇

线性代数心得体会精选6篇

第1篇:线性代数心得体会浅谈线性代数的心q导体会系别:XXX系班级:XXX班姓名:XXX线性代数心W导姓名:XXX学号:XXX通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。

同时,该课程对于培养学生的逻辑推理和抽象思维能力、空间直嬲口想象能力具有重要的作用。

在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。

但是线性代数教学却对线性代数的应用涉及太少,课本上涉及最多的应用只有算解线性方程组,但这只是线性代数很初级的应用。

而线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

线性代数被不少同学称为天书,足见这门课给同学们造成的困难。

我认为,每门课程都是有章可循的,线性代数也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线性代数主要研究三种对象:矩阵、方程组和向量。

这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。

因此,熟练地从一种理论的叙述转移到另一种中去,是学习线性代数时应养成的一种重要习惯和素质。

如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。

由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易。

线性代数课程特点比较鲜明:概念多、运算法则多内容相互纵横交错正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大,线性代数的概念多比如代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,矩阵的秩,线性组合与线性表示,线性相关与线性无关等。

线性代数中运算法则多比如行列式的计算,求逆矩阵,求矩阵的秩,求向量组的秩与极大线性无关组,线性相关的判定,求基础解系,求非齐次线性方程组的通解等。

c++矩阵计算器代码心得体会

c++矩阵计算器代码心得体会

c++矩阵计算器代码心得体会
这次矩阵计算器代码练习中,我的收获主要就是学会了用流程图来表达自己的想法,并根据流程图来逐步实现程序的功能。

开始的时候,我画流程图很是困难,需要一个多小时才能清楚的根据自己的想法画出图来,后来画多了,就更加了解它的功能,十分得心应手,能够比较快而准确的画出来。

在这次课程矩阵计算器代码练习中,我们首先对系统的整体功能进行了构思,然后用结构化分析方法进行分析,将整个系统清楚的划分为几个模块,再根据每个模块的功能编写代码。

而且尽可能的将模块细分,最后在进行函数的调用。

我们在函数的编写过程中,我们不仅用到了for循环、while循环和switch语句,还用到了函数之间的调用(包括递归调用)。

由于我们是分工编写代码,最后需要将每个人的代码放到一起进行调试。

因为我们每个人写的函数的思想不都一样,所以在调试的过程中也遇到了困难,但经过我们耐心的修改,终于功夫不负有心人,我们成功了!在参考书上,我们不仅参考了曾经学过的高敬阳主编的《c语言程序矩阵计算器代码练习》,还找到了由谭浩强主编的第三版《c语言》进行参考。

当然,我们的程序还有一些不完善的地方,比如说,当输入的数据不符合我们定义的数据的格式的时候,程序会出现一些错误,有时会出现主菜单的死循环;在一次程序运行中,只能行使一种权限,要想再行使另一种权限,就只能退出程序,然后再运行程序。

三周的小学期即将结束,时间虽短,但是我收获了很多。

最后,谢谢老师和同学们的指导,更要感谢我们小组成员之间的合作与交流。

高等代数心得体会及感悟(实用17篇)

高等代数心得体会及感悟(实用17篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!高等代数心得体会及感悟(实用17篇)心得体会是通过实践和经验总结得出的有关某个问题或事物的深刻认识和领悟。

线性代数学习心得

线性代数是一门抽象的数学课程,但是它在实际科学中的应用性也是不可替代的.经过将近两个月对线性代数的学习,我从中获得应用科学中常用矩阵、线性方程组等理论及其有关基本知识.首先,我们学习了行列式,在线性代数中,行列式是一个基本工具,它在数学学科乃至自然科学的许多领域都有广泛的应用.行列式的一些基本性质如:1.行列式与它的转置行列式相等.2.若行列式中有两行(列)完全相同,则此行列式为零等等一些方便实用的性质.通过这一章的学习,我了解到,在一些复杂的问题面前使用行列式来进行解答就显得更加方便容易,且我明白了行列式本身是一个算式.其次,我们学习了矩阵,矩阵是数学中的一个重要内容,也是解决许多...p25/矩阵中有几类特殊类型的矩阵,例如:行矩阵,列矩阵,单位矩阵等等.在对矩阵的学习中我还学会了矩阵的运算,矩阵的运算是...p29/.但是,矩阵的运算要和常数的运算分别开来,不能混淆,尤其是在矩阵的乘法运算中,矩阵是不满足乘法交换律的.并且在矩阵中,矩阵的转置也可看做是一种运算.不仅如此,我还学习了逆矩阵,其中,判断矩阵的可逆的充分必要条件是p39.而可逆矩阵又被称为非奇异方阵,反之则被称为奇异方阵.为了方便,矩阵又可被分块,称为分块矩阵.而后我们又深一步的探索了矩阵的秩,懂得了用初等变换来得到矩阵的秩.再次,我们学习了向量组及其线性相关性.向量组即为若干个同维数的列(行)向量所组成的集合.在对向量组的线性相关性的学习中学会了如何判断线性相关与否.一个实用的方法就是:向量组所构成的矩阵的秩小于向量的个数,则这些向量线性相关,反之则不相关.由此引出了一个极大无关组这一定义.之后又推广到三维单位向量组中探索向量空间的基与维数.然后,我们学习了线性方程组,线性方程组是指...p87/.在这一章的学习中,结合了矩阵的运用,由此在我看来这一章的学习是相较于其他较为困难的.在探索中,学习到方程组的解的个数可以由它形成的矩阵的秩来判断,其中利用到了增广矩阵和系数矩阵.为了进一步的求解方程组,我们利用了矩阵的一系列变换来获得方程组的全部解,在学习中我发现很容易和矩阵的其他知识混淆,需要特别注意.最后,我们学习了相似矩阵与二次型,在学习中主要讨论了...p119/.从中我明白了什么是范数以及向量的内积.并且还掌握了施密特正交化法.还学会了如何判断矩阵是否为正交矩阵.又对于矩阵的特征值进行了探索.之后又对矩阵如何对角化展开了学习.我认为这一章的学习是最为困难的,其中的知识点非常多并且繁杂容易混淆.学习了将近两个月的线性代数,我学到了许多实用方便的数学知识,也了解到线性代数作为一门数学基础课程的重要性.纵使它知识枯燥且抽象,但我也勤奋好学又倔强.。

学习矩阵论心得体会 如何学好矩阵论(优秀3篇)

学习矩阵论心得体会如何学好矩阵论(优秀3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!学习矩阵论心得体会如何学好矩阵论(优秀3篇)有关学习矩阵论心得体会篇一为了达成这一目标,我决定在新的学期设立一个学习计划,此计划只为初稿,具体的情况还是需要上了高中以后向老师请教,按照老师的节奏和方式更好地优化我的计划。

学习线性代数期末总结

学习线性代数期末总结线性代数是数学中的一门重要学科,它研究向量空间及其上的线性变换和线性方程组,对于计算机科学、物理学、工程学等多个领域都有广泛的应用。

在过去的一个学期中,我学习了线性代数的基本概念、定理和方法,并通过习题和实例的练习,逐渐掌握了线性代数的基本知识和解题技巧。

在本篇总结中,我将回顾学习线性代数的整个过程,并总结出一些重要的学习心得和经验。

在学习线性代数的过程中,我首先学习了向量的概念和运算。

向量是线性代数中最基本的概念之一,它可以表示多个数的组合,具有大小和方向。

学习向量时,我重点掌握了向量的加法、减法和数量乘法等运算法则,并学会了求向量的模长、夹角和投影等常用计算方法。

此外,我还学习了向量的线性相关性和线性无关性,它们在解决线性方程组和矩阵的问题时起到了重要的作用。

接着,我学习了矩阵的概念和运算。

矩阵是线性代数中另一个重要的概念,它可以表示多个数按照一定规则排列成的矩形数表。

矩阵的加法、减法和数量乘法分别对应向量的加法、减法和数量乘法,这样使得矩阵能够模拟很多实际问题。

在学习矩阵的过程中,我重点掌握了矩阵相等、矩阵乘法和逆矩阵等概念和性质,并学会了通过矩阵的运算来解决线性方程组的问题。

此外,我还学习了矩阵的转置、行列式和特征值等重要概念,并通过习题的练习加深了对它们的理解。

接下来,我学习了线性变换的概念和性质。

线性变换是将一个向量空间映射到另一个向量空间的变换,它是线性代数中的一个核心概念。

在学习线性变换的过程中,我重点掌握了线性变换的定义、线性变换矩阵和标准基变换矩阵等基本概念,并学会了通过线性变换来解决向量的旋转、投影和放缩等问题。

此外,我还学习了线性变换的复合、逆变换、核和像等重要性质,并通过实例的分析和计算来加深了对线性变换的理解。

最后,我学习了线性方程组的概念和求解方法。

线性方程组是线性代数中最基本和最重要的问题之一,它广泛应用于科学、工程和经济等领域。

在学习线性方程组的过程中,我首先学习了线性方程组的解的概念和性质,明确了解的存在唯一性和解的结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵理论学习报告
矩阵的现代概念在19世纪逐渐形成。

1801年德国数学家高斯把一个线性变换的全部系数作为一个整体。

1844年,德国数学家爱森斯坦讨论了“变换”(矩阵)及其乘积。

1850年,英国数学家西尔维斯特首先使用矩阵一词。

1858年,英国数学家凯莱发表《关于矩阵理论的研究报告》。

他首先将矩阵作为一个独立的数学对象加以研究,并在这个主题上首先发表了一系列文章,因而被认为是矩阵论的创立者,他给出了现在通用的一系列定义,如两矩阵相等、零矩阵、单位矩阵、两矩阵的和、一个数与一个矩阵的数量积、两个矩阵的积、矩阵的逆、转置矩阵等。

并且凯莱还注意到矩阵的乘法是可结合的,但一般不可交换,且m*n矩阵只能用n*k矩阵去右乘。

1854年,法国数学家埃米尔特使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由德国数学家费罗贝尼乌斯发表。

1879年,费罗贝尼乌斯引入矩阵秩的概念。

至此,矩阵的体系基本上建立起来了。

通过这次在朱善华老师的课程上我了解了很多获益匪浅,我通过矩阵的学习,系统地掌握了矩阵的基本理论和基本方法,进一步深化和提高矩阵的理论知识,掌握各种矩阵分解的计算方法,了解矩阵的各种应用,其主要内容包括矩阵的基本理论,矩阵特征值和特征向量的计算,矩阵分解及其应用,矩阵的概念,了解单位阵、对角距阵、三角矩阵、零矩阵、数量矩阵、对角距阵等。

这些内容与方法是许多应用学科的重要工具。

矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。

我通过学习得知,矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。

从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的,而矩阵本身所具有的性质是依赖于元素的。

在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。

矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。

利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等一系列理论上的问题,就都可以得到彻底的解决。

认识总是随着时间和已有知识的积累在不断修正,我对矩阵论的认识也大致如此。

从一开始的认为只能解线性方程,到如今发现它的几乎无所不能,我想我收获到的不仅仅是这种简单的知识,更是一种世界观,那就是对所有的事物都不要轻易地下定论。

同时,当我们知道的越多,就会发现未知的东西越多。

作为一门已经发展了一百多年的学科,我对矩阵论的认识只是沧海一粟,唯有终身学习,不断探索,才可能真正领悟到其中之真谛,我亦将为此付诸行动。

控制理论与控制工程
肖雪峰。

相关文档
最新文档