大连理工大学矩阵与数值分析部分课后习题#(精选.)
第1章--1(矩阵与数值分析)

,而
a1010.2718, kn3 n4 ,所以它是
e2.7182 8的1具8 有2 4位有效字的近似值。
如果取近似值 b 2 .7 1 8 2 1 0 1 0 .2 7 1 8 2 ,因
eb0.000091103 2
b 也只是 e 的具有4位有效数字的近似值。 同样我们可以分析出 a1010.271作8为 x0.02718 28
以求解20阶线性方程组为例,如果用Cramer法则求解, 在算法中的乘、除运算次数将大于
21!(约9.7×1020次)
使用每秒一亿次的串行计算机计算,完成运算耗时约30万年!
Cramer算法是“实际计算不了”的。为此,人们研究出著 名的Gauss消去法,它的计算过程已作根本改进,使得上述 例子的乘、除运算仅为3060次,这在任何一台电子计算机上 都能很快完成。
特别地,当 n时2,
f(x 1 ,x 2 ) f(a 1 ,a 2 ) x f1 A x 1 a 1 x f2 A x 2 a 2
现将上述估计式应用到四则运算.
(1)加法
fx1,x2x1x2
x1 x2 (a1 a2 ) x1 a1 x2 a2
两个近似数相加,其运算结果的 精度不比原始数据的任何一个精度高。
的绝对误差界和相对误差界。
解:ea0.000 28 ,因1此8 其绝2对误差界为:
e a 0.0003
相对误差界为: ea 0.00030.00011103705.0002。
a 2.718
此例计算中不难发现,绝对误差界和相对误差界并不唯一。 我们要注意它们的作用。
“四舍五入” 时误差界的取法
当准确值 位x数比较多时,常常按四舍五入的原则取
b0
,则有 x1 baab bb
大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。
由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。
2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。
3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。
4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()( 超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。
5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。
6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。
7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。
大连理工大学-矩阵与数值分析第一章上

–对C的类型系统改进和扩充(更安全)
–支持面向对象
C++保持与C兼容(快速普及) C++不是纯粹的面向对象的语言
33
1.2 程序的编译过程
34
1.3 C++的词法记号
关键字 各种常量 操作符 标识符 分隔符
35
1.4 C++程序的结构
#include <iostream.h> int main() { cout<<”this is the start of something wonderful!”; cout<<endl; cout<<”And now we can say even more!”; return 0; }
Sub1
Sub2
….
Subn
各子流程实现----函数化 Func1 Func2 …. Funcn
根据系统的流程组建软件,通过函数的调用实现
17
面向对象思想
问题域 (Domain) 以问题域中的事物为中心思考问题 Object1 Object2
….
Objectn
对象归类----抽象化 Class1 Class2 …. Classn
返回类型
{ 函数体; }
50
函数名(形式参数1, 形式参数2,。。。,形式参数
3.2 参数的传递
值调用
#include <iostream.h> double Volume(double radius,double height); int main() { double v; v=Volume(3.0,3.0); cout<<"Volume="<<v<<endl; return 0; } double Volume(double radius,double height) { double result=3.14 * radius * radius * height; return result; }
矩阵与数值分析部分习题解答

其具有6位有效数字。 故
*
而
y y* zz , 于是, y
*
1 4 1 1 k n 26 10 y y 10 10 2 2 2
y y* y z
* *
z z* z
*
0.5 104 0.5 106 59.9833 4.09407
可见,用公式 f ( x) ln x
k
k 2 k A A ( I A ) 5.证明ρ(A)<1时,
1 注意,绝对收敛的函数幂级数 f t t 1 t , t 1,则 证明(1): k 0 1 t k 1 k s t f t t f t kt kt 令 2 1 t 1 t 2 k 1 k 0
3 。 节点为: x1 h , x2 2h , x3 3h 4 8 8
相应的方程组为:
2 1 h 2 0 1 h 2 0 u1 h u2 1 2 2 u 3
2 先令 y x x 1 ,由于开方用六位函数表,则 y 的误差为已
知, 故应看成 z g ( y) ln( y) , 由 y的误差限
* ln( y ) ln( y )。 误差限
y y * 求g(y)的
解:当x=30时,求 y 30 302 1 , 用六位开方表得
xi a ih,
h 称为步长。
i 0,1,
,N, h
ba N
于是我们得区间 I=[a, b]的一个网格剖分。 xi称为网格节点,
h
a x0 x1
大连理工大学 矩阵与数值分析 第4章-4.2非线性方程的迭代解法

敛呢?不管非线性方程 f (x) = 0 的形式如何,总可以构造
ϕ(x) = x − k(x)
x
(k(x) ≠ 0)
(4-25)
作为方程(4-17)求解的迭代函数。 因为
ϕ′(x) = 1− k′(x) f (x) − k(x) f ′(x)
可知 | ϕ ′(x) | 在根 α 附近越小时 ,其局部收敛速度越快,
则迭代法 xk+1 = ϕ (xk ) 是 p 阶收敛。
练习1 取迭代函数
ϕ (x) = x + a(x2 −5)
要使迭代法收敛到 x* = 5, 则a应取何值?
且其收敛阶是多少?
解: ϕ′( x) = 1+ 2a x , 令
( ) ϕ′ 5 = 1+ 2a 5 < 1, 即有
−1 < 1+ 2a
x = x − f (x) = ϕ(x)
f ′(x)
(4-24)
建立的迭代格式至少是平方收敛。
证 根据定理4.6, 只需证明 ϕ′(α ) = 0 。 因为
ϕ′(α
)
=
⎡ ⎢
x
−
⎣
f f
(x) ′( x)
⎤ ⎥ ⎦
' x=α
=
⎡ ⎢1 ⎣
−
(
f
′(
x))2 − ( f ′(
f (x) x))2
f
′′( x)
x1 = 2× 0 −1 = −1 , x2 = 2(−1)3 −1 = −3 , x3 = 2(−3)3 −1 = −55 , L
显然, 当 k → ∞时, xk → −∞ ,故迭代法发散。 上述例子表明,迭代法的收敛与发散,依赖于迭代
大连理工大学矩阵与数值分析上机作业

end
case2%2-范数
fori=1:n
s=s+x(i)^2;
end
s=sqrt(s);
caseinf%无穷-范数
s=max(abs(x));
end
计算向量x,y的范数
Test1.m
clearall;
clc;
n1=10;n2=100;n3=1000;
x1=1./[1:n1]';x2=1./[1:n2]';x3=1./[1:n3]';
xlabel('x');ylabel('p(x)');
运行结果:
x=2的邻域:
x =
1.6000 1.8000 2.0000 2.2000 2.4000
相应多项式p值:
p =
1.0e-003 *
-0.2621 -0.0005 0 0.0005 0.2621
p(x)在 [1.95,20.5]上的图像
程序:
[L,U]=LUDe.(A);%LU分解
xLU=U\(L\b)
disp('利用PLU分解方程组的解:');
[P,L,U] =PLUDe.(A);%PLU分解
xPLU=U\(L\(P\b))
%求解A的逆矩阵
disp('A的准确逆矩阵:');
InvA=inv(A)
InvAL=zeros(n);%利用LU分解求A的逆矩阵
0 0 0.5000 -0.2500 -0.1250 -0.0625 -0.0625
0 0 0 0.5000 -0.2500 -0.1250 -0.1250
0 0 0 0 0.5000 -0.2500 -0.2500
董波老师,大连理工大学,矩阵数值分析课件,第二章

P85 3、6、8、9、12、15、17、 19、20(2)
第2章 矩阵变换和计算
2.1 矩阵的三角分解及其应用 2.2 特殊矩阵的特征系统 2.3 矩阵的Jordan分解 2.4 矩阵的奇异值分解
2.1 矩阵的三角分解及其应用
2.1.1 Gauss消去法与矩阵的LU分解 2.1.2 Gauss列主元消去法与带列主元的LU分解 2.1.3 对称矩阵的Cholesky分解 2.1.4 三对角矩阵的三角分解
(0) 2 (0) 3 (0) 4
第一步,消去 r
( 0) 2
、r
(0) 3
和r
( 0) 4
中的 x1 , 即用
4 (0) 8 (0) ( 0) 6 (0) ( 0) r r 1 r1 r3 和 r1 r4( 0) 得 2 、 2 2 2
四位数学家之一”(阿基米德、牛顿、高斯和欧拉)。
高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学 领域。人们评价到:若把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人 肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是 高斯。
从方程组角度考虑Gauss消去法
2 0 0 0
1 1 0 1 1 1 3 5 5 4 6 8
1 0 1 1 2 2 2 4
L2 L1 A
2 1 0 1 0 0 0 0
L3 L2 L1 A
1 1 1 1 1
1) ai(2 第i行 第2行 (1) , i 3,, n a22 a11 a12 a13 a1n b1 (1) (1) 0 a a 22 23 (1) (1) a2 n b2 0 ( 2) 0 a 33 (1) (1) ann bn ( 2) 0 0 a n3
大连理工大学数值分析历年真题与答案(研究生期末卷)

位
. ,
A 2=
4 2 (3)设 A 2 4 , 则 A 1= 谱半径 ( A) =
,
A =
,
A F=
, .
, 2-条件数 cond 2 ( A) =
, 奇异值为
线
(4)设 A C 44 ,特征值 1 2 2, 3 4 3 ,特征值 2 是半单的,而特征值 3 是 亏损的,则 A 的 Jordan 标准型 J
x 3 ( x [1,1]) 的二次最佳平方逼近多项式, 构造 Gauss 型求积公式 f ( x )dx A0 f ( x0 ) A1 f ( x1 ) , 并验证
1
1
其代数精度.
A-3
大
连
理 工
计算方法 数学系
大
学 2006 年试题
试卷: A 考试形式: 闭卷 试卷共 8 页
A-5
1 3 四、 (4 分)求 Householder 变换矩阵将向量 x 2 化为向量 y 0 . 2 0
五、 (12 分)写出解线性方程组的 Jacobi 法,G-S 法和超松弛(SOR)法的矩阵表示形式, 并根据迭代法 x ( k 1) Bx ( k ) f 对任意 x ( 0) 和 f 均收敛的充要条件为 ( B) 1 , 证明若线性方 程组 Ax b 中的 A 为严格对角占优矩阵, 则超松弛(SOR)法当松弛因子 (0,1] 时收敛.
师:张宏伟
一、填空(每一空 2 分,共 42 分) 1.为了减少运算次数,应将表达式.
装
16 x 5 17 x 4 18 x 3 14 x 2 13 x 1 x 4 16 x 2 8 x 1