流体力学课件 第二章 流体静力学

合集下载

流体力学第二章 流体静力学

流体力学第二章 流体静力学
第二章 流体静力学
流体静力学:研究流体静止时的力学规律。 主要研究内容:研究静止流体的压强分布以及静止流体对
物体表面的作用力。 意义:流体静力学在工程中有着广泛的应用,设计挡水建
筑物、水工结构、高压容器时。都要应用流体静力学的基 本原理。 静止流体受力情况比较简单,但其分析也同样使用严格的 阿力学分析方法,掌握好这些分析方法,可为学习流体动 力学打下良好的基础。
由曲线积分
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
整理ppt
C2 流体静力学
2.2 流体平衡微分方程
一 欧拉平衡微分方程
可得欧拉平衡方程
f
1
p
0
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
这样形成在赤道处大气自下向上,然后在高空自赤道流向北极;在 北极大气自上向下,最后沿洋面自北向南吹的大气环流。通常将沿洋面 自北向南吹的风称为贸易风。
整理ppt
C2 流体静力学 五 流体静力学基本方程
2.2 流体平衡微分p 0方程z
• 单位质量流体机械能守恒式:
p z c g c z
x
h2
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
特征一:应力的作用方向为作用面的内法向方向
特征二:流体中某一点的静压强 p(x,y,z) 的大小 与压强的作用面无关。
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
流体特征 1:静止流体不能承受切应力,也不能承受拉应力, 只能承受压应力,即压强,压强的作用 方向为作用面的内法向方向(垂直指向作用面)。

流体力学课件—上海交通大学

流体力学课件—上海交通大学
单位质量力 —— 单位质量流体所受到的质量力。
am
Fm m am m f x i f y j f z k


—— 单位质量力(数值等于流体加速度)。
fx 、fy、fz —— 单位质量力在直角坐标系中 x、y、 z 轴上的投影。
二、表面力
表面力 —— 由于V 流体与四周包围它的物体相 接触而产生,分布作用在该体积流体的表面。
三、静压强基本公式的物理意义
dv 内摩擦力: F A dy
以切应力表示: F dv A dy
牛顿内摩擦定律
式中:µ —— 与流体的种类及其温度有关的比例 常数;
dv —— 速度梯度(流体流速在其法线方 dy 向上的变化率)。
2、粘度及其表示方法 粘度

dv dy
代表了粘性的大小
µ 的物理意义:产生单位速度梯度,相邻流 层在单位面积上所作用的内摩擦力(切应力)的 大小。 常用粘度表示方法有三种:
dV 1 k V dp
( m2/N )
式中:dV —— 流体体积相对于V 的增量;
V —— 压强变化前(为 p 时)的流体体积;
dp —— 压强相对于p 的增量。
体积(弹性)模量:
1 Vdp K k dV
( N/m2 )
K 不易压缩。 一般认为:液体是不可压缩的(在 p、T、v 变 化不大的“静态”情况下)。 则 = 常数 或:
<1>动力粘度 µ
单位 : Pa s (帕 • 秒)
1 Pa s = 1 N/m2 s
<2>运动粘度:
工程上常用:10 – 6 m2 / s
单位:m2 / s

《流体力学》第二章流体静力学

《流体力学》第二章流体静力学
z4
p z C g
pa 4 3 真空 1
p2 g
p=0
z1
z3
2
z=0
p 为压强水头 g
z 为位置水头
2.3 重力场中的平衡流体 重要结论
p p0 gh
(1) 在重力作用下的静止液体中,静压强随深度按线性 规律变化,即随深度的增加,静压强值成正比增大。 (2)在静止液体中,任意一点的静压强由两部分组成: 一部分是自由液面上的压强P0;另一部分是该点到自由 液面的单位面积上的液柱重量ρgh。 (3)在静止液体中,位于同一深度(h=常数)的各点的静 压强相等,即任一水平面都是等压面。
2.2 流体平衡微分方程 一、欧拉平衡方程
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
2 3
2
3
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
dA dA n
dF pdAn
F pdAn
A
流体静压力:作用在某一面积上的总压力; (矢量) 流体静压强:作用在某一面积上的平均压强或某一点的 (标量) 没有方向性 压强。
2.1 平衡流体上的作用力 证明:
z A
pn px
微元四面体受力分析
py
dx C x
dz O dy B y
y
p x p y p z pn
C x
pz
f

z
表 面 力 质 量 力
1 d yd z 2 1 Py p y d zd x 2 1 P p d yd x z z 2 P n pn d A P x px

工程流体力学课件:流体静力学

工程流体力学课件:流体静力学

积分得 gz p C
即:
能量形式
式中: gz为单位质量流体的重力 势能,p/ρ为单位质量流体的压 强势能。
§3-2 重力场中的流体平衡
一、流体静力学的基本方程
能量形式方程可改写为
z p C
g
水头形式
z1
p1 g
z2
p2 g
式中:z为位置水头; 为压强水头。表明:不可压重力流 体处于平衡状态时,精水头线C或计示精水头线为平行于基 准面的水平线。
1d2
1 0.12
4
4
因测压管下方H+h的点与圆柱底面在
同一等压面上,故
所以
p gH h
H p h
g
1.29105 0.5 12.65m 1000 9.81
§3-2 重力场中的流体平衡
例二、用如图所示测压计测量管A中水的压力p。已知 h=0.5m,h1=0.2m,h3=0.22m,酒精的密度 1 800kg / m3 水银的密度 2 13600kg / m3,真空计度数 p0 0.25105 Pa 真空度。求A中水的压力。
§3-2 重力场中的流体平衡
四、压强的计量与测量
1、绝对压强
绝对压强是以完全真空(p=0 )为基准计量的压强。对于
p0=pa,则静止流体中某点的绝对压强为

2、相对压强
相对压强是以当地大气压强pa为基准计量的压强,即高于大
气压的压强,也称之为计示压强或表压强。那么,静止流体
中某点的相对压强为

3、真空度 负的计示压强,称为真空或负压强,用符号pv表示。则
解 在绝对静止条件下,对连续均质流体,有1-2、3-4、5-6等 压面关系,有
p1 p2 , p3 p4 , p5 p6

上海交通大流体力学课件

上海交通大流体力学课件

常用粘度表示方法有三种:
<1>动力粘度 µ 单位 : Pa s (帕 • 秒) 1 Pa s = 1 N/m2 s
<2>运动粘度:
单位:m2 / s
工程上常用:10 – 6 m2 / s (厘斯) mm2 / s 油液的牌号:摄氏 40ºC 时油液运动粘度的 平均厘斯( mm2 /s )值。
平衡流体内不显示粘性,所以不存在切应力 。
§2-1 平衡流体上的作用力
一、质量力
质量力 —— 与流体的质量有关,作用在某一体积 流体的所有质点上的力。(如重力、惯性力)
单位质量力
——
单位质 量流体所受到的质量力。
Fm mam m fx i fy j fz k
am —— 单位质量力(数值等于流体加速度)。
内摩擦力: F A dv
dy
以切应力表示: F dv
A dy
牛顿内摩擦定律
式中:µ—— 与流体的种类及其温度有关的比例
常数;
dv —— 速度梯度(流体流速在其法线方
dy
向上的变化率)。
2、粘度及其表示方法
粘度
dv dy
代表了粘性的大小
µ 的物理意义:产生单位速度梯度,相邻流 层在单位面积上所作用的内摩擦力(切应力)的 大小。
§1-3 流体的主要物理性质
z
一、密度
P
= lim
V0
M V
kg/m3
• 流体密度是空间位置
x
和时间的函数。
V. M
• P ( x,y, z )
y
• 对于均质流体: M
V
kg/m3
二、压缩性
可压缩性—— 流体随其所受压强的变化而发生

第二章 流体静力学

第二章 流体静力学

d
例题3

考虑左侧水的作用
a a
a
a
b
b
b
b
c
c
c
c
ab段曲面(实 压力体)
bc段曲面(虚 压力体)
阴影部分相 互抵消
abc曲面(虚压 力体)
例题3

考虑右侧水的作用
a
b
c
bc段曲面 (实压力体)
例题3

合成
a a
a
a
b
b
b
b
c
c
c
c
左侧水的作 用
右侧水的作 用
abc曲面(虚压 力体)
例4
圆柱形压力水罐,半径R=0.5m,长l=2m,压 力表读值p=23.72kN/M2,试求(1)端部平 面盖板所受水压力;(2)上、下半圆筒所 受水压力。
分析思路
流体作用在曲面各微元面积上的压力 不是平行的,不能直接相加,而是采取 力学中“先分解,后合成”的方法确定总压 力。
§2.5 作用在曲面上的静水总压力
压力大小
dP ghd
一、静水总压力的水平分力
水平分力
dPx dP cos ghd cos ghd x
hd 为压力体体积
z
z
压力体
z
h d z
定义: 压力体相当于从曲面向上引至液 面(自由液面)的无数微小柱体的 体积总和,它是纯数学概念,与这 个体积内是否充满液体无关。
画法: (1)自由液面 (2)曲面 (3)根据静压强作用的方向找特殊点 (4)分段 (5)沿曲面的边界引垂直液面的铅垂面
空气 A 水
故A点的真空值为
p v p a p A (h2 h1 ) 1000 9.8 (2 1) 9800 Pa

第二章 流体静力学

第二章 流体静力学

所以表面abcd的总压力为:( p
p dx )dxdy x 2
同理面aˊbˊcˊd ˊ的总压
p dx 力为: (p )dydz x 2
z
微团在X轴方向的表面
力和为:
(p p dx p dx )dydz ( p )dydz x 2 x 2
p
p dx x 2
位质量流体受到的质量力在水平面x轴和y轴的投影为零, 铅直方向z轴的投影为重力加速度g,根据
则有
dp g dz
dp ( f x dx f y dy f z dz)



积分得
p zc g
液体静止的基本方程
式中:g在本书中取值9.807m/s2;
z为测压处相对于边界条件(基准面)的高差。 c为常数,大小由边界条件确定。




若一个函数W(x,y,z)使质量力的投影等于这个函数的偏
导数,即
W fx x

fy
W y
fz

W z
则称函数W(x,y,z)为质量力势函数。 一个存在质量力势函数的力场,称为有势力场,相应的
质量力称为有势质量力,简称有势力。
等压面性质: • 等压面就是等势面; • 等压面与质量力垂直; •两种互不掺混液体的分界面也是等压面。
等压面:在静止流体内,由静压力相等的各点组成的面
自由面:静止液体和气体接触的面
水平面既是等压面也是自由面
液体静压强分布规律只适用静止、同种、连续液体
同一容器或同一连通器盛有多种不同密度的液体时,关键是找到等 压面
§2-4

液体的相对静止
辩证唯物主义:
①运动是普遍的、永恒的和无条件的,因而是绝

《流体力学》第二章 流体静力学2.1-2.4

《流体力学》第二章 流体静力学2.1-2.4

解:1
pA' p0 h
pA pA' pa
2
p p0 pa
第四节 液柱测压计
测压计种类: 弹簧管金属式 电测式 液柱式
液柱式: 测压管 微压计 压差计
压差计
例题2-4:对于压强较高的密封容器,可以采 用复式水银测压计,如图示,测压管中各液 面高程为:▽1=1.5m, ▽2=0.2m, ▽3=1.2m, ▽4=0.4m, ▽5=2.1m,求液面压强p5.
倾斜微小圆柱体轴向力的平衡,
P1
就是两端压力及重力的轴向分
力三个力作用下的平衡。
△l
P 2P 1G cos0
△h α
P1 p1dA
P2 p2dA
G dA
P2
GldA
液体内微小圆柱的平衡
p 2 d A p 1 d A ld A c o s 0
p2 p1h
流体静压强的分布规律为:静止液体中任两点的
第一节 流体静压强及其特性
流体静压强的定义
p P A
p lim P Aa A
流体静压强的单位: Pa bar kgf/m2 atm at
流体静压强的特性
流体静压强的方向与作用面垂直,并指向 作用面。 流体在静止时不能承受拉力和切力。
任意一点各方向的流体静压强大小相等, 与作用面的方位无关。
(21)h0
由于液体容重不等于零,要满足上式,则必须Δh=0, 即分界面是水平面,不可能是倾斜面。
分界面既是水平面又是等压面。
分界面和自由面是水平面这一规律是在静止、 同种、连续液体的条件下得到的。如不能同时 满足这三个条件,就不能应用上述规律。
例题2-2:容重不同的两种液体,装在容器中, 各液面深度如图示,若γb=9.807kN/m3,大气压 强98.07kPa,求γa及pA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档