七年级上册数学二元一次方程组
3.4.1二元一次方程组类课件沪科版七年级数学上册

解:设共有x本笔记本,y个同学.
根据题意,得
x
x
5y 8y
8, 7.
4.请你根据生活实例,编一道应用二元一次方程组的问题, 并列出方程组.【教材P109 练习 第2题】
解:答案不唯一,如:某船的载重为260t,容积为1000m3. 现有甲、
乙两种货物要运,其中甲种货物每吨体积为8m3,乙种货物每吨
x+y=35 2x+4y=94
定义:含有两个未知数的一次方程 叫作二元一次方程.
注意:1.是整式方程;
三者缺一不可!
2.只含有两个未知数,且未知数的系数不为0;
3. “一次”是指含未知数的项的次数是1,而不是 未知数的次数.
练一练
下列式子中,是二元一次方程的是__①__⑦___(填序号).
① 8x-y=3y;② 3x-z=y;③ 2x-5=3;④ 1 +y=2;
3.4 二元一次方程组及其解法
二元一次方程组
沪科版七年级上册
复习回顾
下列式子中,是一元一次方程的是_②__③__⑤__(填序号).
① x-2= 2 ;② 0.3x=1;③ x =5x+1;④ x2-4x=3;
x
2
⑤ x=6;⑥ x+2y=0.
只含有__一__个___未知数(元),未知数的次数都是__1__, 且等式两边都是__整__式___的方程叫作一元一次方程.
720.
(2)植树节七(1)班和七(2)班共植树138棵,七(1)班植树数 量比七(2)班的 2 多8棵. 两班分别植树多少棵?
3
解:设七(1)班植树x棵,七(2)班植树y棵.
根据题意,得
x x
y 2 3
y
七年级二元一次方程组教案(必备6篇)

七年级二元一次方程组教案(必备6篇)七年级二元一次方程组教案第1篇【教学目标】知识目标:①使学生初步理解二元一次方程与一次函数的关系。
②能根据一次函数的图象求二元一次方程组的近似解。
能力目标:通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。
情感目标:通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。
重点要求:1、二元一次方程和一次函数的关系。
2、根据一次函数的图象求二元一次方程组的近似解。
难点突破:经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。
【教学过程】一、学前先思师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?生:代入消元法、加减消元法。
师:请你猜测还有其他的解法吗?生:(小声议论,有人提出图象解法)师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?生:二元一次方程组怎么会有图象?它的图象应该怎样画?生:二元一次方程组的图象解法怎么做?师:同学们都问得很好!那你有喜欢的二元一次方程组吗?生:(比较害羞)师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。
让我们带着同学们提出的问题从二元一次方程开始今天的学习。
二、探究导学题目:判断上面几组解中哪些是二元一次方程的解?生:和不是,其余各组均是方程的解。
师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
2024七年级数学上册第3章一次方程与方程组练素养1.二元一次方程组)的解的常见应用课件新版沪科版

即 a , b 的值分别为-4,1.
1
2
3
4
5
6
7
8
9
10
应用5
已知二元一次方程组的错解,求字母的值
+ = ,
7. 在解方程组ቊ
时,由于粗心,甲看错了方程
− =
= ,
组中的 a ,得解为ቐ
= − ;
乙看错了方程组中的 b ,得
= ,
解为ቊ
= − .
ቊ
可化为ቊ
+ = ,
(+)+( − ) =
− = ,
= ,
因为ቊ
的解是ቊ
所以
= ,
+ =
+ = ,①
ቊ
− = ,②
1
①+②,得2 a =3,所以 a = .
2
3
4
5
6
7
8
9
10
把 a = 代入①,得 b =- .
已知二元一次方程组的解之间的关系,求字母的值
4. [2024·重庆一中月考]已知关于 x , y 的二元一次方程组
− = ,
ቊ
的解满足 x - y =10,则 a 的值
− = −
11
为
.
1
2
3
4
5
6
7
8
9
10
【点拨】
− = ,①
൝
− = − ,②
1
2
3
4
5
6
7
9
10
应用2
的值
已知二元一次方程组与二元一次方程共解,求字母
湘教版七年级数学上册 3.6 二元一次方程组的解法(第三章 一次方程(组) 学习、上课课件)

感悟新知
例1 用代入消元法解下列方程组: (1) [月考·衡阳蒸湘区] ൝3xx-=27y-=-3y,1;①②
(2) ൝3xx-+2yy==39,;①②
(3) ൝62xx-+54yy==97;,②①
2x-3y=1, ①
(4)
ቐy+1 4
=
x+2 3
.
②
知1-练
感悟新知
解题秘方:紧扣用代入消元法解二元一次方程组
知1-练
解:由①,得 n=0.6m,③
把③代入②,得 2m-3×0.6m=1,解得 m=5,
把 m=5 代入②,得 2×5-3n=1,解得 n=3,
所以这个方程组的解是mn==35.,
感悟新知
知识点 2 加减消元法解二元一次方程组
知2-讲
1. 定义: 对于二元一次方程组,把一个方程进行适当变形后,
再加上 ( 或减去 ) 另一个方程,消去其中一个未知数,得
到只含另一个未知数的一元一次方程,解这个一元一次方
程求出另一个未知数的值,再把这个值代入原二元一次方
程组的任意一个方程,就可以求出被消去的未知数的值,
从而得到原二元一次方程组的解 . 这种解二元一次方程组
的方法叫作加减消元法 .
感悟新知
知2-讲
求出一个未知数 的值
去括号时不 能 漏乘,移项时 所移的项要变号
把求得的未知数的 值代入步 骤 ①中变 形后的方程
求出另一个未知 数的值
把两个未知数的值 用大括号联立起来
表示为ቊx=y=……, 的形式
一般代入变 形 后的方程
用“{”将 未 知 数的值联立 起来
感悟新知
特别提醒
知1-讲
2024七年级数学上册第3章3.5二元一次方程组的应用第3课时分段计费问题和方案问题课件新版沪科版

答: a 的值为0.6, b 的值为0.7.
1
2
3
4
5
(2)小明家7月份用电量增多,缴纳电费285.5元,求小明
家7月份的用电量.
【解】若7月份用电量为350度,则电费为180×0.6+
(350-180)×0.7=227(元).因为285.5>227,所以小明
家7月份用电量超过350度.设小明家7月份用电量为 x
5
【解】设1辆 A 型车装满物资一次可运 x 吨,1辆 B 型车
装满物资一次可运 y 吨,
= ,
+ = ,
依题意,得ቊ
解得ቊ
= ,
+ = ,
所以1辆 A 型车装满物资一次可运3吨,1辆 B 型车装满
物资一次可运4吨.
1
2
3
4
5
(2)请你帮该物流公司设计租车方案,并把符合要求的租
沪科版 七年级上
第3章
一次方程与方程组
3.5 二元一次方程组的应用
第3课时 分段计费问题和方案问题
解决“分段”问题,需先弄清楚如何分段,划分了几个档,
每段的标准是什么.然后根据题目要求列方程组,计算得出
结果.
应用1 分段计费问题
1. 本地某快递公司规定:寄件不超过1千克的部分按起步价
收费;寄件超过1千克的部分按每千克另收费.小丽在本地
逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进
一批新能源汽车尝试进行销售,据了解2辆 A 型汽车、3辆
B 型汽车的进价共计80万元;3辆 A 型汽车、2辆 B 型汽车
的进价共计95万元.
(1)求 A , B 两种型号的汽车每辆进价分别为多少万元.
1
沪科版七年级数学上册二元一次方程组及其解法课件(共18张)

解:
①×2,得:
4x+6y=38
③
②×3,得:
9x-6y=27 ④
加减法消元时,先 要把相同未知数的系数 化 把x=5代入①,得:
y=3 ∴原方程组的解是 x=5
y=3
课堂小结
用加减法解二元一次方程组的步骤:
(1).利用等式性质把一个或两个方程的两边都 乘以适当的数,变换两个方程的某一个未知数 的系数,使其绝对值相等;
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
解得 t = 0.5 所以这个方程组的解是
t 0.5 u
(2)
a 2b 3 a 3b 4
① ②
解:②-①, 得 b=1
把b= 1 代入①得 a+2×1=3
解得
a= 1
a 1 所以这个方程组的解是 b 1
例1、用加减法解二元一次方程组
利用相反数相加消去一个未知数
① 左边 +左边 ② = ①右边 + ② 右边
5x+6y +(5x-6y)=81 + 9
10x=90 把x=9代入① y=6
X=9,
{5x +6y =81 ① 5x -6y =9 ②
再视察上面方程组中方程(1)与方程(2),又可以发 现什么?
利用相同数相减消去一个未知数
(2).把变换系数后的两个方程的两边分别相加或相 减,消去一个未知数,得一元一次方程;
(3).解这个一元一次方程,求得一个未知数的值 ;
(4).把所求的这个未知的值代入方程组中较为简 便的一个方程,求出另一个未知数,从而得到方 程的解 .
1、 用加减法解下列方程时,你认为先消哪个未知
沪科版七年级数学上册教学设计:3.3.1二元一次方程(组)的概念
5.反思总结题:要求学生针对本节课学习的二元一次方程(组)知识点,撰写一篇学习心得,内容包括自己的理解、学习过程中的困难、解决方法等。通过反思总结,帮助学生形成自己的知识体系,提高自我认知能力。
学生在解决实际问题时,可能存在以下困难:一是难以将现实问题抽象为数学模型;二是面对两个未知数时,不知如何下手解决问题。因此,在教学过程中,教师应关注学生的这些难点,通过设计贴近生活的实例,帮助学生建立起二元一次方程(组)的直观认识。
此外,学生在学习方法上仍需指导,他们在合作交流、自主探究等方面的能力有待提高。作为教师,我们要关注学生的个体差异,充分调动他们的学习积极性,引导他们逐步形成适合自己的学习方法。在这个过程中,培养学生勇于挑战、善于总结的良好学习习惯,为他们今后的数学学习打下坚实基础。
2.实践应用题:设计一道与生活实际相关的二元一次方程(组)问题,要求学生运用所学知识解决问题,并说明解题思路。例如:“某商店举行促销活动,购买A商品3个和B商品2个,共需支付120元;购买A商品2个和B商品4个,共需支付140元。请计算A商品和B商品的原价。”
3.提高拓展题:选取教材第3.3节后的练习题6-10题,这些题目难度较高,旨在培养学生的逻辑思维能力和解题技巧。鼓励学生在课后尝试解决,提升自己的数学能力。
3.设计不同难度的练习题,让学生在自主练习中巩固所学知识,提高解题能力。
4.对学生在解题过程中遇到的问题进行指导,帮助他们总结经验,形成自己的解题策略。
(三)情感态度与价值观
1.让学生感受到数学与现实生活的紧密联系,体会数学学习的实用价值。
七年级数学上册 第3章 一次方程与方程组 3.3 二元一次方程组及其解法(第3课时)课件
第十三页,共十五页。
20.对于实数 x、y 定义一种新的运算“*”:x*y=ax+by,其中 a、b 为常数, 等式的右边是通常的加法和乘法运算.已知 3*5=15,4*7=28,求 a+b 的值.
3a+5b=15
a=-35
解:由题意得
4a+7b=28
,解得b=24
,∴a+b=-35+24=-11.
x+y=1 (1)2x-y=5
;
(2)2x3-y-x+4 y=-112 ; 3x+y-22x-y=3
x·4%=x-y×10% (3)x+300·4%=x-y+300×6.4% .
x=2
x=2
x=500
解:(1)y=-1 ; (2)y=1 ; (3)y=300 .
第十二页,共十五页。
2x+3y=k 18.已知方程组3x+2y=k+2 的解满足 x+y=6,求 k 的值.
x=-5 14.(乐山中考)二元一次方程组x+2 y=2x3-y=x+2 的解是 y=-1 .
x∶y=2∶3
x= 4
15.若3x+2y=24 ,则y= 6 .
2x-y=m
x=2
16.关于 x、y 的方程组x+my=n 的解是y=1 ,则|m-n|的值为 2 .
第十一页,共十五页。
17.用适当的方法解下列方程组:
第四页,共十五页。
2x+3y=1 3.用加减法解方程组3x-2y=8 时,下列变形正确的是( B )
4x+6y=1 ①9x-6y=8
6x+9y=1 ②6x-4y=8
③6-x+6x9+y=4y3=-16
④49xx+-66yy==224
A.①②
B.③④
C.①③
D.①④
4.若二元一次方程 2x+4y=6、5x-2y=3 和 2x-my=-1 有公共解,则 m
数学沪科版七年级(上册)3.3二元一次方程组(共21张PPT)
一切问题都可以转化为
数学问题,一切数学问题都
可以转化为代数问题,而一
切代数问题又都可以转化为
方程问题。因此,一旦掌握
了方程问题,一切问题便迎
刃而解。
法国著名的数学家·笛卡尔
—笛卡尔
动手操作 画一个周长为20cm的长方形,并标出它的
长与宽各是多少.
3.5cm 6.5cm
(4) 6x- 1 y=1;是; 2
(5) xy+y=7 ; 不是,最高项的次数为2;
1
(6) 2x+ y
=3 ;不是,方程左边的式子不是整式.
问题5:你能仿照一元一次方程的解给二元一次 方程的解下个定义吗?
使二元一次方程左右两边相等的两个未知数的 值,叫做二元一次方程的解。
问题6:如何解二元一次方程?以x+y=10为例说明.
y
3z
5
不是
x 2
(3)
y
1
是
(4)
x
1 y
2
不是
x y 0
问题10:什么叫二元一次方程组的解呢?
使二元一次方程组中每个方程都成立的两 个未知数的值,叫做二元一次方程组的解。 这 个解就是它们的公共解。
练一练
的1解.判?断下列各对值是不是二元一次方程组2xx1
y
y
7
x 1
x 2
x 6 y 4 是x+y=10的一个yc解m。
xcm
问题7:你能说说一元一次方程和二元一次方程的 区别与联系吗?
区别
一元一次方程 含有一个未知
数,有唯一解
二元一次方程 含有两个未知
数,有无数个解
联系
七年级上册《二元一次方程组》集体备课教案
练习1
{ { {
不是二元一次方程组,为什么?
三、展示提升
练习2判断下列各组未知数的值是不是二元一次方程组
{ 的解:
{ { {
四、达标检测
练习3 教科书第89页练习
小结:
.回顾本节课的学习过程,回答以下问题:
(1)举例说明二元一次方程、二元一次方程组的概念.
(2)举例说明二元一次方程、二元一次方程组的解的概念.
2、பைடு நூலகம்不能根据题意直接设两个未知数,使列方程变的容易呢?
直接设两个未知数,列方程组更加直接。
题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数
胜的积分+负的积分=总积分
问:设胜场数为x,负场数为y,你能用方程把这些条件表示出来吗?
3、这两个方程与一元一次方程有什么不同?它们有什么特点?(引出二元一次方程)
4、上面方程中的未知数x,y必须同时满足几个条件?(也就是未知数x,y必须同时满足方程x+y=10和2x+y=16).把两个方程合在一起,写成{ (引出二元一次方程组)
就组成了一个方程组.这个方程组含有几个未知数?含有未知数的项的次数是多少?
归纳:叫做二元一次方程组.
5 满足方程x+y=10,且符合问题的实际意义的值有哪些?把它们填入表中.
七年级数学学科“四环四学”集体备课教案设计
课题
二元一次方程组
课时
1
课型
新课
任课教师
主备
参备教师
教学目标
1.了解二元一次方程、二元一次方程组的概念.
2.理解二元一次方程的解、二元一次方程组的解的概念.
重点难点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学二元一次方程组
第28讲二元一次方程组
方法运用
1.如果,那么=_____________.
2.如图,周长为34的长方形ABCD被分成7个大小完全一样的小长方形,则每个小长方形的面积
_____________.
3.解方程组:
⑴ ⑵
4.已知y=kx+b,若x=4时,y=15;x=7时,y=24,求当x=-2时,y的值是多少?
5.已知y=x2+px+q,当x=1时,y的值为2;当x=-2时,y的值为2;求当x=-3时,y的值.
6.关于x、y方程组中x,y相等,求k的值.
7.已知方程组的解x、y互为相反数,求方程组的解.8.在解关于x、y方程组可以用⑴×2+⑵消去未知数x;也可以用⑴+⑵×5消去未知数,求m、n的值.
9.已知(xyz≠0),求x:y:z的值.0.若4x-3y-6z =0,x+2y-7z=0(xyz≠0),求式子的值.
11.张阿姨要把若干个苹果分给小朋友们吃,若每人2个,则多1个;若每人3个,则缺2个,苹果有
_________个,小朋友有__________个.
12.小明和小亮做数字游戏:他们各写一个两位数,先将小明写的两位数减去小亮写的两位数,得到的差是
一个一位数;再将他们写的两位数相加,得到一个三位数.在这个三位数后面添写上面得到的差就得到一个四
位数为1482.小明、小亮各写的是子什么数?
13.某人装修房屋,原预算25000元.装修时因材料费
下降了20%,工资涨了10%,实际用去了21500元.求原来材料费及工资各是多少元?.一列匀速行驶的火车通
过一座160米的铁路桥用了30秒,而它以同样的速度穿过一段200米长的隧道用了35秒,求这列火车的速度和长度?
综合思考
15.天兴洲大桥的护栏由两种金属材料建成,规格
为30米和60米.某公司承建了1200米路段的工程,要求每种规格的材料多于10根,已知建成后30米规格的材料每根可盈利8000元,60米规格的材料每根可盈利15000元.若设30米规格的材料用x根,60米规格的材料用y根.
⑴用含y的式子表示x;
⑵该公司共有多少种承建方案?
⑶哪种方案的盈利较大?.建设国家森林城市,园
林部门决定搭配A、B两种园艺造型共50个摆放在市区,现有3490盆甲种花卉和2950盆乙种花卉可供使用,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆.搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
⑴问符合题意的搭配方案有几种?请你帮助设计出来.
⑵若搭配一个A种造型的费用是800元,搭配一个B 种造型的费用是960元,试说明⑴中哪种方案费用最低?最低费用是多少元?
17.要运送一批货物,若用3台大货车各运7次,结果还有12件货物未运送完;若9台小货车各运4次,结果刚好运送完,已知每台大货车比每台小货车一次多运送3
件货物.
⑴求这批货物共有多少件?
⑵已知每台大货车每次的运送费用为60元,每台小货车每次的运送费用为40元,若要想两次将所有货物运送完(每台货车都运送2次,每次都是满载货物),问如
何租用这两种货车,才合算呢?
18.如图,MN∥ST,直线PQ交MN,ST分别于A、B两点,AC平分∠MAB交ST于C,∠ACB=400.
⑴求∠A BT的度数;
⑵直线PQ上是否存在点D,使∠ACB=2∠ACD?若存在,求∠ADC的度数;若不存在,请说明理由.
⑶E为∠MAC的平分线上一动点,连接BE,∠CBE的平分线BF交AC于F,当点E在运动过程中,2∠AFB-∠AEB 的度数是否变化?若不变,求其值;若变化,求出变化范围.。