样本均值算法
大数据常用的算法

大数据常用的算法一、引言随着大数据时代的到来,大数据分析已经成为各个行业的重要组成部份。
而在大数据分析过程中,算法的选择和应用起着至关重要的作用。
本文将介绍大数据常用的算法,包括聚类算法、分类算法、关联规则挖掘算法和推荐算法。
二、聚类算法1. K均值算法K均值算法是一种常用的聚类算法,它将数据集划分为K个簇,每一个簇都具有相似的特征。
算法的步骤如下:a. 随机选择K个初始聚类中心;b. 根据欧氏距离计算每一个样本与聚类中心的距离,并将样本分配到距离最近的簇;c. 更新聚类中心,将每一个簇的中心点更新为该簇内所有样本的均值;d. 重复步骤b和c,直到聚类中心再也不改变或者达到最大迭代次数。
2. DBSCAN算法DBSCAN算法是一种基于密度的聚类算法,它将数据集划分为若干个密度相连的簇。
算法的步骤如下:a. 随机选择一个未被访问的样本点;b. 以该样本点为中心,找出其邻域内的所有样本点;c. 如果该样本点的邻域内包含至少MinPts个样本点,则将其作为核心对象,并创建一个新的簇;d. 以核心对象的邻域内的样本点为中心,继续寻觅新的样本点,并将其加入到簇中;e. 重复步骤c和d,直到所有的样本点都被访问。
三、分类算法1. 决策树算法决策树算法是一种常用的分类算法,它通过构建树形结构来对数据进行分类。
算法的步骤如下:a. 选择一个最佳的属性作为根节点;b. 根据该属性的取值将数据集划分为若干个子集;c. 对每一个子集递归地重复步骤a和b,直到子集中的样本属于同一类别或者达到住手条件;d. 构建决策树。
2. 支持向量机算法支持向量机算法是一种常用的二分类算法,它通过在高维空间中找到一个最优超平面来进行分类。
算法的步骤如下:a. 将样本点映射到高维空间;b. 在高维空间中找到一个最优超平面,使得正负样本点之间的间隔最大化;c. 根据超平面将样本进行分类。
四、关联规则挖掘算法1. Apriori算法Apriori算法是一种常用的关联规则挖掘算法,它通过挖掘频繁项集来发现数据集中的关联规则。
k均值算法的基本流程

k均值算法的基本流程
K均值( K-means)是一种常见的聚类算法,用于将数据集中的样本分成K个类别。
其基本流程如下:
1.选择K个初始聚类中心:(首先需要选择K个初始的聚类中心,这些中心可以是随机选择的数据点或者是手动指定的。
2.分配样本到最近的聚类中心:(对于每一个样本,计算其与K个聚类中心的距离,并将其分配到距离最近的聚类中心所代表的类别中。
3.更新聚类中心:(对于每一个类别,重新计算其所有样本的平均值 即新的聚类中心)。
4.重复步骤2和步骤3:(重复执行将样本分配到最近的聚类中心和更新聚类中心的步骤,直到满足停止条件( 例如,聚类中心不再发生变化,或达到预定的迭代次数)。
5.输出结果:(最终得到K个聚类中心和相应的类别,可以根据这些聚类中心将新的样本进行分类。
K均值算法主要的优点在于简单易懂、计算效率高,适用于大型数据集。
然而,K均值算法对初始聚类中心的选择敏感,可能会受到初始聚类中心的影响而陷入局部最优解。
因此,有时需要多次运行算法并比较结果来提高其准确性。
1/ 1。
k均值聚类算法的基本原理

k均值聚类算法的基本原理k均值聚类算法是一种常用的无监督学习算法,它可以将样本数据划分为多个簇,并且每个簇内的样本具有相似的特征。
该算法的基本原理是通过迭代计算来不断优化簇的中心点,使得每个样本点到所属簇的中心点的距离最小化。
我们需要确定要将样本数据划分成多少个簇,这个值记为k。
然后,从样本数据中随机选择k个样本作为初始的簇中心点。
接下来,对于每个样本点,计算其与各个簇中心点的距离,并将其归类到距离最近的簇中。
在归类完所有样本点之后,我们需要重新计算每个簇的中心点。
具体地,对于每个簇,我们计算该簇内所有样本点的均值,将其作为新的中心点。
然后,重复上述的步骤,直到簇的中心点不再改变或者达到了预定的迭代次数。
k均值聚类算法的优化目标是最小化样本点到所属簇的中心点的距离之和,也就是最小化簇内样本点的离散程度。
通过迭代计算,我们不断优化簇的中心点,使得簇内样本点的距离最小化。
然而,k均值聚类算法也存在一些局限性。
首先,我们需要事先确定簇的个数k,这对于实际问题可能不太容易得知。
其次,算法对于初始簇中心点的选择比较敏感,不同的初始选择可能导致不同的结果。
此外,k均值算法对于异常值比较敏感,可能会导致簇的中心点偏离实际情况。
为了克服这些局限性,研究者们提出了一些改进的方法。
例如,可以使用层次聚类算法来确定簇的个数k,从而避免了事先确定k的困扰。
此外,还可以使用其他的聚类算法来初始化簇中心点,例如DBSCAN算法。
另外,可以使用加权k均值聚类算法来减少异常值的影响。
k均值聚类算法是一种常用的无监督学习算法,通过迭代计算优化簇的中心点,将样本数据划分成多个簇。
虽然算法存在一些局限性,但通过改进方法可以克服这些问题,使得聚类结果更加准确。
在实际应用中,k均值聚类算法被广泛应用于数据挖掘、模式识别等领域,为我们提供了有效的数据分析工具。
Allan方差的算法

1.阿伦方差的定义,计算方法以及物理意义。
David AIlan于1966年提出了Allan方差,最初该方法是用于分析振荡器的相位和频率不稳定性,高稳定度振荡器的频率稳定度的时域表征目前均采用Allan方差。
由于陀螺等惯性传感器本身也具有振荡器的特征,因此该方法随后被广泛应用于各种惯性传感器的随机误差辨识中。
Allan方差的基本原理如下:设系统采样周期为τ,连续采样N 个数据点.Y(i),i=1,2,3…N。
对任意的时间r=mτ,m=1,2…N/2,由式(1)求该组时间内各点的均值序列Y(K),由式(2)求取差值序列D(K).Y(K)=1/M1()K MJ KY i+-=∑K=1,2…N-M+1 (1)D(K)=Y(K+M)-Y(K) K=1,2…N-2M+1 (2)普通AlIan方差的定义如式(3)。
其中<>表示取均值,σ=1,2,⋯,Round((N/m)-1)。
2ynσ(τ)=1/2<D((P-1)M+1)2 >(3)Allan方差反映了相邻两个采样段内平均频率差的起伏。
它的最大优点在于对各类噪声的幂律谱项都是收敛的;此外每组测量N一2,大大缩短了测量的时间。
交叠式Allan方差由式(4)计算:2ynσ(τ)=1/2<D(P)2> P=1,2…N-2M+1 (4)衡量陀螺精度的一个非常重要的指标是陀螺随机漂移(drift),又指偏置稳定性(bias stabil—ity)以及零偏稳定性,不同应用场合对陀螺的漂移精度提出不同的要求。
MEMS的随机误差具有慢时变、非平稳的特点,因而对其的辨识更适合采用Allan方差分析法。
然而由于在相同的置信水平之下,交叠式Allan方差分析方法比普通的Allan 方差具有更大的置信区间.所谓频率稳定度是指任何一台频率源在连续运行之后,在一段时期中能产生同一频率的程度,即频率随机起伏的程度。
造成频率起伏的根本原因是噪声对信号相位或频率调制的结果。
统计分析方法论:K-Means算法

K-Means课前准备下载Anaconda软件。
课堂主题本次课讲解K-Means聚类算法与算法的改进与优化。
课堂目标学习本次课,我们能够达到如下目标:熟知K-Means算法的原理与步骤。
熟知K-Means++算法的原理与初始化方式。
熟知Mini Batch K-Means算法的原理与步骤。
能够选择最佳的值。
知识要点聚类之前我们接触的算法,都是监督学习,即训练数据是包含我们要预测的结果(训练数据中是含有样本的标签)。
我们对含有标签的训练集建立模型,从而能够对未知标签的样本进行预测。
与监督学习对应的,聚类属于无监督学习,即训练数据中是不含有标签的。
聚类的目的是根据样本数据内部的特征,将数据划分为若干个类别,每个类别就是一个簇。
结果为,使得同一个簇内的数据,相似度较大,而不同簇内的数据,相似度较小。
聚类也称为“无监督的分类”。
其样本的相似性是根据距离来度量的。
K-Means算法算法步骤K-Mean算法,即均值算法,是最常见的一种聚类算法。
顾名思义,该算法会将数据集分为个簇,每个簇使用簇内所有样本的均值来表示,我们将该均值称为“质心”。
具体步骤如下:1. 从样本中选择个点作为初始质心。
2. 计算每个样本到各个质心的距离,将样本划分到距离最近的质心所对应的簇中。
3. 计算每个簇内所有样本的均值,并使用该均值更新簇的质心。
4. 重复步骤2与3,直到达到以下条件之一结束:质心的位置变化小于指定的阈值。
达到最大迭代次数。
过程演示下图给出了使用K-Means算法聚类的过程。
优化目标KMeans算法的目标就是选择合适的质心,使得在每个簇内,样本距离质心的距离尽可能的小。
这样就可以保证簇内样本具有较高的相似性。
我们可以使用最小化簇内误差平方和(within-cluster sum-of-squares )来作为优化算法的量化目标(目标函数),簇内误差平方和也称为簇惯性(inertia)。
:簇的数量。
:第个簇含有的样本数量。
统计学公式

3
xi x 4 n(n 1) 3(n 1) 2 ( ) . s (n 1)(n 2)(n 3) (n 2)(n 3)
2
统计学公式
二、概率分布
一、度量事件发生的可能性:
1.事件 A 发生的概率: P ( A) 二、随机变量的概率分布:
统计学公式
一、用统计量描述数据
一、水平的度量:
x x2 x3 1.简单平均数: x 1 n
xn
X
i 1
n
i
n
.
k
M f M 2 f2 M k fk 2.加权平均数: x 1 1 f1 f 2 f k
M
i 1
i i
f
n
.(如果原始数据被分成 k 组,各
2
E2
.
四、假设检验
一、一个总体参数的检验
1.大样本的检验
(1)在大样本的情况下,样本均值的抽样分布近似服从正态分布,其抽样标准差为 /
2
n.
采用正态分布的检验统计量.设假设的总体均值为 0 ,当总体方差 已知时,总体均值检验 的统计量为: z
x 0
/ n
.
(2)当总体方差 未知时,可以采用样本方差 s 来代替,此时总体均值检验的统计量为:
组的组中值分别用 M1,M 2, ,M k 表示,各组的频数分别用 f1,f 2, ,f k 表示,则得到 样本平均数计算公式)
x n 1 2 3.中位数( M e ) : Me 1 x n x n 1 2 2 2
n
p ;
(1 )
K均值算法在医疗影像分析中的使用教程(七)

K均值算法在医疗影像分析中的使用教程医疗影像分析是医学影像学的一个重要领域,通过对医学影像进行分析和处理,可以帮助医生更好地诊断疾病、制定治疗方案。
K均值算法是一种常用的聚类算法,可以用于医疗影像分析中的图像分割和特征提取。
本文将介绍K均值算法在医疗影像分析中的使用方法和注意事项。
一、K均值算法简介K均值算法是一种基于距离的聚类算法,它将n个样本划分为k个不同的簇,使得簇内的样本之间的距离尽可能小,而簇间的距离尽可能大。
算法的基本思想是随机选择k个样本作为初始的聚类中心,然后将其他样本分配到最近的聚类中心,再根据分配的样本重新计算聚类中心,不断迭代直到收敛。
K均值算法的优点是简单易实现,计算复杂度低,适用于大规模数据集。
二、K均值算法在医疗影像分析中的应用在医疗影像分析中,K均值算法主要应用在图像分割和特征提取两个方面。
1. 图像分割医学影像通常包括X光片、CT扫描、MRI等多种类型,图像中包含的信息复杂多样,因此需要对图像进行分割,将感兴趣的目标从背景中分离出来。
K均值算法可以根据像素之间的相似性将图像分成若干个簇,从而实现图像的分割。
在图像分割的过程中,选择合适的距离度量方法和聚类个数是至关重要的,这需要根据具体的医学影像和分析目的来确定。
2. 特征提取医学影像中蕴含着丰富的信息,如肿瘤的形状、纹理、密度等特征,这些特征对于疾病的诊断和治疗具有重要意义。
K均值算法可以帮助提取这些特征,将影像中的像素点聚类成若干个簇,然后计算每个簇的中心点作为该簇的特征表示。
通过特征提取,医生可以更好地理解影像中包含的信息,从而更准确地做出诊断和治疗方案。
三、K均值算法在医疗影像分析中的使用教程1. 数据准备在使用K均值算法进行医疗影像分析之前,首先需要准备好医学影像数据。
这些数据可能包括X光片、CT扫描、MRI等各种类型的影像,需要确保数据的质量和完整性。
此外,还需要对影像数据进行预处理,如去噪、增强等操作,以便更好地适应K均值算法的需求。
噪声估计算法范文

噪声估计算法范文噪声估计是指对信号的噪声进行估计和分析的过程。
在信号处理和通信系统中,噪声是不可避免的,能够准确估计噪声的能力对于系统的性能有重要影响。
噪声估计算法是一种用于从观测信号中估计出噪声特性的数学方法。
下面将介绍几种常用的噪声估计算法。
1.均值法均值法是一种简单常用的噪声估计算法。
该方法假设观测信号的样本均值等于信号加噪声的均值,通过计算观测信号的样本均值来估计噪声均值。
然而,均值法需要样本数较多且信号和噪声具有相同的均值分布才能获得较准确的噪声估计结果。
2.自相关法自相关法是一种基于信号的自相关函数进行噪声估计的方法。
该方法假设信号的自相关函数是原始信号自相关函数与噪声自相关函数的叠加。
通过计算观测信号的自相关函数并提取出噪声自相关函数的部分,可以估计噪声的统计特性。
自相关法不需要对信号和噪声的统计特性进行假设,因此适用范围更广。
3.计算机模拟法计算机模拟法是一种通过计算机模拟信号和噪声的统计特性来得到噪声估计的方法。
该方法通常需要知道信号和噪声的概率密度函数和相关系数,通过生成符合统计特性的信号和噪声样本,并对它们进行相关性分析来估计噪声。
计算机模拟法的优势在于可以适用于各种类型的信号和噪声,但需要事先了解信号和噪声的统计特性。
4.周期图法周期图法是一种基于频谱分析的噪声估计方法。
该方法通过将观测信号变换到频域,并利用信号的频谱特性估计出噪声的统计特性。
周期图法通过计算频谱密度估计或者谐波分析来提取出噪声的频谱特性,从而得到噪声估计结果。
该方法对信号和噪声的频域特性要求较高,适用于对宽带信号进行噪声估计。
5.最小二乘法最小二乘法是一种通过最小化观测信号和估计信号之间的误差平方和来估计噪声的方法。
该方法假设观测信号是由信号和噪声叠加而成,通过选择合适的权重来减小估计误差,进而得到噪声估计结果。
最小二乘法在估计精度和计算复杂度之间达到了较好的平衡,适用于不同类型的噪声估计问题。
综上所述,噪声估计是一项重要的信号处理和通信系统中的任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 The Sample Average Approximation Method
2. Optimizing the expected recourse costs. Even if the expected recourse cost function could be evaluated or approximated easily, the stochastic programming problem (1) involves optimizing this function over the firststage decisions. It is well known that value functions of integer programs are highly non-convex and discontinuous. Consequently this optimization problem poses severe computational difficulties.
765 Ferst Drive, Atlanta, GA 30332
February 5, 2002
Abstract This paper develops a solution strategy for two-stage stochastic programs with integer recourse. The proposed methodology relies on approximating the underlying stochastic program via sampling, and solving the approximate problem via a specialized optimization algorithm. We show that the proposed scheme will produce an optimal solution to the true problem with probability approaching one exponentially fast as the sample size is increased. For fixed sample size, we describe statistical and deterministic bounding techniques to validate the quality of a candidate optimal solution. Preliminary computational experience with the method is reported.
∗Supported in part by the National Science Foundation under Grant No. DMII-0099726. †Supported in part by the National Science Foundation under Grant No. s paper, we propose a solution strategy for a class of two-stage stochastic programs with integer recourse that addresses the above difficulties. In the proposed approach, the expected recourse cost function in (1) is replaced by a sample average approximation, and the corresponding optimization problem is solved using a specialized algorithm for non-convex optimization. It has been shown in [27], that a solution to this sample average approximation (SAA) problem converges to a solution of the true problem as the sample size tends
2
to infinity. Here, we analyze the rate of convergence of the SAA solutions for stochastic programs with integer recourse. We also describe statistical and deterministic bounding techniques to estimate the near optimality of a candidate solution. Finally, some preliminary computational results are presented.
Keywords: Stochastic programming, integer recourse, sample average approximation, branch and bound.
1 Introduction
In the two-stage stochastic programming approach for optimization under uncertainty, the decision variables are partitioned into two sets. The first stage variables are those that have to be decided before the actual realization of the uncertain parameters becomes available. Subsequently, once the random events have presented themselves, further design or operational policy improvements can be made by selecting, at a certain cost, the values of the second stage or recourse variables. The objective is to choose the first stage variables in a way that the sum of first stage costs and the expected value of the random second stage or recourse costs is minimized.
This paper is concerned with two-stage stochastic programs where the recourse is fixed, i.e., the matrix W is constant (not random), and the recourse variables are restricted to be integers, i.e., Y ⊆ Zn2 in (2). Such problems find applications in production planning [10, 17, 6], scheduling [9, 33, 4], routing [31, 14, 15], location [16], capacity expansion [3], electricity production [32, 8], environmental control [21], and finance [11].
The two key sources of difficulty in solving stochastic programs with integer recourse are:
1. Exact evaluation of the expected recourse costs. For a given first-stage decision and a realization of the random data, the recourse costs are computed via solving an integer program. Thus, for continuous distribution of the uncertain parameters, the exact evaluation of the expected recourse costs would require the multi-dimensional integration of integer programming value functions, which is practically impossible. Even for discrete distributions, an exact computation of the expectation would require solving the integer recourse problem for all possible realizations of the uncertain parameters and may be computationally prohibitive.
The Sample Average Approximation Method for Stochastic Programs with Integer Recourse
Shabbir Ahmed∗ and Alexander Shapiro†
School of Industrial & Systems Engineering Georgia Institute of Technology
1