数学物理方程复习精品
数学物理方程的重点

一.无界问题的特征线法求解求解1.一维无界弦振动方程的达朗贝尔公式(特征线法在弦振动方程的应用)求解法 1.1齐次方程两端无界弦振动方程的求解 齐次弦振动方程及初始条件:⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt ψϕ其方程为+∞<<-∞>=-x t u a u xx tt ,0,02,其特征方程为022=-⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξu u u x +=,ηξu a u a u t ⨯-⨯=,ηηξηξξu u u u xx ++=2,ηηξηξξu a u a u a u tt 2222+-=)()()()(),(0042at x G at x F G F t x u u u u a u xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x u x x G x F x u t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰ )(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x u -++=⎰+-+-++=atx atx db b a at x at x t x u )(21)]()([21),(ψϕϕ(1)此公式为达朗贝尔公式 1.2单侧无界弦振动齐次方程的求解⎪⎩⎪⎨⎧>=>==>>=-0,0),0(),()0,(),()0,(0,0,02t t u t t x x u x x u x t u a u t xx tt ψϕ先求出对应双侧无界弦振动方程⎩⎨⎧ψ=Φ=+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt 其中要求)(),(x x ψΦ为奇函数又已知其右侧函数表达式可以求出求出左侧表达式⎩⎨⎧<--≥=Φ0),(0),()(x x x x x ϕϕ,⎩⎨⎧<--≥=ψ0),(0),()(x x x x x ψψ 将其带入达朗贝尔公式可求出对应双侧无界弦振动方程的解⎰+-ψ+-Φ++Φ=atx atx db b a at x at x t x u )(21)]()([21),( 只要令0)(21)]()([210),(,0=Φ+Φ-Φ⇒==⎰-db b a at at t x u x atat又令0>x ,⎪⎪⎩⎪⎪⎨⎧<+---+>+-++=⎰⎰+--+-atx at x atx at x at x db b a at x at a a at x db b a at x at x t x u )(,)(21))](()([21,)(21)]()([21),(ϕϕϕϕϕϕ 此),(t x u 即为单侧无界弦振动齐次方程的解 1.3零初始条件的非齐次弦振动方程的求解⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x u x u t t x f u a u t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x u x u t u a u t xx tt 则⎰=td t x w t x u 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x u 0)()(0),(21),(),(τττττ 1.4有初始条件的非齐次无界弦波动方程的求解⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0),,(2x x u x x u x t t x f u a u t xx tt ψϕ 此方程要使用叠加原理进行求解设),(),(),(t x z t x v t x u +=其中分别满足以下方程⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x v x x v x t v a v t xx tt ψϕ(1)和⎩⎨⎧==+∞<<-∞>=-0)0,(,0)0,(,0),,(2x y x y x t t x f y a y t xx tt (2) 对于方程(1),使用达朗贝尔公式可以求得:其特征方程为022=+⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξv v v x +=,ηξv a v a v t ⨯-⨯=,ηηξηξξv v v v xx ++=2,ηηξηξξv a v a v a v tt 2222+-=)()()()(),(0042at x G at x F G F t x v v v v a v xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x v x x G x F x v t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰)(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x v -++=⎰+-+-++=atx atx db b a at x at x t x v )(21)]()([21),(ψϕϕ对于方程2,使用齐次化原理可以求得⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x y x y t t x f y a y t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x y x y t y a y t xx tt 则⎰=td t x w t x y 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x y 0)()(0),(21),(),(τττττ最后,根据叠加原理求得⎰⎰⎰++--+-++-++=+=t t a x t a x at x at x d db b f a db b a at x at x t x y t x v t x u 0)()(),(21)(21)]()([21),(),(),(ττψϕϕττ1.5.无界弦振动方程的决定区域与影响区域 决定区域:对于特定u(x,t)依赖的(x,t)的取值范围对于(x,t )的取值能影响u(x,t)的取值范围为影响区域2.只含二阶导的2阶偏微分方程的特征线法求解 2.1只含二阶导的二阶偏微分方程的初步化简⎩⎨⎧===++)(),0(),(),0(0y y u y y u Cu Bu Au x yy xy xx ψϕ其特征方程为00,0222=+-⎪⎭⎫ ⎝⎛⇒-=⇒=+==++C dx dy B dx dy A dx dy dy dx d C B A y x y x y y x x ϕϕϕϕϕϕϕϕϕ根据特征方程解的三种不同情况将其进行进一步的化简 2.2特征方程存在两个不同实根时的化简 先用公式法求出特征方程两个不同的实根A ACB B dx dy 242-±=,g A AC B B dx dy =-+=⎪⎭⎫ ⎝⎛2421,e A AC B B dx dy =--=⎪⎭⎫⎝⎛24221c gx y +=2c ex y +=可以用换元法对此偏微分方程进行化简x A AC B B y 242-+-=ξxAACB B y 242---=η将其带入=++yy xy xx Cu Bu Au=ξηu例1.化简下列方程并求解⎩⎨⎧===-+σφ)0,(,)0,(032t u t u u u u x xx tx tt3/2)/(032032222=-+⇒=-+⇒=-+x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ03/2)/(03)/(2)/(22=--⇒=--+dt dx dt dx dt dx dt dx,0,0,3,10,0,0,1,13)2(,)2(22121242===-=======-=+-=+=--=+±=⇒±=+±=tt xt xx t x tt tx xx t x tx t t x t x t t x c t t x dt dx ηηηηηξξξξξηξηηξηξξηξηηηξξηξξηηξηξξηξηηηξξηξξηηξηξξηξηηξηξηξξηξηξηξηξηξηξηξηξηξηξηξu u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u xt xt x x tx xx xx x x xx tt tt tt tt x x x t t t 32)3()3(2)()(96)3(3)3(1,3--=++-+-=++=+++++=+-=++---=+=+=-=+=)()(),(00)369()646()321(32ηξξηηηξηξξg f t x u u u u u u u u xx tx tt +==⇒=--+---+-+=-+2.3当特征方程存在2个相等实根A B dx dy 2)(2,1=12c x AB y =-),0(,2≠=-=B y x A By ηξ 0,0·,0,00====⇒=xx yy u C u A B 或如例1化简下列方程44=++xx tx tt u u u4/4)/(044044222=++⇒=++⇒=++x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ2/,04/4)/(04)/(4)/(22==+-⇒=+-+dt dx dt dx dt dx dt dx dt dx,0,10,2,1,,2========-===-=xt xx tt t x tt xt xx t x x t x ηηηηηξξξξξηξηηξηξξηξηηξηξξηηξηξξηξηηξηξξξξηξηηξηξξηξηηηξηξξξηξηηξξηξηηξξu u u u u u u u u u u u u u u u u u u u u u u u u tx tx x t t x x t x t tx xx xx x x x x xx tt tt t t t t tt 222)(22422222---=+++++=++=++++==++++=0)480()880()4244(=⇒=+-++-+⨯-+ηηηηξηξξu u u u)2()2()()()(t x g t x xf g f u f u -+-=+=⇒=ξξηξη2.4当特征方程存在一对共轭复根时二.积分变换法求解无界一维波动方程、1维热传导方程和二维Laplace 方程 1.傅立叶变换的定义与性质 1.1傅立叶变换的定义)()())((w F dx e x f x f F iwx ==⎰+∞∞-1.2傅立叶变换的位移性质)()()()]([)(c x d ee c xf dx e c x f c x f F iwcRRc x iw iwx --=-=-----⎰⎰)()]([)()()]([)(w F e x f F e c x d e c x f e c x f F iwc Riwc c x iw iwc -----==--=-⎰1.3.傅立叶变换的相似性质dcx e cx f c dcx c ecx f dx ecx f cx f F Rcx c wi Rcx cw i Riwx⎰⎰⎰---===)(11)()()]([)(1)(1)]([1c wF c du e u f c cx f F u c wR ==-⎰1.3傅立叶变换的微分性质⎰⎰⎰-+∞∞-----===RiwxRiwx iwx Riwx dex f e x f x df e dx e x f x f F )(|)()()('))('( )())(()())((0))('(w iwF x f iwF dx e x f iw dx e iw x f x f F Riwx iwx R===--=⎰⎰--⎰⎰⎰-+∞∞-----===Riwx iwx Riwx Riwx dex f e x f x df e dx e x f x f F )('|)(')(')(''))(''( )()())(()())('())(''(22w F iw x f F iw x f iwF x f F ===dx e x f iw e x f x df e dx e x f x f F iwx Rn iwx n n Riwx Riwx n n -------⎰⎰⎰+===)()()()())(()1()1()1()()()()())(()())(())((1)(w F iw x f F iw x f iwF x f F n n n n ===-1.3.傅立叶变换的乘多项式性质⎰⎰⎰---=-==R Riwx iwx iwx Rdx e x f dw di dx e x f dw d i dx e x xf x xf F ))(())((1)())(( ))(())((())(())((w F dwdi x f F dw d i dx e x f dw d ix xf F R iwx ===⎰- ⎰⎰⎰---===R Riwx iwx Riwxdx e x f dw d i dx e x xf dw d i dx ex xxf x f x F ))(())(()())((2222)())(())(())((2222222222w F dw d i dx e x f dw d i dx e x f dw d i x f x F R iwx iwx R===⎰⎰-- dx e x f x dwd idx e x f xx dx e x f x x f x F iwx n RRiwx n Riwx n n ))(()()())((11-----⎰⎰⎰=== ⎰⎰====--Rn nn n n n R iwx n n n iwx n n nnw F dw d i x f F dw d i dx e x f dw d i dx e x f dw d i x f x F ))(()))((())(())(())((1.4傅立叶变换积分性质由傅立叶变换的微分性质)())((x f dt t f dx dx=⎰∞- ⎰∞-=xdt t f iw x f F )())(()(1))((1))((w F iwx f F iw dt t f F x==⎰∞- 1.5傅立叶变换的卷积性质卷积定义式⎰-=*Rdt t x g t f x g f )()()(卷积公式1)()()(w G w F g f F =*先做卷积再变换系数不变 证明:⎰⎰⎰⎰-----=-=*R iwt t x iw Riwx R Rdx e e dt t x g t f dx dte t x g t f x g f F )()()()()())((⎰⎰⎰⎰-----=-=*RRiwu iwt Rt x iw Riwt dt du e u g e t f dt dx e t x g e t f x g f F )()()()())(()()()())(())(())(()()(w G w F t f F u g F dt u g F e t f g f F Riwt ===*⎰-卷积公式2))()((2)()(x g x f F w G w F π=*先傅立叶变换再做卷积系数要乘系数2π 1.6 主要函数的傅立叶变换)(0,00,)(指数信号⎩⎨⎧<>=-x x e x f x β iw e iw dx e dx eex f F iw x iw x iwxx +=+-===∞++-+∞+-+∞--⎰⎰βββββ1|1))((0)(0)(02)(x ex f -=2.傅立叶变换法求解一维波动方程 2.1无界齐次波动方程的求解⎪⎩⎪⎨⎧==>∈=-)3)(()0,()2)(()0,()1(0,,02x x u x x u t R x u a u txx tt ψϕ 分别对(1)、(2)、(3)式进行傅立叶变换)4(0),()()),((0),()()),((22=+⇒=-t w F aw t w u F t w F iaw t w u F tt tt)5))((())0,((x F w u F ϕ=)6))((())0,((x F w u F t ψ=)7()()()),((21iawt iawt e w C e w C t w u F -+=将(5)、(6)代入(7)式⎩⎨⎧-=+=--iawtawt t iawtiawt e awiC e w awiC t w u F e w C e w C t w u F 2121)()),(()()()),(( ⎩⎨⎧=-=+))(()()())(()()(2121x F w awiC w awiC x F w C w C ψϕ ⎪⎩⎪⎨⎧-=+=)))((1))(((21)()))((1))(((21)(21x F iaw x F w C x F iaw x F w C ψϕψϕ iawt iawt e x F iawx F e x F iaw x F t w u F --++=)))((1))(((21)))((1))(((21)),((ψϕψϕ又由傅立叶变换的位移性质))(()())((x f F e dx e c x f c x f F iwc Riwx --=-=-⎰左边的项的位移系数可以求出at c iwat iwc -=⇒=-)8))(((21))((21at x F e x F iawt +=ϕϕ iwaw F w G at x G e w G e w G F e x F iwaiawt iawt iawt 2))(()()()())(())((21ψψ=+===用傅立叶变换的积分性质进一步化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞- ))((21))((1212))(()()(⎰+∞-===+=atx dy y F a w F iw a iwa w F at x G w G ψψψ右边第一项的系数也可以用位移性质求出at c iwat iwc =⇒-=-))((21))((21at x F e x F iwt -=-ϕϕ iwaw F w H at x H e w H e x F iwaiwat iwat 2))(()()()())((21ψψ=-==--继续用傅立叶变换积分性质来化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞-))((21))((1212))(()()(⎰-∞-===-=atx dy y F a w F iw a iwa w F at x H w H ψψψ 四项全部求和 )))((21))(((21)))((21))(((21)),((⎰⎰-∞-+∞---+++=atx at x dy y F a at x F dy y F a at x F t w u F ψϕψϕ ))((21))(()(((21)),((⎰+-+-++=atx atx dy y F a at x F at x F t w u F ψϕϕ 对此式施加傅立叶逆变换 ⎰+-+-++=at a at x dy y a at x at x t x u )(21))()((21),(ψϕϕ 2.2非齐次方程的无界波动方程(不用齐次化原理)2.3半无界波动方程的求解3.傅立叶变换法求解一维热传导方程4.傅立叶变换法求解2维Laplace 方程place 变换的定义与性质place 变换求解一维波动方程place 变换求解一维热传导方程place 变换求解2维Laplace 方程二.有限边界的分离变量法求解(正弦初始条件以及二次初始条件)1.第一类边界条件和第二类边界条件第三类边界条件的特征值问题2.齐次化方程(可以用傅里叶级数展开或用齐次化原理)3.齐次化边界条件4.齐次方程,齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子5.齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子6.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子7.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子8.圆域LAPLACE 问题求解9.矩形域Laplace 方程。
数学物理方程Ch.1-2复习资料

(F,G 为任意单变量可微函数)
(2)解作上述变换, v 是下述柯西问题的解
2 ∂ 2v 2 ∂ v = a ∂t 2 ∂x 2
t = 0 : v = ( h − x )ϕ ( x ),
∂v = ( h − x )ψ ( x ) ∂t
用达朗贝尔公式得
1 1 x+at v( x, t ) = [(h − x + at )ϕ( x − at ) + (h − x − at )ϕ( x + at )] + ∫ (h − ξ ) ψ (ξ )dξ 2 2a x−at
(3)把(*)分为两个问题 (I) :
Vtt = a 2Vxx
V |x = 0 = 0, V |x =l = 0
x V |t =0 = ϕ ( x) − u1 (0) − (u2 (0) − u1 (0)) l x Vt |t =0 = ψ ( x) − u1′ (0) − (u2′ (0) − u1′ (0)) l
∴ Ak =
Bk =
2 l 1 + 2k ϕ (ξ ) sin πξ d ξ ∫ l 0 2l
l 4 1 + 2k ( ) sin ψ ξ πξ d ξ (1 + 2k )π a ∫0 2l
12.叙述:利用齐次化原理求解
utt = a 2 u xx + f ( x , t )
−∞ < x < ∞, t > 0
(II) :
utt = a 2u xx
0 < x < l, t > 0
u |x =0 = 0, ux |x =l = 0
u |t = 0 = ϕ ( x )
ut |t = 0 = ψ ( x )
数学物理方程复习资料

∞ n=1
bn
sin= nπl x (x ∈ C), 其中 bn
2= l f (x) sin nπ xdx (n 1, 2,3, ).
l0
l
∑ ∫ 当 f (x) 为偶函数时, f (x) = a20 + n∞=1 an cos= nπl x (x ∈ C), 其中 an
2= l f (x) cos nπ xdx (n
的常微分方程,并由齐边值条件可得固 有值问题。
二阶线常性微齐分次方微程分方程→
特征方程为 r2 + λ =0
求解固有值问题,即解出固有值以及固 有函数
结合定解条件讨论 λ 的取值范围
确定系数,由选定的固有值来求 T (t) ,
进而得到一系列特解,然后利用叠加原 理叠加特解得到一个无穷级数解,并由 初始条件确定无穷级数的系数。 M2 积分变换法 根据自变量的变化范围以及定解条件 的具体情况,选取适当的积分变换。然 后对方程两端取变换,把一个含两个自 变量的偏微分方程化为含一个参变量 的常微分方程。
(1) 固定端(第一边值条件= ): u = x 0= 0, u =x l 0, t ≥ 0
(2) (3)
自由端(第二边值条件= ): ∂∂ux = x 0= 0, ∂∂ux=x l 0, t ≥ 0
弹性支承端(第三边值条件= ): (∂∂ux + σ u) x 0= =0, (∂∂ux + σ u) x l =0, t ≥ 0 ,其中σ = k / T 。
1.偏微分方程&数学物理方程:含有未知多元函数及其偏导数(也可仅含有偏导数)的方程称为偏微分方程; 描述物理规律的偏微分方程称为数学物理方程。 2.方程的阶:偏微分方程中未知函数的偏导数的最高阶数;
数学物理方程复习

2
2
例1 求 [解] 因为
所以
4
1 i.
2 cos i sin , 4 4
1 i
4
1 i
4
2 k 2 k 2 cos 4 i sin 4 4 4 (k 0,1, 2, 3)
,
6
例2 求1 和i 的值. [解] 1
z 2 3 n 3
1 1 1 1 1 1 1 2 1 z z 1 1 z z z z 1 1 1 2 3 , | z | 1 z z z
13
例3 函数 在圆环域 i)0<|z|<1;ii)1<|z|<2;iii)2<|z|<+;内是处处解析的, 试把f(z)在这些区域内展开成洛朗级数.
3 2 2z
2z
8
2 3 v ( x , y ) 3 xy x • 已知,
求以为虚部的解析函数。
解:
v u 2 2 3 y 3x x y
,
v u 6 xy y x
u (3 y 2 3x 2 )dy y 3 3 x 2 y ( x)
因此z=0是zsin z的三级零点, 也就是f(z)的 三级极点.
28
应用公式得
1 d 3 z sin z z sin z Re s ,0 lim 2 z 6 6 z 0 z (3 1)! dz z 2 1 d z sin z lim 2 . 3 2! z 0 dz z
1 z
1 1 z 1 1 1 2 z z
1 1 1 2 z 2! z 5 2 1 2 . z 2z
数学物理方程复习(1)

数学物理方程复习一.三类方程及定解问题(一)方程1.波动方程(双曲型)U tt = a2U xx +f; 0<x< L,t>0U(0,t)= Φ1(t);U(L,t)= Φ2(t);U(x,0)= Ψ1(x);U t(x,0)=Ψ2(x)。
2.热传导方程(抛物型)U t=a2U xx+f; 0<x<L,t>0U(0,t)=Φ1(t);U(L,t)=Φ2(t);U(x,0)=Ψ1(x).3.稳态方程(椭圆型)U xx +U yy =f; 0<x<a;0<y<b;t>0.U(0,x)= Φ1(x);U(b,x)= Φ2(x);U(y,0)= Ψ1(y);U t(y,a)=Ψ2(y)。
(二)解题的步骤1.建立数学模型,写出方程及定解条件2.解方程3.解的实定性问题(检验)(三)写方程的定解条件1.微元法:物理定理2.定解条件:初始条件及边界条件(四)解方程的方法1.分离变量法(有界区域内)2.行波法(针对波动方程,无界区域内)3.积分变换法(Fourier变换Laplace变换)Fourier变换:针对整个空间奇:正弦变换偶:余弦变换Laplace变换:针对半空间4.Green函数及基本解法5.Bessel函数及Legendre函数法例一:在弦的横震动问题中,若弦受到一与速度成正比的阻尼,试导出弦阻尼振动方程。
解:建立如图所示的直角坐标系,设位移函数为U(x,t),取任意一小段△x进行受力分析,由题设,单位弦所受阻力为b U t(b为常数),在振动过程中有△x所受纵向力为:(T2COSa2-T1COSa1)横向力为:(T2SINa2-T1SINa1-b U t(x+n△x))(0<n<1). T2,T1为△x弦两端所受的张力,又因为弦做横振动而无纵振动,由牛顿定律有T2COSa2-T1COSa1=0,T2SINa2-T1SINa1-b(x+n△x)U t=p U tt(x+n△x)△x 在小的振动下SINa1≈TANa1=U x(x,t), SINa2≈TANa2=U x(x+△x,t), COSa2≈COSa1≈1,T=T1=T2.(ρ是密度)即(T/ρ)[ U x(x+△x,t)- U x(x,t)]/ △x-(b/ρ) U t(x+n△x,t) 即令△x→0时有:U tt+ aU t=a2U xx例二:设扩散物质的源强(即单位时间内单位体积所产生的扩散物质)为F(x,y,z,t),试导出扩散方程。
《方程的复习课》课件

二元一次方程组的应用
总结词
二元一次方程组在日常生活和科学研究中有着广泛的 应用,如路程问题、工资问题、经济问题等。
详细描述Байду номын сангаас
二元一次方程组在许多实际问题中都有应用,例如在路 程问题中,我们可以使用二元一次方程组来表示两个物 体的相对位置和速度;在工资问题中,我们可以使用二 元一次方程组来表示工人和雇主之间的利益关系;在经 济问题中,二元一次方程组可以用来描述供求关系、价 格变动等问题。此外,在物理学、化学、工程学等领域 中,二元一次方程组也经常被用来描述各种现象和规律 。
04
方程的解法技巧
消元法
总结词
通过消除两个变量,简化方程组的方 法。
详细描述
消元法是一种常用的解线性方程组的 方法,通过加减消元或代入消元的方 式,将方程组中的变量消除,从而得 到一个或多个简单的一元一次方程, 进而求解出方程组的解。
代入法
总结词
通过将一个方程的解代入另一个方程,求解 未知数的方法。
详细描述
代入法是解线性方程组的一种基本方法,通 过将一个方程的解代入另一个方程,将一个 未知数消除,从而将问题简化为一个一元一 次方程,进而求解出未知数的值。
公式法
总结词
通过对方程进行变形,将其转化为标准形式 ,然后使用公式求解的方法。
详细描述
公式法是一种通用的解线性方程组的方法, 通过对方程进行变形,将其转化为标准形式 ,然后使用公式求解未知数的值。这种方法 适用于任何线性方程组,但需要对方程进行
适当的变形。
图像法
总结词
通过绘制方程的图形,直观地求解未知数的方法。
详细描述
图像法是一种直观的解线性方程组的方法,通过绘制 方程的图形,可以直观地观察到方程的解。这种方法 适用于一些简单的线性方程组,但需要具备一定的几 何基础。
数学物理方程与特殊函数 华中科技大学 数理方程复习

8
下午3时11分
HUST 数学物理方程与特殊函数
复习
4. 求解下列定解问题 x 0, y 0 u xy 1, u (0, y ) y 1, y 0 u ( x,0) 1, x0 解法一(积分变换法) 记 Ly [u( x, y)] U ( x, p) ,则 d d 1 x pU ( x, p) 1 1 p U ( x, p ) U ( x, p ) 2 C dx p dx p p 1 1 由于 U (0, p) Ly [ y 1] 2 ,于是 U ( x, p) x 1 1 p p p2 p2 p 从而所求解为:
u (0, t ) X (0)T (t ) 0 u (l , t ) X (l )T (t ) 0
1
X X 0, 0 x l X (l ) 0 X (0) 0,
下午3时11分
HUST 数学物理方程与特殊函数
复习
0
X X 0, 0 x l X (l ) 0 X (0) 0, X 0 X ( x) Ax B AB0
X X 0
4
T a 2 T 0
X X 0 0 x l X (0) 0, X (l ) 0下午3时11分
HUST 数学物理方程与特殊函数
复习
X X 0 0 x l X (l ) 0 X (0) 0, 0 X Ax B X B0 X 0 X A sin x B cos x 2 0 X 2 X 0 X (0) A 0 X (l ) B sin l 0 2 n n n 2 x n n , n 1,2,3, X n Bn cos n l l l T a 2T 0
数理方程总结复习及练习要点报告

4
数理方程基本知识
➢ 我们研究的这些定解条件或者约束物理量的特定条 件大体可以分为两大类,一类关乎于环境对物理量 发展过程的约束,这类约束主要体现于物理环境周 围边界的物理状况,即边界条件。另一类关乎于物 理量发展的历史状况,或者说这个物理量之前是什 么样的,这类约束主要体现于时间上我们人为定义 从何时开始针对于物理量的研究,或者说这个物理 量研究初始时的状况,即初始条件。
➢ 数学物理方程研究一些物理量在某些特定条件下 按照物理规律变化的情况。这些物理量所满足的 物理规律具有共性,它反映的是同一类物理现象的 共同规律。物理量受某些特定条件约束,所产生 的物理问题又各具有自身的特殊性,即个性。
3
数理方程基本知识
➢ 具有共性的物理规律可以用偏微分方程的形式描述 ,这些方程在不附加个性条件的情况下称为泛定方 程。
➢ 数学上边界条件和初始条件也统称为定解条件。
5
数理方程基本知识
➢ 由泛定方程、定解条件构成的研究数学物理方程的 问题称为数学物理定解问题,准确地说就是在给定 定解条件下求解数学物理方程。
➢ 偏微分方程的基本概念
-偏微分方程的阶数 最高的求导次数 -偏微分方程的齐次与非齐次 不含有研究函数的非零项 -偏微分方程的线性与非线性
12
数理方程基本知识
➢ Gauss定理
v
v
v
v
对于一般的矢量场 a P(M )i Q(M ) j R(M )k
vv
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学物理方程复习一.三类方程及定解问题(一)方程1.波动方程(双曲型)U tt = a2U xx +f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x);U t(x,0)=Ψ2(x)。
2.热传导方程(抛物型)U t = a2U xx +f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x).3.稳态方程(椭圆型)U xx +U yy =f; 0<x<a;0<y<b;t>0.U(0,x)= Φ1(x);U(b,x)= Φ2(x);U(y,0)= Ψ1(y);U t(y,a)=Ψ2(y)。
(二)解题的步骤1.建立数学模型,写出方程及定解条件2.解方程3.解的实定性问题(检验)(三)写方程的定解条件1.微元法:物理定理2.定解条件:初始条件及边界条件(四)解方程的方法1.分离变量法(有界区域内)2.行波法(针对波动方程,无界区域内)3.积分变换法(Fourier变换Laplace变换)Fourier变换:针对整个空间奇:正弦变换偶:余弦变换Laplace变换:针对半空间4.Green函数及基本解法5.Bessel函数及Legendre函数法例一:在弦的横震动问题中,若弦受到一与速度成正比的阻尼,试导出弦阻尼振动方程。
解:建立如图所示的直角坐标系,设位移函数为U(x,t),取任意一小段△x进行受力分析,由题设,单位弦所受阻力为b U t(b为常数),在振动过程中有△x所受纵向力为:(T2COSa2-T1COSa1)横向力为:(T2SINa2-T1SINa1-b U t(x+n△x))(0<n<1). T2,T1为△x弦两端所受的张力,又因为弦做横振动而无纵振动,由牛顿定律有T2COSa2-T1COSa1=0,T2SINa2-T1SINa1-b(x+n△x)U t=p U tt(x+n△x)△x 在小的振动下SINa1≈TANa1=U x(x,t), SINa2≈TANa2=U x(x+△x,t), COSa2≈COSa1≈1,T=T1=T2.(ρ是密度)即(T/ρ)[ U x(x+△x,t)- U x(x,t)]/ △x-(b/ρ) U t(x+n△x,t) 即令△x→0时有:U tt+ aU t=a2U xx例二:设扩散物质的源强(即单位时间内单位体积所产生的扩散物质)为F(x,y,z,t),试导出扩散方程。
解:设U(x,y,z,t)为粒子的浓度(单位体积内的粒子数),在空间内画出一个立方体,体积△V=△X△Y△Z,考虑在△t内△V内的粒子流动情况。
由扩散定律知:流入X方向的流粒子数为:[q x(x,t)- q x(x+△x,t)] △t△y△z, 流入Y方向的流粒子数为: [q Y(y,t)- q Y(y+△y,t)] △t△x△z, 流入Z方向的流粒子数为: [q z(z,t)- q z(z+△z,t)] △t△x△y. 而源强产生的粒子数为:F(x,y,z,t)△t△x△y△z.由质量守恒定律为:[q x(x,t)- q x(x+△x,t)] △t△y△z+[q Y(y,t)- q Y(y+△y,t)] △t△x△z+[q z(z,t)- q z(z+△z,t)] △t△x△y+ F(x,y,z,t)△t△x△y△z= [U(x,y,z,t+△t)- U(x,y,z,t)]△t△x△y△z.令△t△x△y△z→0时有:(@是求偏导)-@q x/@x-@q y/@y-@q z/@z+ F(x,y,z,t)= U t由自由扩展定律得:@(D@u/@x)/@x+@(D@u/@y)/@y+@(D@u/@z)/@z+F= U t 若扩散粒子是均匀的:U t= a2△U.二.线性偏微分方程(一)二阶线性偏微分方程LU=a11U xx+2a12U xy+a22U yy+b1U x+b2U y+c+f1.主要部分:a11U xx+2a12U xy+a22U yy2.判别式△= a212- a11a22△>0 双曲线方程△=0 抛物型方程△<0 椭圆方程3.特征方程a11(-dy/dx)2-2a12(-dy/dx)+a22=0特征根:dy/dx=(a12±△1/2)/ a11特征曲线:y=[(a12+△1/2)/ a11]x+C1y=[(a12-△1/2)/ a11]x+C2新旧变量关系:ζ=y+λ1x,η= y+λ2x令Q=省略例一:把方程x2U xx+2xyU xy-3y2U yy-2xU x+4yU y+16x4U=0改成标准形式,并判断类型。
例二:x2U xx+2xyU xy+y2U yy=0例三:化简2aU xx+2aU xy+aU yy+2bU x+2cU y+U=0,并判断类型。
a≠0(二)线性偏微分方程的基本性质1.线性迭加原理设L为线性偏微分算子,即LU=f若u1u2u3……u n是LU=f i的解,则u=∑C i U i是LU=∑C i f i的解。
若u1是LU=0的通解,u2是LU=f的特解,则u= u1+u2是LU=f的一般解。
2.齐次化原理(冲量原理)原理1:设W是方程W tt= a2W xx W|t=τ=0 W t|t=τ=f(x,t;τ)的解,则u=∫0t W(x,t;τ)dτ是方程U tt= a2U xx+ f(x,t) U|t=0=0 U t |t=0 =0的解。
原理2:W是方程W t= a2W xx W|t=τ=0 W t|t=τ=f(x,t;τ)的解,则u=∫0t W(x,t;τ)dτ是U t= a2U xx+ f(x,t) U|t=0=0 的解。
3.特征值函数δδ(x-x0)={0 x≠0∞ x=x0∫δ(x-x0)dx=1性质:Φ(x)是连续函数,则∫δ(x-x0)Φ(x)=Φ(x0)三.分离变量法(一)齐次的泛定方程和齐次的边界条件U tt = a2U xx ; 0<x<l,t>0U(0,t)=U(l,t)=0;U(x,0)= Φ(x);U t(x,0)=Ψ(x)。
第二类齐次边界条件:U x(0,t)=U x(l,t)=0;第一类与第二类的齐次边界条件:U(0,t)=U x(l,t)=0或U x(0,t)=U(l,t)=0。
(二)非齐次的泛函方程的齐次边界条件U tt = a2U xx +f(x,t); 0<x<l,t>0U(0,t)=U(l,t)=0;U(x,0)= Φ(x);U t(x,0)=Ψ(x)。
令U(x,t)=W(x,t)+V(x,t)且W满足W tt = a2W xx ; 0<x<l,t>0W(0,t)=W(l,t)=0;W(x,0)= Φ(x);W t (x,0)=Ψ(x).则V满足V tt = a2V xx +f(x,t); 0<x<l,t>0V(0,t)=V(l,t)=0;V(x,0)= 0;V t (x,0)=0.解W用分离变量法,解V用冲量原理。
(三)齐次的泛定方程,非齐次边界条件U tt = a2U xx ; 0<x<l,t>0U(0,t)=U1 (t);U(l,t)= U2 (t);U(x,0)= Φ(x);U t (x,0)=Ψ(x).设U(x,t)=W(x,t)+V(x,t)使得:V(0,t)= V(l,t)=0,则W(0,t)= U1 (t),W(l,t)= U2 (t),设W(x,t)=Ax+B,则W(0,t)=B= U1 (t), W(l,t)=Al+B= U2 (t),则(省略)(四)非齐次的泛定方程,非齐次边界条件U tt = a2U xx +f(x,t); 0<x<l,t>0U(0,t)=U1 (t);U(l,t)= U2 (t);U(x,0)= Φ(x);U t (x,0)=Ψ(x).第一步:把非齐次边界条件化成齐次的边界条件第二步:同(三)例一:U tt = a2U xx ; U(0,t)=0=U(l,t);U(x,0)=3sinx; U t (x,0)=0. 0<x<l,t>0例二:在矩形区域内0<x<a,0<y<b上,求解Laplace方程的边界值。
U xx +U yy =0; 0<x<a;0<y<b;t>0.U(0,x)= Bsin(πx/a); U(b,x)= 0;U(y,0)=Ay(b-y); U t(y,a)=0。
解:设U(x,t)=W(x,t)+V(x,t)使得Vxx+ Vyy=0,V(0,y)= V(a,y)=0, V(x,0)= Bsin(πx/a),V(x,b)=0;同时Wxx+ Wyy=0, W(0,y)= Ay(b-y), W(a,y)=0, W(0,x)= W(b,x)=0. 答案省略~例三:求解方程U tt = a2U xx +bshx; U(0,t)= U(l,t)=0; U(0,x)= U t(0,x)=0。
例四:长为l,两端固定的弦线在单位长度的横向力f(x,t)=g(x)sinwt的作用下做摆动,已知弦的初始位移和速度分别为Φ(x),Ψ(x)求其振动规律。
解:设位移分布函数为U(x,t)且满足:U tt = a2U xx +g(x)sinwt; 0<x<l,t>0U(0,t)= U(l,t)=0;U(0,x)= Φ(x);U t(0,x)= Ψ(x).解方程,设U(x,t)=W(x,t)+V(x,t)且V tt = a2V xx ;V(0,t)= V(l,t)=0;V(0,x)= Φ(x);V t(0,x)= Ψ(x).W满足:W tt = a2W xx +g(x)sinwt; 0<x<l,t>0W(0,t)= W(l,t)=0;W(0,x)= 0;W t(0,x)=0.由冲量原理有:Z tt = a2Z xx; 0<x<l,t>0Z(0,t;τ)= Z(l,t;τ)=0;Z(0,t;τ)= 0; Z(l,t;τ)= g(x)sinwt.W(x,t)=∫t0 Z(x,t;τ)dτ答案省略~例五:求解矩形域上的第二类边界值问题。
U xx +U yy =0; 0<x<a;0<y<b;t>0.Uy(0,x)= Φ1(x);Uy(b,x)= Φ2(x);Ux(y,0)= Ψ1(y);Ux(y,a)=Ψ2(y)。
四.行波法(无界区域内)(一)公式1.一维波动方程U tt = a2U xx;-∞<x<+∞;t>0.U(0,x) =Φ(x);U t(0,x)= Ψ(x).公式:U(t,x)=1/2(Φ(x+at)+Φ(x-at))+1/2a∫x+at x-atΨ(ξ)dξ2.三维波动方程U tt = a2△U;-∞<x<+∞;t>0.U(0,M) =Φ(M);U t(0,M)= Ψ(M).公式:U=1/4πa2[﹫[∫∫Φ(M’)/t]/﹫t d s+∫∫Ψ(M’)/t d s] 3.二维波动方程U tt = a2△U;-∞<x<+∞;t>0.U(0,M) =Φ(M);U t(0,M)= Ψ(M)。