流体力学课件12第二章流体静力学第五节

合集下载

《工程流体力学》PPT课件

《工程流体力学》PPT课件
第二章 流体静力学
本章学习要求:
流体静力学主要研究流体平衡时,其内部的压强分布规律 及流体与其他物体间的相互作用力。它以压强为中心,主要 阐述流体静压强的特性、静压强的分布规律、欧拉平衡微分 方程,作用在平面上或曲面上静水总压力的计算方法,潜体 与浮体的稳定性,并在此基础上解决一些工程实际问题。
无论是静止的流体还是相对静止的流体,流体之间没有相 对运动,因而粘性作用表现不出来,故切应力为零。
• 2.3.3 静止液体中的等压面 • 由于等压面与质量力正交,在静止液体中只有重
力存在,因此,在静止液体中等压面必为水平面。
• 对于不连续的液体或者一个水平面穿过了两种不 同介质连续液体,则位于同一水平面上各点压强 并不一定相同,即水平面不一定是等压面。
2.3 流体静力学的基本方程
2.3.4 绝对压强、相对压强、真空度
(z A (g p A )W ) (z B (g p B )W ) (( (g g ) ) H W g2 1 ) h 1 2 .6 h
2.4 压强单位和测压仪器
2、U形水银测压计
p1=p+ρ1gh1 p2=pa+ρ2gh2 所以 : p+ρ1gh1=pa+ρ2gh2
M点的绝对压强为: p=pa+ρ2gh2-ρ1gh1
具有的压强势能,简称压能(压强水头)。
测压管水头( z+p/g):单位重量流体的总势能。
物理意义: 1. 仅受重力作用处于静止状态的流体中,任意点对同一基准面 的单位势能为一常数,即各点测压管水头相等,位头增高,压 头减小。
2. 在均质(g=常数)、连通的液体中,水平面(z1 = z2=常数)
必然是等压面(p1 = p2 =常数)。

中南大学《流体力学》课件第二章静力学.

中南大学《流体力学》课件第二章静力学.

证明
质量力 表面力
1 f x dxdydz 6
1 p 0 0 p A cos( n , x ) x dydz n n 2
导出关系式 得出结论
F 0
x
px pn
第一节 平衡流体中的应力特征
第二节 流体平衡微分方程
压强在流体运动、流体与固体相互作用中扮演重要角色,如 机翼升力、高尔夫球及汽车的尾流阻力,龙卷风产生强大的 负压强作用,液压泵和压缩机推动流体做功等都与压强有关。 然而,压强在静止流体、相对静止流体及粘性运动流体中的 分布规律将明显不同。
如图所示的密闭容器中,液面压强 问题1: p0=9.8kPa,A点压强为49kPa, 则B点压强为多少 ,在液面下的深度为多少? 答案 39.2kPa;
3m
问题2: 露天水池水深5m处的相对压强为:
答案
49kPa
图示容器内 A、B 两点同在一水 问题3:平面上,其压强分别为 pA 及 pB。 因 h1 h 2,所以 pA pB。 答案
• 点压强的定义及特性 • 微元体法推导出流体平衡微分方程 即流体平衡的规律 • 重力作用下流体的平衡
p p ( U U ) 0 0
pp gh 0
等压– 绝对压强p‘ 绝对压强不可为负 – 相对压强(表压强)p 相对压强可正可负 – 真空压强(真空值)pv 真空压强恒为正值
自由面上 p 0 所以 AB 上各点的压强均为 0
[例]试标出如图所示盛液容器内A、B、C三点的位置水头、 测压管高度、测压管水头。以图示0-0为基准面。
pC g pB g
A
pA g
Z
Z
c
ZB
C 因为 ,所以,以A点的测压管水头为依据, g 可以确定B点的位置水头为2m和测压管高度为6m ;C点的 位置水头6m,测压管高度为2m.

流体力学ppt课件

流体力学ppt课件
6
三、特例 ❖ 火箭在高空非常稀薄的气体中飞行以及高真空技术中,如真空泵,其分子距与设备
尺寸可以比拟,不再是可以忽略不计了。这时不能再把流体看成是连续介质来研究。 ❖ 流体性质有局部突变时,如汽化。 ❖ 研究区域很小时。
7
第三节 作用在流体表面上的力 表面力 质量力
两类作用在流体上的力:表面力和质量力
M V d M V d d V 0
V dV d
E1 pd1V 1d d p0.0 1% 25 140 2.5 18P 0 a
Vdp
13
二、流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用
温度膨胀系数来表示。 1.膨胀系数
单位温度增加所引起的体积相对变化量
17
三种圆板的衰减时间均相等。 库仑得出结论:衰减的原因,不是圆板与液体之间的相互摩擦 ,而是液体内部的摩擦 。
18
2.牛顿内摩擦定律
(1) 牛顿平板实验
当h和u不是很大时,两平板间沿y方向的流速呈线性分布,
uUy 或duUdy
h
h
h
dy
y U
uu+du
y
dudt
Aa
Bb
o
dy
d
d(dud)/tdtdu
3
第二节 流体作为连续介质的假设 问题的引出:
微观:流体是由大量做无规则热运动的分子所组成, 分子间存有空隙,在空间是不连续的。 宏观:一般工程中,所研究流体的空间尺度要比分子 距离大得多。
4
一、流体的连续介质假设 定义:不考虑流体分子间的间隙,把流体视为由
无数连续分布的流体微团组成的连续介质。这就是1755年欧拉提出的“连续介质 假设模型”。

流体力学-流体静力学PPT课件-

流体力学-流体静力学PPT课件-
三.流体静压强分布图
1.绘制液体静压强分布图的知识点
流体静力学基本方程; 平衡流体中的应力特征(大小性、方向性)。
2.液体静压强分布图的绘制方法
(1)根据水静力学基本方程,计算出受压面上各点压强的大小,用一定 长度比例的箭头线表示各点的压强,箭头线必须垂直并指向作用面;
(2)对于不可压缩液体,重度γ为常量,p与h呈线性关系,当受压面为平 面时,只需用直线连接箭头线的尾部,即可得到压强分布图;而当受压面 为曲面时,由于曲面上各点的法向不同,因此需用曲线连接箭头线的尾部。
z1
p1
z2
p2
(2-11) (2-12)

p2 p1 (z1 z2 )
对于液体,如图所示,若液面压强为p0,则由式(2-12) 可知液体内任一点的静压强为
p p0 (z0 z) p0 h
(2-13)
式(2-13)为不可压缩静止液体的压强计算公式,通常亦称 为水静力学基本方程。该式表明:
故得欧拉平衡微分方程综合式(即全微分形式)
dp ( f xdx f ydy f z dz)
上式称为流体平衡微分方程的综合式。
而 dW f xdx f y dy f z dz
又 故有
dW W dx W dy W dz
x
y
z
W
fx
x
fy
W y
W f z z
(2-5) (2-6)
•方向性: 流体静压强p垂直指向受压面
证明:采用反证法, 其要点如下: 1 因平衡流体不能承受切应力,即 τ=0,故p垂直受压面;
2 因流体几乎不能承受拉应力,故 p指向受压面。
•大小性:平衡流体中任一点的静压强大小与其作用面的方位无关

流体力学第二章---流体静力学PPT课件

流体力学第二章---流体静力学PPT课件
c2流体静力学23液体压强的测量压强度量方法压强度量方法单位名称单位名称单位符号单位符号单位换算关系单位换算关系应力单位法应力单位法ppaa1p1paa1nm1nm22液柱高度法液柱高度法米水柱米水柱mhmh22oo1mh1mh22o98o98101033aa液柱高度法液柱高度法毫米汞柱毫米汞柱mmhgmmhg1mmhg136mmh1mmhg136mmh22oo1333p1333paa工程大气压法工程大气压法工程大气压工程大气压1at10mh1at10mh22o736mmhgo736mmhg9898101044aa压强度量单位的换算关系c2流体静力学23液体压强的测量压强的三种表示法
部的压强也同时增大 p 0 .
即液面压强的增量同时等值地传递到液体中每一点,这就是著
名的巴斯卡原理。工程上的水压机、水力蓄能机等都是在此原理
下计算的。
.
21
C2 流体静力学
五、 流体平衡的条件
• 为保证欧拉平衡方程: pf
2.2 流体平衡微分方程
p X , p Y ,
x
y
p Z z
成立,均质流体(ρ=常数)和正压流体(ρ=ρ(p))必须满足 质量力有势的条件: f ,UU称为势函数。
P0为液面 压强。
.
20
C2 流体静力学
2.2 流体平衡微分方程
四、重力下流体的压强分布规律
z p0
pp0 h
P0为液面 压强。
(1)静止液体中,任意点的压强由两部
分液组重成,h 。一液部重分压是强表与面液压面强以P0;下另水一深部成分线是
性关系。
x
h2
h
h1
静止流体
pp0p0h
(2)表面压强与液重无关。如果液面压强P0增大 p0 ,液体内

第二章--流体静力学PPT课件

第二章--流体静力学PPT课件
.
第二章 流体静力学
流体静力学着重研究流体在外力作用下处于平衡状态的 规律及其在工程实际中的应用。
这里所指的静止包括绝对静止和相对静止两种。以地球 作为惯性参考坐标系,当流体相对于惯性坐标系静止时, 称流体处于绝对静止状态;当流体相对于非惯性参考坐标 系静止时,称流体处于相对静止状态。
流体处于静止或相对静止状态,两者都表现不出黏性作 用,即切向应力都等于零,流体只存在压应力——压强。
Pd=22.6Kpa
将以上条件代入式(2-15)积分,便可得到同温层标准大气压分布
dppgdz pgdz
RT
RT d
p dp z g
dz
pa p
zd RTd
p22 .6ex1p1( 00z0) 6334
式中z得单位为m,11000m≤z≤25000m。
35
.
2.3.2气体压强分布
2.大气层压强的分布
2.3.3压强的度量
相对压强
绝对压强
真空度 绝对压强
绝对压强、相对压强和真空之间的关系
41
.
2.3.3压强的度量
相对压强
绝对压强
真空 绝对压强
绝对压强、相对压强和真空之间的关系
42
.
2.3.3压强的度量
立置在水池中的密封罩如图所示,试求罩内A、B、C三
点的压强。
【解】:
B点: pB p0
C
A点: pAghAB pB
从11-15km,温度几乎不变,恒为216.5K(-56.5℃), 这一层为同温层。
32
.
2.3.2气体压强分布
2.大气层压强的分布
(1)对流层
dpgdz dp pg dz
p

第二章 流体静力学ppt课件

.
2.1 静止流体上的作用力
按力的物理性分为:惯性力、重力、弹性力、粘性力 按力的表现形式分为:质量力、表面力
2.1.1 质量力(体积力、长程力)
1、定义:作用于流体的每个质点上,并与作用的流体 质量成正比。 例如:重力、直线惯性力、曲线惯性力
2、单位质量力 总的质量力以F表示,设F在各个坐标轴上的分力为:
C、导出关系式: F0
D、得出结论
. 图2.2 静止流体中的微元四面体
选取研究对象 受力分析 导出关系式 得出结论
C
O
A
B
静止流体中任何一点上各个方向作用 的静压强大小相等,与作用面方位无 关——大小特性
.
2.2 流体的平衡微分方程及其积分
2.2.1欧拉平衡微分方程
1、取研究对象:在平衡流体中取一微元六面体,边
.
即:
z
p
常数
流体静力学基本方程
对1、2两点:
z1
p1
z2
p2
当z=0时,即自由液面处,p=p0 代入静力学基本方程,得c=p0
p=p0-γz
p=p0+γh
——静力学方程基本形式二
Δh
p2=p1+γΔh
——静力学基本方程的变形
.
2.3.2 静止液体中压强计算和等压面
1、绝对静止等压面应满足的条件:
为 静水压强的方向垂直指向作用面

。同一点不同方向上的静水压强大小相等
.
2.3 流体静力学基本方程
绝对静止流体——质量力只有重力 表面力只有静压力
2.3.1 静力学基本方程
重力作用下静止流体质量力:X=Y=0,Z=-g 代入压强p的微分公式
d p(Xd Yxd Z ydz)

第二章流体力学流体静力学(2)ppt课件

.
第六节 平面上的流体静压力
常见图形的A、yC及IxC值
22
几何图形名称
y
矩形 yC c
xh
b
y
三角形 yC c
xh
b
y
梯形 yC c
xh
b
面积A 形心坐标yC 对通过形心轴的惯性矩IxC
bh
1h
2
1 bh 3 12
1 bh
2h
2
3
1 bh 3 36
1 h(a b) h (a 2b)
2
3 ab

2、图示水深相差h的A、B两点均位于箱内静水中,连接两点 的U形汞压差计的液面高差hm,试问下述三个值hm哪一个 正确?
(1 ) p A p B m
(2 ) p A p B m
(3 ) 0
B A
答案: (3)。因为压差计所测
压差为两测点的测压管水头差。
即:
H汞 h汞g12.6(zApA)(zBpB)0
pA=h= lsin 。
p0
l
h
A
(2)在测压管内放置轻质而又和水互不混掺的液体,重度 ′< ,则有较 大的h。
.
第五节 测压计
二、水银测压计与U形测压计
5
适用范围:用于测定管道或容器中某点流体压强,通常被测点压
强较大。
B—B等压面:
pA1g1z p02g2z
pA2g2z1g1z
1
A+ z1
式中:Io——面积A绕ox轴的惯性矩。 I0 y2dAIc Ayc2
A
Ic——面积A绕其与ox轴平行的形心轴的惯性矩。
结论: 1 、当平面面积与形心深度不变时,平面上的总压力大小与平

《流体力学》课件

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。

古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。

流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。

建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

此后千余年间,流体力学没有重大发展。

15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。

但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。

流体力学的主要发展:17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。

他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。

使流体力学开始成为力学中的一个独立分支。

但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。

之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。

欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。

流体力学第02章流体静力学


于质量力只有重力的同一种连续介质。对不连续液体或
一个水平面穿过了两种不同介质,位于同一水平面上的
各点压强并不相等。
二 气体压强的分布(不讲) (不讲就不考)
三 压强的度量--绝对压强与相对压强
1、 绝对压强
设想没有大气存在的绝对真空状态作为零点计量的压 强,称为绝对压强。总是正的。
2、 相对压强
解:相对静水压强:
p pabs pa p0 gh pa
代入已知值后可算得
h ( p p0 pa ) (9.8 85 98) / 9.8 2.33m
g
例: 如图,一封闭水箱,其自由面上气体压强为
25kN/m2,试问水箱中 A、B两点的静水压强何处为大?
已知h1为5m,h2为2m。 解:A、B两点的绝对静水
因水箱和测压管内是互相连通的同种液体故和水箱自由表面同高程的测压管内n点应与自由表面位于同一等压面上其压强应等于自由表面上的大气压强即ghgh11测压管测压管若欲测容器中若欲测容器中aa点的液体压强点的液体压强可在容器上设置一开口细管可在容器上设置一开口细管
第二章 流体静力学
流体静力学的任务:是研究液体平衡的规律及其
p
g
p0
g
得出静止液体中任意点的静水压强计算公式:
p p0 gh
式中
h z0 z :表示该点在自由面以下的淹没
深度。
p0 :自由面上的气体压强。
静止液体内任意点的静水压强有两部分组
成:一部分是自由面上的气体压强P0,另一部分 相当于单位面积上高度为h的水柱重量。
(a)
(b)
(c)
淹没深度相同的各点静水压强相等,只适用
pA gLsin
当被测点压强很大时:所需测压管很长,这时可以改 用U形水银测压计。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档