流体力学第二章流体静力学
工程流体力学课件第二章 流体静力学1

fx
1
p x
0
乘以dx
1 p
f y y 0
乘以dy
1 p
fz z 0
乘以dz
1 p
f xdx
dx x
0
1 p
f ydy y dy 0
1 p
fzdz z dz 0
❖三式相加,整理
( f xdx
f ydy
fzdz)
p dx x
p dy y
p dz z
39
(
f xdx
❖ 适用范围: 静止状态
0
0
实际流体、理想流体都是适用的。
2021/3/12
2
3
在什么情况下有惯性力? 惯性坐标系:将坐标系建立在静止或匀速直线运动的
物体上 非惯性坐标系:将坐标系建立在有加速度运动的物体上 结论:
在惯性坐标系内运动的物体不考虑惯性力 在非惯性坐标系内加速运动的物体考虑惯性力
1 6
dxdydzf x
0
15
静压强两个特征(证明续)
❖ 化简得
px
pn
1 3
f xdx
0
❖ 由于等式左侧第三项为无穷小,可以略去,故得
❖ 同理可得
px pn py pn pz pn
❖ 所以
px py pz pn
❖ 结论 n的方向可以任意选择,从而证明了在静止流体 中任一点上来自各个方向的流体静压强都相等。
❖ 将质量力和表面力代入上式,则
p
1 2
p dx dydz
x
p
1 2
p dx dydz x
f x dxdydz
0
❖ 整理上式,并把各项都除以ρdxdydz,则得
流体力学第二章

第一节流体流体静压强及其特性一流体静压强的定义ΔPⅠΔAⅡⅡ作用在受压面整个面积上的压力称为总压力或压力作用在单位面积上的压力是压力强度,简称压强Ap p ∆∆=(2-1-1)App A ∆∆=→∆0lim(2-1-2)当面积ΔA 无限缩小时,则得某点的静压强,为:压强的国际制单位是N/m 2或Pa ;工程单位tf/m 2是或kgf/cm 2。
第一节流体流体静压强及其特性二流体静压强的特性pABCp 1τzxydz dxdyP xP yP nP zdydzp P x x 21⋅=dzdxp P y y 21⋅=dxdyp P z z 21⋅=dAp P n n ⋅=xx f dxdydz F ⋅⋅=61ρyy f dxdydz F ⋅⋅=61ρzz f dxdydz F ⋅⋅=61ρ0)cos(=+∧-x n x F x n P P 061)cos(21=⋅+∧-⋅x n x f dxdydz x n dA p dydz p ρdydzx n dA 21)cos(=∧nx p p =压强方向的假设压强大小计算ΔhΔlΔA第一节流体流体静压强及其特性结论流体静压强的方向与作用面垂直,并指向作用面任意一点各方向的流体静压强大小相等,与作用面的方位无关第二节流体静压强的分布规律p 1p 2Gα0cos 12=⋅--αG P P 0cos 12=∆⋅--αγldA dA p dA p h p p ∆=-γ12hp p γ+=0一液体静压强的基本方程式hp p γ+=12p 0hpph11200z1h2z2z011hppγ+=)(11zzpp-+=γγ/1110zpzp+=+γγ22hppγ+=)(22zzpp-+=γγ/1220zpzp+=+γγCzp=+γ结论:压强水头,压强必须为相对压强位置水头测压管水头,同一容器的静止液体中各点测压管水头相等。
测压管水头表示单位重量流体具有的单位势能。
测压管水头线上的各点,其压强与当地大气压相等。
流体力学第二章

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
流体力学 第二章 水静力学 (2)

ydA 表示面积dA对Ox的静矩 。
(一)
静水总压力的大小
根据理论力学中的静矩定理:微小面积dA对 某一轴的静矩之和(即
A ydA ),等于 平面面积A对同一轴的静矩Sx (即平面面积A
与其形心纵坐标yc的乘积),即有:
Sx
则
ydA y
A
c
A
P g sin S x g sin yc A
工程实践中,需要解决作用在结构物表面上的液体静压力 的问题。
本节研究作用在平面上的液体静压力,也就是研究它
的大小、方向和作用点。 由于液体静水压力的方向指向作用面的内法线方向, 因此只须求总作用力的大小和作用点。 研究方法可分为解析法和图解法两种
一、用解析法求任意平面上的静水总压力
问题:作用于这一任意平面上的相对静水总压力的大小及作
得
A
xD
A
I XY yC A
I Cxy yC A
I XY xydA 称为EF平面对Ox及Oy轴的静矩积
x D xC
式中Icxy为平面EF对通过形心C并与Ox、Oy轴平行的轴的惯性积。因为惯 性积Icxy可正可负,xD可能大于或小于xc。也就是对于任意形状的平面,压 力中心D可能在形心C的这边或那边
面相垂直。
注意:
1.在水利工程中,一般只需计算相对压强,所以只需绘制相对压强分 p h 布图,当液体的表面压强为 p0 时, 即p与h呈线性关系,据此绘 制液体静水压强图。 2. 一般绘制的压强分布图都是指这种平面压强分布图。 相对压强分布 图
pa
A
Pa+ρgh
B
静水压强分布示意图
静水压强分布图实例
由图可见:
工程流体力学第二章

pxdydz pnds • sin dz 0
p y dxdz
pnds
•
cos
dz
1 2
dxdydz
g
0
所以:
px pn 0
故
py
pn
1 2
dyg
0
y b
pxdy
o
px pn py pn
pnds
G x a
p y dx
得证
微元体分析法的步骤: 1 取合适的微元体 2 受力分析 3 建立方程
F pcg A ghc A
y D
y C
J cx yA
c
常见几何形状的惯性矩(表2-2)
矩形 圆型
c
l
J cx
1 12
bl 3
b
cR
J cx
1 R4
4
¼圆
xc c yc
xc
yc
4R
3
J cx
(1 4
16
9 2
R4
) 4
例2-5 设矩形闸门的宽为6米,长10米,铰链到低水面的 距离为4米。按图示方式打开该闸门,求所需要的力 R。
z
p0
o
B
z
p0
o
B
R
(a)
pg
2
2r2
R
(b)
pg
2
2(r2
R2)
例2-4 设内装水银的U型管绕过D点的铅垂线等角速度旋 转,求旋转角速度和D点的压强。设水银密度为
13600kg/m3 且不计液面变化带来的影响。
ω
关键:
10cm 5cm
1 写出所有的体积力
20c m
z
12cm 2 根据压力差公式写出压强
流体力学-张也影-李忠芳 第2章-流体静力学

解:设想打开封闭容器
o
液面上升高度为
P0 Pa 137 .37 98.07 4m
g
9.807
4m p0 1m 2m
60° y
hC 4 11sin 60 5.73m
o
P ghC A 225 kN
yC
4 sin 60
11
6.6m
IC
b 12
3
1152
例题:直径为1.25m的圆板倾斜地置于水面之下,其最高、最
低点到水面距离分别为0.6m和1.5m,求水作用在圆板上的总 压力大小和压力中心位置。
解:水作用在圆板上的总压力大小
P
ghc A
9.8
(1.5 0.6) 2
1.25 2
2
12.63kN
因
yc
pa O
A
pa OA
pa OA
B B
B
a
b
c
虚压力体:压力体和液体在曲面异侧,垂直分力向上
四 浮力原理
Vp Vadbfg Vacbfg
o
总压力的垂直分力为
Fpz gVp gVadbc
z
g af
Fpz1 c
x
a
b
Fpz2 d
例题:如图为一溢流坝上的弧形闸门ed。已知:R=8m,门 宽b=4m,α=30º,试求:作用在该弧形闸门上的静水总压力。
换算: 1kPa=103Pa
1bar=105Pa
三.静压强的测量
1.测压管 一端与测点相连,一端与大气相 连
p gh
2.U形管测压计 一端与测点相连,一端与大气相 例连 求pA(A处是水,密度为ρ,测 压计内是密度为ρ’的水银) 解:作等压面
流体力学(张景松版)第二章 流体静力学

工程大气压 98066.5 0.98067 1
0.9678 735.6 10.000 735.6 14.22
标准大气压 101325 1.01325 1.033
1
760 10.332 760
14.7
托
133.3 0.00133 0.00136 0.00132 1
13.6
1 0.01934
毫米水柱 9.8067 0.000098 0.0001 0.0000968 0.07356 1 0.07356 0.00142
一、压强的计量
p
1、绝对压强
以完全真空为基准计量的压强
绝对 压强
2、计示(相对)压强
以当地大气压强为基准计量的压强
o
计示 压强
计示 压强 (真空)
p>pa
大气压强 p=pa
p<pa 绝对 压强
完全真空 p=0
表压: p pa pe p pa gh
真空: p pa pv pa p pe
p p dx x 2
o y
dz
b ac
dy dx
p p dx x 2
x
为得到b面和c面的压强,利用a点压强进行泰勒展开:
b(x dx , y, z) : 2
pb
p
p x
dx 2
c(x dx , y, z) : 2
pc
p
p x
dx 2
2 流体静力学
z
p p dx x 2
一、流体的静压强
流体处于绝对静止或相对静止时的压强。
P dP p lim
A0 A dA
2.2 流体的静压力及其特性
工程流体力学 第二章 流体静力学201012

z ω
1.等压面方程 1.等压面方程
dp = ω 2 xdx + ω 2 ydy − gdz = 0
⇓ 积分
ω 2 x2
2 +
p0
o
m
h z
zs y
ω 2 y2
2
− gz = C
ω 2r 2
2
− gz = C
等压面是一簇绕z轴的旋转抛物面。 等压面是一簇绕z轴的旋转抛物面。 自由液面: 自由液面: x=0 z=0 C=0
z g p0
2
⇒
dp = ρ(Xdx +Ydy + Zdz)
dp = −ρgdz
p2
p1
1
⇒
dp dz + =0 ρg
z1
z2
积分得: 积分得:
p z+ =C ρg
o
p p z1 + 1 = z2 + 2 ρg ρg
基准面
x
2.物理意义 2.物理意义
z+ p =C ρg
总 势 能
3.几何意义 3.几何意义
o y
αr
y x ω2y ω2r
⇓
zs =
ω 2r 2
2g
x
ω2x
二、等角速旋转容器中液体的相对平衡
2. 静压强分布规律
dp = ρ (ω 2 xdx + ω 2 ydy − gdz )
z ω
⇓ 积分
p = ρ(
ω 2x2
2
+
ω 2 y2
2
− gz ) + C
p = ρg (
ω 2r 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
x
此时,pn,px,py,pz已是同一点(M点)在不同方位作用面上 的静压强,其中斜面的方位 n 又是任取的,这就证明了静压强
的大小与作用面的方位无关。
➢ 静压强 p 与作用方向无关,仅
取决于作用点的空间位置;流体是 连续介质 ,因此:p= p(x,y,z)。
➢ 静止流体的静压强 p = p(x, y, z),是空间点的连续函数。
2.2 流体平衡微分方程
在静止流体内部任取一点O’,该点的压强为p=p(x,y,z)
两个受压面abcd和a’b’c’d’中心点M,N 的压强:
pM
p
x
dx 2
,
y,
z
p 1 p dx 2 x
pN
p
x
dx 2
,
y,
z
p
1 2
p dx x
质量力:FBx X dxdydz
X方向的平衡方程:
dp ( Xdx Ydy Zdz) 流体平衡微分方程的综合式
静压强的分布规律完全由单位质量力决定
p gz c
p z c
g
g
z p C
g
Байду номын сангаас
由边界条件确定积分常数c,可得:
p po g zo z
p po gh
2.3.2 帕斯卡原理(巴斯加原理)
根据流体静力学基本方程 p p0 h 可知,液面压强p0与液 柱所具有的重量 h 无关,如果液面压强p0增大(或减小) △p,则液体内任意点的压强都将同时增大(或减小)同样 大小的△p。
f ds
静止流体中等压面是水平面。但静止流体中的水平面不一定 都是等压面,静止流体中水平面是等压面必须同时满足静止、同 种流体且相互连通的条件,三个条件缺一不可。
静止流体中等压面是水平面。但静止流体中的水平面不一定 都是等压面,静止流体中水平面是等压面必须同时满足静止、同 种流体且相互连通的条件,三个条件缺一不可。
第二章 流体静力学
❖ 流体静力学研究流体的平衡规律,由平衡条 件求静压强分布规律,并求静水总压力。
❖静止是一个相对概念,指流体相对于地球无 运动的绝对平衡和流体相对于地球运动但质点 之间、质点与容器之间无运动的相对平衡。
❖流体质点之间没有相对运动,意味着粘性将 不起作用,所以流体静力学的讨论不须区分流 体是实际流体或理想流体。
进行变换,可得:
p dx p dy p dz Xdx Ydy Zdz
x y z
即: dp Xdx Ydy Zdz
静压强的分布规律完全由单位质量力决定。
流体平衡微分方程或欧拉平衡微分方程 结论:单位质量液体所受表面力与质量力相平衡。
2.2.2 流体平衡微分方程的积分
各式分别乘以dx、dy、dz然后相加
p
1 2
p x
dx
dydz
p
1 2
p x
dx
dydz
X
dxdydz
0
化简得:
X 1 p 0
x
Y,z方向可得:
Y Z
1
1
p y p
0
0
z
各式相加得:
X
Y
Z
1
p x
p y
p z
0
欧拉平衡微分方程的全微分方式:
X
1
p x
0
Y
1
p y
0
Z
1
p z
0
结论:单位质量液体所受表面力与质量力相平衡。
• 静压强的大小与作用面的方向无关
➢ 在静止流体中取出以M 为顶点的四面体流体微元,它受到的
质量力和表面力必是平衡的,以 y 方向为例,写出平衡方程。
py d Ay pn d An cos(n, y) Y dV 0
z
px
py dz pn n
d
An
cos(n, y)
1 2
d
x
d
z
倾斜面积 d An 的Y轴为法线的投影就是d Ay。
压强表示方法
①N/m2、kN/m2 或Pa、kPa ②以液柱高度表示:h=p/。可以用水柱,也可用汞柱。 ③以大气压强的倍数表示。 一个标准物理大气压=1.013kg/cm2≈一个工程大气压 =1 kg/cm2=10米水柱=736毫米汞高=98kN/m2=0.1Mpa
dx dy pz
dV 1 d xd yd z
o
y
6
x
1 2
dxdzpy
1 2
dxdzpn
1 6
dxdydzY
0
➢ 当四面体微元趋于M点
时,注意到质量力比起表面 力为高阶无穷小,即得 pn=py,同理有 pn=px,pn=pz
pn px py pz
z
px
py dz pn n
dx dy pz
o
2.3.3 流体静力学基本方程的意义
• 在静水压强分布公式
z p C 中,各项都为长度量纲。
位置水头(水头) : Z 位置势能(位能): Z
测压管高度(压强水头) : p
pA /
压强势能(压能): g
pB / 测压管水头: z p
zA
单位势能:
g
zB
p
O
O
z c
g
• 敞口容器和封口容器接上测压管后的情况如图
2.1 流体静压强及其特性
2.1.1 流体静压强的定义性
流体静压强
A
静止流体作用在每单位受压面积上的压力
V
P 等效力
平均压强
p P A
点压强
p lim P
V
A0 A
单位:(N/ m2),也称为帕斯卡 (Pa)
2.1.2 流体静压强的特性
1、流体静压强的方向沿作用面的内法线方向。
2、静止流体中某一点静水压强的大小与作用面的方向无关, 或者说作用于同一点各方向的静压强大小相等。
因此可得出结论:静止流体内任一点的压强变化,会等值 传递到流体的其他各点。这就是帕斯卡原理,或称静压传 递原理。
2.3.2 帕斯卡原理
2.3.1 绝对压强、相对压强与真空值 绝对压强:
以设想的不存在任何气体的“完全真空”
(绝对真空)作为计算零点。----pabs
相对压强(计示压强或表压强):
以当地大气压强为计算零点。---pr
真空值: 当绝对压强小于大气压强时,相对压强为负
值,负值的相对压强的绝对值。-------pv pv=pat-pabs=︱pabs- pat︱= ︱pr︱
2.3.2 等压面
等压面具有如下性质:
1.等压面与质量力正交 2.等压面可以是平面也可以是曲面
①静止液体的等压面是水平面。 ②静止液体中,两种不同液体的分界 面是等压面。 ③凡是自由表面是等压面。
以上两个特性是计算任意点静水压强、绘制静水压强分 布图和计算平面与曲面上静水总压力的理论基础。
• 流体静压强的方向沿作用面的内法线方向
➢静止流体的应力只有法向分量(流体质
n Pn
点之间没有相对运动不存在切应力)。
➢法向应力沿内法线方向,即受压的方向
(流体不能受拉),即:流体静压强的方 向总是垂直指向受压面。