差分方程

差分方程
差分方程

差分方程

第九节差分方程

迄今为止,我们所研究的变量基本上是属于连续变化的类型. 但在经济管理或其它实际问题中,大多数变量是以定义在整数集上的数列形式变化的,银行中的定期存款按所设定的时间等间隔计息,国家财政预算按年制定等等. 通常称这类变量为离散型变量. 对这类变量,我们可以得到在不同取值点上的各离散变量之间的关系,如递推关系等. 描述各离散变量之间关系的数学模型称为离散型模型. 求解这类模型就可以得到各离散型变量的运行规律. 本节将介绍在经济学和管理科学中最常见的一种离散型数学模型—差分方程.

内容分布图示

★引言★差分的概念★例1-5

★差分方程的概念★例6 ★例7

★一阶常系数线性齐次差分方程

★一阶常系数线性非齐次差分方程

★例9-14 ★例15 ★例16 ★二阶常系数线性差分方程

★ 二阶常系数线性齐次差分方程的通解

★ 例17 ★ 例18 ★ 例19

★ 二阶常系数线性非齐次差分方程的特解

★ 例20-23

差分方程在经济学中的应用

★ 模型1

★ 模型2 ★模型3 ★ 内容小结

★ 课堂练习 ★ 习题8-9

★ 返回

内容要点:

一、 差分的概念与性质

一般地,在连续变化的时间范围内,变量y 关于时间t 的变化率是用dt

dy 来刻画的;对离散型的变量y ,我们常取在规定的时间区间上的差商

t y ??来刻画变量y 的变化率. 如果

选择1=?t ,则 )()1(t y t y y -+=?

可以近似表示变量y 的变化率. 由此我们给出差分的定义.

定义 1 设函数).(t y y t = 称改变量t t y y -+1为函数t y 的差分,

也称为函数t y 的一阶差分, 记为t y ?, 即

t t t y y y -=?+1 或 )()1()(t y t y t y -+=?.

一阶差分的差分称为二阶差分t y 2?, 即

t t t t y y y y ?-?=??=?+12)(

.2)()(12112t t t t t t t y y y y y y y +-=---=+++++

类似可定义三阶差分, 四阶差分,……

ΛΛ),(),(3423t t t t y y y y ??=???=?

一般地,函数t y 的1-n 阶差分的差分称为n 阶差分,记为t n y ?,即

t n t n t n y y y 111-+-?-?=?i

n t i n n i i y C -+=∑-=0)1(

二阶及二阶以上的差分统称为高阶差分.

差分的性质:

(1) t t y C Cy ?=?)( );(为常数C

(2) ;)(t t t t z y z y ?±?=±?

(3);)(1t t t t t t z y y z z y ?+?=??+

(4)t t t t t t t t z z z y y z z y ??-?=???? ???+1

).0(≠t z

二、差分方程的概念

定义2 含有未知函数t y 的差分的方程为差分方程.

差分方程的一般形式:

0),,,,,(2=???t n

t t t y y y y t F Λ 或

.0),,,,,(21=+++n t t t t y y y y t G Λ

差分方程中所含未知函数差分的最高阶数称为该差分方程的阶. 差分方程的不同形式可以互相转化.

定义3 满足差分方程的函数称为该差分方程的解.

如果差分方程的解中含有相互独立的任意常数的个数恰好等于方程的阶数, 则称这个解为该差分方程的通解.

我们往往要根据系统在初始时刻所处的状态对差分方程附加一定的条件,这种附加条件称为初始条件, 满足初始条件的解称为特解.

定义 4 若差分方程中所含未知函数及未知函数的各阶差分均为一次的, 则称该差分方程为线性差分方程.

线性差分方程的一般形式是

)()()()(1111t f y t a y t a y t a y t n t n n t n t =+++++--++Λ 其特点是

t n t n t y y y ,,,1Λ+++都是一次

的.

三、一阶常系数线性差分方程

一阶常系数线性差分方程的一般形式为

)

(1t f Py y t t =-+ (9.1)

其中, P 为非零常数, )(t f 为已知函数. 如果,0)(=t f 则方程变为

01=-+t t Py y

(9.2)

方程(9.2)称为一阶常系数线性齐次差分方程, 相应地,方程(9.1)称为一阶常系数线性非齐次差分方程.

一阶常系数线性齐次差分方程的通解

一阶常系数线性非齐次差分方程

定理1 设t y 为方程(9.2)的通解,*t y 为方程(9.1)的一个特解, 则*t t t y y y +=为方程(9.1)的通解.

(1)C t f =)( (C 为非零常数)

(2)t Cb t f =)( (C , b 为非零常数且1≠b )

四、二阶常系数线性差分方程

二阶常系数线性差分方程的一般形式:

)(12t f by ay y t t t =++++

(9.9)

其中b a ,均为常数, 且,0≠b )(x f 是已知函数. 当0)(=x f 时, 方程(9.9)变为

012=++++t t t by ay y

(9.10)

方程(9.10)称为二阶常系数线性齐次差分方程,相应地,方程(9.9)称为二阶常系数线性非齐次差分方程.

定理2 设t y 为方程((9.10)的通解, *t y 为方程(9.9)的一个特解, 则*t t t y y y +=为方程(9.9)的通解.

二阶常系数线性齐次差分方程的通解

特征方程 0

2=++b a λλ (9.11)

二阶常系数线性非齐次差分方程的特解和通解

仅考虑方程(9.9)中的)(x f 取某些特殊形式的函数时的情形.

(1))()(t P x f m =(其中)(t P m 是t 的m 次多项式), 方程(9.9)具有形如)(*t R t y m k t =的特解, 其中)(t R m 为t 的m 次待定多项式.

五、 差分方程在经济学中的应用

采用与微分方程完全类似方法,我们可以建立在经济学

中的差分方程模型,下面举例说明其应用.

1.“筹措教育经费”模型

某家庭从现在着手, 从每月工资中拿出一部分资金存入银行, 用于投资子女的教育, 并计算20年后开始从投资账户中每月支取1 000元, 直到10年后子女大学毕业并用完全部资金. 要实现这个投资目标, 20年内要总共筹措多少资金? 每月要在银行存入多少钱? 假设投资的月利率为0.5%, 为此, 设第t 个月, 投资账户资金为,t a 每月存资金为b 元, 于是20年后, 关于,t a 的差分方程模型为

1000)005.1(1-=+t t a a

(9.11)

且.,00120x a a ==

二、价格与库存模型

本模型考虑库存与价格之间的关系

设)(t P 为第t 个时段某类产品的价格,

)(t L 为第t 个时段的库存量. L 为该产品的合理库存量. 一般情况下, 如果库存量超过合理库存, 则该产品的售价要下跌, 如果库存量低于合理库存, 则该产品售价要上涨, 于是有方程

)(1t t t L L k P P -=-+

(9.13)

其中k 为比例常数.

三、国民收入的稳定分析模型

本模型主要讨论国民收入与消费和积累之间的关系问题.

设第t 期内的国民收入t y 主要用于该期内的消费t G , 再生产投资t I 和政府用于公共设施的开支G (定为常数), 即有

G I C y t t t ++=

(9.17)

又设第t 期的消费水平与前一期的国民收入水平有关, 即

)10(1<<=-A Ay C t t

(9.18)

第t 期的生产投资应取决于消费水平的变化, 即有

)(1--=t t t C C B I

(9.19)

由方程(9.17), (9.18), (9.19)合并整理得

G BAy y B A y t t t =++---21)1( (9.20)

于是, 对应A , B , G 以及,,0y y 可求解方程, 并讨论国民收入的变化趋势和稳定性.

例题选讲:

差分的概念与性质

例1(讲义例1)设,2t y t =求 ).(),(),(32t t t y y y ???

例2(讲义例2)设.1),1()2)(1()0()(=+---=t n t t t t t n Λ求)(n t ?.

例3(讲义例3)求t t t y 32?=的差分.

例4 设,22t t y += 求.,,32t t t y y y ???

例5 试改变差分方程023=?+?t t y y 的形式.

差分方程的概念

例6(讲义例4)试确定下列差分方程的阶.

.735)2(;0)1(15423=+=+-++--+t t t t t y y y y y

例7(讲义例5)指出下列等式哪一个是差分方程, 若是, 进一步指出是否为线性方程.

.432)2(;33)1(12=+-+=?-++t t t t t t y y y a y y

一阶常系数线性差分方程

例8(讲义例6)求差分方程031=-+t t y y 的通解.

例9(讲义例7)求差分方程231-=-+t t y y 的通解.

例10(讲义例8)求差分方程t t t y y ??? ??=-+23321

1在初始条件5

0=y 时的特解.

例11(讲义例9)求差分方程2134t y y t t =-+的通解.

例12 求差分方程t y y t t πsin 341=++的通解.

例13 求差分方程

t y y t t 231+=-+满足初始条件50=y 的特解.

例14(讲义例10)求差分方程t t t t y y 4221+=++的通解. 例15 设某产品在时期t 的价格, 供给量与需求量分别为t t S P ,与),2,1,0(Λ=t D t . 1当121+=t t P S ο, t t t t D S P D =+-=-οο3,5421时, 求证

(1) 由οοο3,2,1推出差分方程.221=++t t P P

(2) 已知0P , 求上述差分方程的解.

例16(讲义例11)在农业生产中, 种植先于产出及产品出售一个适当的时期, t 时期该产品的价格t P 决定着生产者在

下一时期愿意提供市场的产量t t P S ,1+还决定着本期该产品的

需求量,t Q 因此有

1,-+-=-=t t t t dP c S bP a Q (a , b , c , d 均为正的常数)

求价格随时间变动的规律.

二阶常系数线性差分方程

例17(讲义例12)求差分方程04312=--++t t t y y y 的通解. 例18(讲义例13)求差分方程04412=++++t t t y y y 的通解. 例19(讲义例14)求差分方程04212=+-++t t t y y y 的通解. 例20 求差分方程

12212=-+++t t t y y y 的通解及0,010==y y 的特解.

例21(讲义例15)求差分方程t y y y t t t =-+++4312的通解. 例22(讲义例16)求差分方程t t t t y y y 23212?=++++的通解. 例23 求差分方程t t t t y y y ??? ??-=++++214112的通解.

差分方程在经济学中的应用

课堂练习

1.求差分方程21t y y t t =-+的通解.

2.求差分方程t y y y t t t =-+++4312的通解.

3.求差分方程t t t t y y y 57612?=-+++的通解.

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

习题详解-第10章微分方程与差分方程初步

习题10-1 1. 指出下列方程的阶数: (1)4620x y y x y '''''-+=. (2)2 2 d d 0d d Q Q Q L R t c t ++=. (3)2d cos d ρ ρθθ +=. (4)2()d 2d 0y x y x x y -+=. 解:(1)三阶(2)二阶(3)一阶(4)一阶 2. 验证下列给出的函数是否为相应方程的解: (1)2x y y '=, 2y Cx =. (2)2(+1)d d x y y x =, +1y x =. (3)20y y y '''++=, x y x e -=. (4)22d 0.4d s t =-, 2120.2s t c t c =-++. 解:(1)是,代入即可. (2)是,代入即可; (3)是,因为 ,2x x x x y e xe y e xe ----'''=-=-+,满足20y y y '''++=; (4)是,代入,2 12d d 0.4,0.4d d s s t C t t =-+=-,显然满足. 3. 验证:函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程 222d 0d x k x t += 的通解. 解:221212()sin cos ,()cos sin ,x t C k kt C k kt x t C k kt C k kt '''=-+=--满足2 22 d 0d x k x t +=,所以是解,又因为含有两个任意常数12,C C ,且方程是二阶的,故是通解. 4. 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程222d 0d x k x t +=的通解,求满足初始条件 x | t 2 x | t 的特解. 解:上题可知是微分方程通解,且12()sin cos ,x t C k kt C k kt '=-+代入初值条件0|02,|0t t x x ='===,得122,0C C ==,所以特解为2cos (0).x kt k =≠ 习题10-2 1. 求下列微分方程的通解: (1)()2 310y y x '++=; (2) 2 +'=x y y ; (3) d d sin xcos y y sin y cos x x =; (4) 2 d d d d x xy y y x y y +=+; (5) 22 d d d d y y y x xy x x +=; (6) d d y x y x x y -= +; (7) 22 d d y y x xy x =+; (8) )2(tan 21 2y x y +='. 解:(1)这是可分离变量方程,分离变量得 () 2 31d =d y y x x +- 两端分别积分:

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

差分方程的解法

1、常系数线性差分方程的解 方程( 8)其中为常数,称方程(8)为常系数线性方程。 又称方程(9) 为方程(8)对应的齐次方程。 如果(9)有形如的解,带入方程中可得: (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1)若(10)有k个不同的实根,则(9)有通解: , (2)若(10)有m重根,则通解中有构成项: (3)若(10)有一对单复根,令:,,则(9)的通解中有构成项: (4)若有m 重复根:,,则(9)的通项中有成项:

综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k个独立的任意常数。通解可记为: 如果能得到方程(8)的一个特解:,则(8)必有通解: + (11) (1)的特解可通过待定系数法来确定。 例如:如果为n 的多项式,则当b不是特征根时,可设成形如形式的特解,其中为m次多项式;如果b是r重根时,可设特解:,将其代入(8)中确定出系数即可。 2、差分方程的z变换解法 对差分方程两边关于取Z变换,利用的Z 变换F(z)来表示出的Z变换,然后通过解代数方程求出F(z),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的 例1设差分方程,求 解:解法1:特征方程为,有根: 故:为方程的解。 由条件得: 解法2:设F(z)=Z(),方程两边取变换可得:

由条件得 由F(z)在中解析,有 所以, 3、二阶线性差分方程组 设,,形成向量方程组 (12)则 (13)(13)即为(12)的解。 为了具体求出解(13),需要求出,这可以用高等代数的方法计算。常用的方法有: (1)如果A为正规矩阵,则A必可相似于对角矩阵,对角线上的元素就是A的特征值,相似变换矩阵由A的特征向量构成:。 (2)将A 分解成为列向量,则有 从而,

差分方程模型的稳定性分析分析解析

分类号 学号密题 目 (中、英文) 作者姓名 指导教师 学科门类 提交论文日期专业名称 成绩评定 数学与应用数学 理 学

咸阳师范学院2016届本科毕业设计(论文) 摘要 微分方程是研究数学的一个重要分支,是本科期间我们必须掌握的基本知识,而本文我们研究的是一个递推关系式,也称差分方程。它是一种离散化的微分方程,是利用描述客观事物的数量关系的一种重要的数学思想来建立模型的。而利用差分方程建立模型解决问题的方法在生活中随处可见,比如在自由竞争市场经济中的蛛网模型是利用差分方程分析经济何时趋于稳定,又如金融问题中的养老保险也是利用差分方程来分析保险品种的实际投资价值。而差分方程模型是描述客观世界中随离散时间变量演化规律的有力建模工具。本文首先给出差分方程的定义以及求解过程并给出判断差分方程稳定性的判断方法,随后以同一环境下的羊群和草群的相互作用为模型分析其种群的数量变化过程,进而研究线性差分方程的稳定性,最后用一个实际模型来更好的说明差分方程的稳定性对解决实际问题有非常大的帮助。 关键字:差分方程;差分方程模型;平衡点;稳定性

差分方程模型的稳定性分析 Abstract Difference equation is also called recursive equation, it is to describe the relationship between the number of objective things of a kind of important mathematical model. And the use of the differential equation model of the solution can be found everywhere in life. Such as cobweb model in the free market economy is to use the difference equation analysis when the economic stability, and as the financial problem of pension insurance breed difference equation is used to analysis the actual investment value. This paper gives the judge the stability of difference equation to judge method, then in the same group of sheep and grass under the environment of interaction analysis for the model a process, the number of the population change, in turn, study the stability of the linear difference equation. In the end, one practical model to better explain the stability of difference equation. Key words:Difference equation;Difference equation model ; Balance point; Stability

(完整版)差分方程模型(讲义)

差分方程模型 一. 引言 数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。 1. 确定性连续模型 1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。 2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。 3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。 4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。 2. 确定性离散模型 1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。 2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。 3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。 4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。 随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。 在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二. 差分方程简介 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。但是,往往都需要用计算机求数值解。这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 1. 差分方程的定义 给定一个数列{}n x , 把数列中的前1+n 项i x ),,2,1,0(n i Λ=关联起来得到的方程,则称这个方程为差分方程。 2. 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=++++---k n k n n n x a x a x a x Λ, (1) 或者表示为 0),,,,(1=++k n n n x x x n F Λ (1’) 其中k 为差分方程的阶数,其中k a a a ,,,21Λ为差分方程的系数,且0≠k a )(n k ≤。 对应的代数方程 02211=++++--k k k k a a a Λλλλ (2) 称为差分方程(1)的对应的特征方程。(2)式中的k 个根k λλλ,,,21Λ称为(1)式的特征根。 2.1 差分方程的解 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出方程解的形式。 2.1.1 特征根为单根(互不相同的根) 设差分方程(1)有k 个单特征根(互不相同的根)k λλλ,,,21Λ,则

分式,分式方程计算导学案

分式和分式方程的计算 《学案》 学习目标 1.了解分式的概念,能说出分式加减,乘除的法则. 会用这些法则 进行简单的加减乘除混合运算。 2.了解分式方程的概念,知道分式方程每一步的解法依据,从而使 学生会解分式方程。 3. 通过分式与分数计算的类比,分式解法与分式方程解法的类比, 使学生理解他们的异同。从而培养学生总结概括的能力。 学习重点和难点 分式的基本性质和等式基本性质的应用; 难点是分式计算与解分式方程的异同. 学习过程 一、 完成下列预习作业: 1、分解因式: ① 2x-6= ; ② x 3-4x 2+4x= ; ③1-2x+x 2= ; ④ x 2-9y 2= ; 2、计算 ;=+7372 =-7372 依据 ==+5432;==-5432 依据 3、计算 x x y ++y y x +=________= ;32b a -32a a =________= = 依据是 32ab +2 14a =________= ;a-b+22b a b += = 依据 4、填出下列各等式中未知的分子或分母。 ()22y x y x y x -=+-()y x ≠; ()b a ab ab a -=-2

()1)3(3=--x x x ; ()1122-=-+x x x x 依据是 __________________________________________________________ 5、=÷= ?5432,5432 依据: __________________________________________________________ (1) 3234y x x y ? = (2) cd b a c ab 4322222-÷ 依据: __________________________________________________________ 二、自学、合作探究 例1: 2221x x x x x -+÷ (写出步骤及依据) 例2: x x x x x x 34292222--?+- (写出步骤及依据) 例3: 22111x x x --- (写出步骤及依据) 例4:a a a a a 21)242(22+?---

差分方程与概率计算

第4期 随着科学技术的发展,差分方程在各个领域得到越来越多的应用,本文将介绍差分方程的一个简单的应用,即如何利用差分方程来求概率问题,虽然差分方程及其解法在很多方面类似于微分方程,但由于很少书籍介绍差分方程的内容,现在先了解一下差分方程的基本概念。 1.差分的概念[1] 定义1 设y(t)为定义在整数集上的函数,则称△y(t)=y(t+1)-y(t)为函数y(t)的一阶差分, △(△y(t))=△2y(t)称为y(t)的二阶差分,△ny(t)=△(△n-1y(t))称为y(t)的n阶差分。 对于连续函数y(t),可以在区间[a,b]内插入n-1个分点:a<t0<t1<…<tn=b(为方便计算,可取等距离点),得函数值y(t0),y(t1),…,y(tn),同样定义y(t)的各阶差分。 上述定义也可以称为向前差分,还可以用不同的形式定义向后差分与中心差分,三者实质是相同的,可以互相转换。差分具有线性运算及类似微分的运算性质。 2.差分方程的概念[1] 定义2差分方程的一般形式为:F(y(t);△y(t),…,△ny(t))=0,方程中的最大足标i+n与最小足标 i之差为n时,称之为n阶的差分方程,其一般形式为:a0(t)y(t)+a1(t)y(t)+…+an(t)y(t)=b(t),当b(t)=0 时,称为其次的,否则称为非其次的。 在求概率中应用到的一类差分方程,是一类简单的特殊形式,常用到的只有一阶常系数线性差分方程和二阶常系数线性差分方程,其一般形式为:xn+1=axn+b (1);xn+2=axn+1+bxn(2) 3.一阶、二阶常系数线性差分方程的解[2]引理1 对于一阶常系数线性差分方程xn+1=axn+bxn,a,b为常数,若已知x1=c(c为常数), 则xn+1=an c+(1-an ) 1-a 引理2[3] 对于二阶常系数线性差分方程xn+2=axn+1+bx,a,b为常数,若x1=m1,x2=m2(m1,m2为常数), 则xn+1=λ1n (m1λ2-m2)λ2-λ1+λ2n (m2-m1λ2)λ2-λ1 ,其中λ1、λ2是方程λ 2 -aλ-b=0的两根。证明令xn=Aλn代入(2)得:Aλn(λ2-aλ-b)=0,称方程λ2 -aλ-b=0为差分方程(2)的特征方程,且(2) 的解与特征方程的解有关系式:xn+1=c1λ1n+1 +c2λ2n+2 , 因给定初值x1=m1x2=m2" , 代入上式得:m1=c1λ1+c2λ2 m2=c1λ12+c2λ2 2 " 差分方程与概率计算 唐燕玉 (安庆师范学院学报编辑部,安徽安庆246011) 摘要:全文介绍了差分方程的概念,并给出了一阶差分方程xn+1=axn+b的通解与给定初始条件x1=c的特解,同时又给出了二阶差分方程xn+2=axn+1+bxn的通解与给定初始条件x1=m1,x2=m2的特解,并详细讨论了这两种差分方程在概率论中的应用。 关键词:概率;差分;差分方程;试验;全概公式中图分类号:O211 文献标识码:A 文章编号:1007-4260(2006)04-0091-03 收稿日期:2006-01-28 作者简介:唐燕玉(1951-),女,安徽枞阳人,安庆师范学院学报(自然科学版)主编。 安庆师范学院学报(自然科学版) JournalofAnqingTeachersCollege(NaturalScienceEdition) 2006年11月 Nov.2006第12卷第4期 Vol.12No.4

分式方程知识点总结

分式方程知识点总结 一.分式方程、无理方程的相关概念: 1.分式方程:分母中含有未知数的方程叫做分式方程。2.无理方程:根号内含有未知数的方程。(无理方程又叫根式方程) 3.有理方程:整式方程与分式方程的统称。 二.分式方程与无理方程的解法: 1.去分母法: 用去分母法解分式方程的一般步骤是: ①在方程的两边都乘以最简公分母,约去分母,化成整式方程; ②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。 在上述步骤中,去分母是关键,验根只需代入最简公分母。2.换元法: 用换元法解分式方程的一般步骤是: ②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想; ③三解:解这个分式方程,将得出来的解代入换的元中再求解;

④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。 解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。 三.增根问题: 1.增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的增根。 2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。 3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为0。 解分式方程的思想就是转化,即把分式方程整式方程。 常见考法 (1)考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主;(2)分式方程的解法,是段考、中考考查的重点。 误区提醒 (1)去分母时漏乘整数项; (2)去分母时弄错符号;

差分方程

差分方程

第九节差分方程 迄今为止,我们所研究的变量基本上是属于连续变化的类型. 但在经济管理或其它实际问题中,大多数变量是以定义在整数集上的数列形式变化的,银行中的定期存款按所设定的时间等间隔计息,国家财政预算按年制定等等. 通常称这类变量为离散型变量. 对这类变量,我们可以得到在不同取值点上的各离散变量之间的关系,如递推关系等. 描述各离散变量之间关系的数学模型称为离散型模型. 求解这类模型就可以得到各离散型变量的运行规律. 本节将介绍在经济学和管理科学中最常见的一种离散型数学模型—差分方程. 内容分布图示 ★引言★差分的概念★例1-5 ★差分方程的概念★例6 ★例7 ★一阶常系数线性齐次差分方程 ★一阶常系数线性非齐次差分方程 ★例9-14 ★例15 ★例16 ★二阶常系数线性差分方程

★ 二阶常系数线性齐次差分方程的通解 ★ 例17 ★ 例18 ★ 例19 ★ 二阶常系数线性非齐次差分方程的特解 ★ 例20-23 差分方程在经济学中的应用 ★ 模型1 ★ 模型2 ★模型3 ★ 内容小结 ★ 课堂练习 ★ 习题8-9 ★ 返回 内容要点: 一、 差分的概念与性质 一般地,在连续变化的时间范围内,变量y 关于时间t 的变化率是用dt dy 来刻画的;对离散型的变量y ,我们常取在规定的时间区间上的差商 t y ??来刻画变量y 的变化率. 如果 选择1=?t ,则 )()1(t y t y y -+=? 可以近似表示变量y 的变化率. 由此我们给出差分的定义. 定义 1 设函数).(t y y t = 称改变量t t y y -+1为函数t y 的差分, 也称为函数t y 的一阶差分, 记为t y ?, 即 t t t y y y -=?+1 或 )()1()(t y t y t y -+=?. 一阶差分的差分称为二阶差分t y 2?, 即 t t t t y y y y ?-?=??=?+12)(

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB 实现(程序) 摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言 线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域 法[1]. 1 迭代法 例1 已知离散系统的差分方程为)1(3 1)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()4 3()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出24 59)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下: clc;clear;format compact; a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐 n=0:10;xn=(3/4).^n, %输入激励信号 zx=[0,0],zy=[4,12], %输入初始状态 zi=filtic(b,a,zy,zx),%计算等效初始条件 [yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件 2 时域经典法 用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形 式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下. (1)求齐次解.特征方程为081432=+-αα,可算出4 1 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )4 1()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()4 3()(n u n x n =代入差分方程右端得自由项为 ?????≥?==-?+-1,)4 3(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )4 3()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)4 3(213 )41()21()(21n n n C C n y ?++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用 )(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

差分方程的基本知识(3)

差分方程模型的理论和方法 1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。

时间序列分析讲义 第01章 差分方程

第一章 差分方程 差分方程是连续时间情形下微分方程的特例。差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。 §1.1 一阶差分方程 假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程: t t t w y y ++=-110φφ (1.1) 在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。在下面的分析中,我们假设t w 是确定性变量。 例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为: ct bt t t t r r I m m 019.0045.019.072.027.01--++=- 上述方程便是关于t m 的一阶线性差分方程。可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。 1.1.1 差分方程求解:递归替代法 差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。 由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφ t t =:t t t w y y ++=-110φφ 依次进行叠代可以得到: 1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ 0111122113121102)1(w w w y y φφφφφφφ++++++=- i t i i t t i i t w y y ∑∑=-=++=0 111 1 0φφφφ (1.2) 上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。上述通过叠代将 t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化 过程。 1.1. 2. 差分方程的动态分析:动态乘子(dynamic multiplier) 在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。假设初始值1-y 和t w w ,,1 不受到影响,则有:

分式方程的概念及解法

分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和 都是分式方程,而关于的方程和都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。 规律方法指导 1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 1、下列各式中,是分式方程的是() A.B.C.D. 举一反三:

差分方程求解

例题:已知差分方程51 (2)(1)()(+1)+0.5()66 x k x k x k r k r k +-++=,其中r (k )=1,k ≥0,x (0)=1, x (1)=2。 (1) 试由迭代法求其全解的前5项; (2) 分别由古典法求其零输入解、零状态解,以及全解; (3) 用Z 变换法求解差分方程。 解:注:解题过程中出现的下标“zi ”和“zs ”分别表示零输入条件和零状态条件。 1. 迭代法 题目中给出的条件仅仅是零输入初始条件,进行迭代求解时的初始条件应该是全解初始条件。 (1) 零输入初始条件 本题已给出零输入时的两个初始条件x zi (0)=1,x zi (1)=2。 (2) 零状态初始条件 取k =-2时,则51 (0)(1)(2)(1)0.5(2)66x x x r r --+-=-+-,得x zs (0)=0; 取k =-1 时,则51 (1)(0)(1)(0)0.5(1)66 x x x r r -+-=+-,求得x zs (1)=1。 (3) 全解初始条件 x (0)= x zi (0)+ x zs (0)=1; x (1)= x zi (1)+ x zs (1)=3。 (4) 根据求出的全解x (0)和x (1),利用迭代法求解 取k =0时,则51(2)(1)(0)(1)0.5(0)66x x x r r -+=+,求得23(2)6x =; 取k =1时,则51(3)(2)(1)(2)0.5(1)66x x x r r -+=+,求得151 (3)36x =; 取k =2时,则51(4)(3)(2)(3)0.5(2)66x x x r r -+=+,求得941 (4)216 x =。 2. 古典法 (1) 零输入解 令输入为零,则得齐次方程 51 (2)(1)()066 x k x k x k +-++= (a) 根据差分方程定义的算子()()n d x k x k n =+,可得它的特征方程251 066 d d -+= 求得特征根为: 112d = ,21 3 d =

人教版八年级上册分式方程练习及解析

第八讲 分式方程 考点综述: 中考对于分式方程的主要要求包括分式方程的概念以及解法,会检验分式方程的根,分式方程的应用也是中考考查的重点和热点。 典型例题: 例1:解方程: (1)(2007连云港) 11322x x x -=--- (2)(2007德州)解方程:120112x x x x -+=+- (3)(2007宁波)解方程21124x x x -=-- 解:(1)方程两边同乘(2)x -,得1(1)3(2)x x =----. 解这个方程,得2x =. 检验:当2x =时,20x -=,所以2x =是增根,原方程无解 (2)两边同乘以(1)(12)x x +-, 得(1)(12)2(1)0x x x x --++=; 整理,得510x -=; 解得 15 x = . 经检验,15x =是原方程的根. (3)方程两边同乘(x-2)(x+2),得 x(x+2)-(x 2-4)=1, 化简,得2x=-3 x=-3/2, 经检验,x=-3/2是原方程的根. 例2:(2007沈阳)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队 单独完成此项工程所需天数的45 ,求甲、乙两个施工队单独完成此项工程各需多少天? 解:设甲施工队单独完成此项工程需x 天, 则乙施工队单独完成此项工程需45 x 天, 根据题意,得 10x +1245x =1

解这个方程,得x =25 经检验,x =25是所列方程的根 当x =25时,45 x =20 答:甲、乙两个施工队单独完成此项工程分别需25天和20天. 实战演练: 1.(2008安徽)分式方程112 x x =+的解是( ) A . x=1 B . x =-1 C . x=2 D . x =-2 2.(2008荆州)方程21011x x x -+=--的解是( ) A .2 B .0 C .1 D .3 3.(2008西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .12012045x x -=+ B . 12012045x x -=+ C .12012045x x -=- D .12012045x x -=- 4.(2008襄樊)当m = 时,关于x 的分式方程213 x m x +=--无解. 5.(2008大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________. 6.(2008泰州)方程 22123=-+--x x x 的解是=x __________. 7.解方程: (1)(2008赤峰)2112323x x x -=-+ (2)(2008南京)22011 x x x -=+- 8.(2008咸宁) A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?

相关文档
最新文档