七年级一元一次方程培优专题
【七年级数学代数培优竞赛专题】专题15 含字母的一元一次方程【含答案】

第四章 一元一次方程章前导学本章的重点是一元一次方程及其解法和运用一元一次方程来解决实际问题.我们依据本章的重点安排了五个提高的内容:1.利用一元一次方程和一元一次方程的解的概念求方程中字母的值以及如何求解含有字母系数的方程.2.根据方程的特点,利用整体法、巧去括号、裂项等方法灵活求解方程和如何求解含绝对值的方程.3.运用一元一次方程来解决行程、销售和分档的实际问题.4.运用一元一次方程来解决钟面和数轴上的问题.5.根据实际问题的具体情况,通过间接设未知数或设辅助未知数来解决实际问题.专题15 含字母的一元一次方程知识解读1.根据方程及方程的解的概念求方程中字母的值使方程左右两边相等的未知数的值是方程的解.因此将方程的解代人方程中,方程的左右两边能够相等。
2.根据整数解求方程中字母的值 一元一次方程的解为整数,即当解为b x a =时,整数b 能被整数a 整除。
3.字母系数方程解的情况方程ax b =的解有三种情况:当0a ≠时,b x a=;当0,0a b ==时,即00x =,方程有任意解;当0,0a b =≠时,即0x b =,方程无解.培优学案典例示范1. 根据方程及方程的解的概念求方程中字母的值例1 若3223kkx k -+=是关于x 的一元一次方程,求这个方程的解. 【提示】由题意可知312k -=,且0k ≠.【技巧点评】跟踪训练1若方程(m2-1)x2-mx+8=x是关于x的一元一次方程,则代数式m2008-1m-的值为_________.例2(1)若方程121112102x xx+--=-与方程2x+62a x-=a-2的解相同,求233a a-的值;(2)关于x的方程与132m x+=4的解是2311346x m x---=的解的5倍,求m的值.【提示】(1)先求出方程121112102x xx+--=-的解,再根据题意将这个解代入后一个方程,求出a;(2)先将两个方程中的m看成已知数,求出两个方程的解(用含m的式子表示),再根据题意列出关于m的方程来求出m.【技巧点评】跟踪训练2(1)已知关于x的方程323a x bx--=的解是x=2,其中a≠0且b≠0,求代数式a bb a-的值;(2)若方程3(x一k)=2(x+1)与62k xk-=的解互为相反数,求k的值.2.根据整数解求方程中字母的值例3 若关于x的方程9x-17=kx的解为正整数,求整数k的值.【提示】先解方程,把x的值用k的代数式表示,再利用整除性求出整数k的值. 【技巧点评】跟踪训练3已知关于x的方程31223x mx-+=有整数解,求满足条件的所有整数m.3.字母系数方程解的情况例4解方程11x x m n m n mn--+-=.【提示】先将方程化成ax=b的形式,再分类讨论方程解的情况.【技巧点评】跟踪训练4问当a,b满足什么条件时,方程2x+5-a=1-b;(1)有唯一解;(2)有无数个解;(3)无解.培优训练直击中考1.★(湖南永州)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.12.★(2017·湖北孝感)方程3123x x+-=的解是________.3.★(2017·黑龙江)已知关于x的方程3x-a=号x-1的解是非负数,那么a的取值范围是________.4.★已知关于x 的方程23x m m x -=+与12x +=3x -2的解互为倒数,求m 的值.5.★已知关于y 的方程4y +2n =3y +2和方程3y +2n =6y -1的解相同,求n 的值.6.★★当整数m 取什么数时,关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭的解是正整数?7.★★已知关于x 的方程a (2x -1)=3x -2无解,试求a 的值.挑战竞赛1.(江苏省竞赛试题)已知a 是任意有理数,在下面各题中结论正确的个数是( ) ①方程ax =0的解是x =1;②方程ax =a 的解是x =1;③方程ax =1的解是x 1a=;④方程|a |x =a 的解是x =±1.A .0B .1C .2D .3 2.★太(希望杯试题)当b =1时,关于x 的方程a (3x ﹣2)+b (2x ﹣3)=8x ﹣7有无数多个解,则a 等于( )A .2B .﹣2C .23-D .不存在 3.★★若k 为整数,则使得方程(k ﹣1999)x =2001﹣2000x 的解也是整数的k 的值有( ) A .4个 B .8个 C .12个 D .16个4.★★★(希望杯试题)已知p,q都是质数,并且以x为未知数的一元一次方程px+5q=97的解是1,求代数式40p+101g+4的值.5.★★★(山东省竞赛试题)如果a,b为定值,关于x的方程程2236ka x x bk+-=+无,当k取14以外的任何值时,它的解总是1,求a,b的值.。
七年级数学上册第三单元《一元一次方程》-选择题专项习题(培优)

一、选择题1.下列方程中,是一元一次方程的是( )A .243x x -=B .0x =C .21x y +=D .11x x-= B 解析:B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0).【详解】解:A 、最高项的次数是2,故不是一元一次方程,选项不符合题意;B 、正确,符合题意;C 、含有2个未知数,故不是一元一次方程,选项不符合题意;D 、不是整式方程,故不是一元一次方程,选项不符合题意;故选:B .【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为( )A .3750元B .4000元C .4250元D .3500元A 解析:A【分析】先根据利润=20%×成本,设未知数解方程求出成本,再用售价÷8折=标价解答即可.【详解】解:设该电器的成本为x 元.依题意,得50020%x =,解得2500x =.所以该电器的标价为(2500500)0.83750+÷=(元).故选:A .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.3.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯ B 解析:B【分析】设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名,根据生产的小齿轮的数量:生产的大齿轮的数量=3:2即可列出方程,进而可得答案.【详解】解:设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名.根据题意,得220315(34)x x ⨯=⨯-.故选:B .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.4.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( )A .1x =-B .0x =C .1x =D .2x = A解析:A【分析】 根据题意得出方程组,求出m 、n 的值,再代入求出x 即可.【详解】根据表格可知0x =时,4mx n +=-,所以4n =-.2x =时,4mx n +=,所以244m -=,移项得244m =+,合并同类项,得28m =系数化为1,得4m =.所以原方程为448x -+=,移项,得484x -=-.合并同类项,得44x -=系数化为1,得1x =-.故选A .【点睛】本题考查了解一元一次方程和二元一次方程的解,能求出m 、n 的值是解此题的关键. 5.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D A解析:A【分析】 设运动x 秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x 的一元一次方程,解之即可得出x 的值,将其代入2x 中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点.【详解】解:设运动x 秒后,乌龟和兔子第2020次相遇,依题意,得:2x +6x =2×4×2020,解得:x =2020,∴2x =4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A .故选:A .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 6.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( )A .1146x x ++=B .1146x x ++=C .1146x x -+=D .111446x x +++= C 解析:C【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x 天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14 ,乙的工作效率为16. 那么根据题意可得出方程1146x x -+=, 故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.7.已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或1C解析:C【分析】 直接利用一元一次方程的定义进而分析得出答案.【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程,∴1m =,10m -≠,解得:1m =-.故选:C .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 8.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( ) A .8cmB .6cmC .5cmD .10cm C解析:C【解析】试题分析:原来正方形的边长为x ,则=39,解得:x=5. 考点:一元一次方程的应用 9.解方程32282323x x x ----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x );②6x ﹣4﹣3x ﹣6=16﹣4x ;③3x +4x =16+10; ④x =267. A .①B .②C .③D .④B 解析:B【分析】根据解一元一次方程的基本步骤依次计算可得.【详解】①去分母,得:2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x );②6x ﹣4﹣3x+6=16﹣4x ,③6x ﹣3x+4x =16+4﹣6,④x =2,错误的步骤是第②步,故选:B .【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.10.关于x 的方程2x m 3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .3B 解析:B【解析】 由已知得413m -= ,解得m=1;故选B. 11.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( )A .8B .﹣8C .6D .﹣6D 解析:D【详解】因为xΔy =xy +x +y ,且2Δm =-16,所以2m+2+m=-16,解得m=- 6,故选D.考点:1.新定义题2.一元一次方程.12.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折C 解析:C【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 800 20%800⨯-≥,解不等式可得:8x ≥. 【详解】设打折x 折,由题意可得:12000.1x 80020%800⨯-≥, 解得:8x ≥.故选C.【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.13.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m 3,每立方米收费2元;若用水超过20m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水( )m 3.A.38 B.34 C.28 D.44C 解析:C【解析】试题设小明家5月份用水xm3,当用水量为20m3时,应交水费为20×2=40(元).∵40<64,∴x>20.根据题意得:40+(2+1)(x-20)=64,解得:x=28.故选C.14.把方程112x=变形为2x=,其依据是()A.等式的性质1 B.等式的性质2 C.乘法结合律D.乘法分配律B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】将原方程两边都乘2,得2x=,这是依据等式的性质2.故选B.【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.15.下列方程变形一定正确的是()A.由x+3=-1,得x=-1+3 B.由7x=-2,得x=-7 4C.由12x=0,得x=2 D.由2=x-1,得x=1+2D解析:D【分析】根据等式的性质,可得答案.【详解】解:由x+3=-1,得x=-1-3,所以A选项错误;由7x=-2,得x=-27,所以B选项错误;由12x=0,得x=0,所以C选项错误;由2=x-1,得x=1+2,所以D选项正确.故选D.【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.16.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =- B 解析:B【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母. 由题意得:2×1200x=2000(22-x ),故选:B .【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.17.下列各题正确的是( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x = D解析:D【分析】根据解一元一次方程的步骤计算,并判断.【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误;D 、由()217x x +=+去括号得:227x x +=+,移项、合并同类项得5x =,故正确.故选:D .【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号.18.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是()A.5袋B.6袋C.7袋D.8袋A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.在三峡大坝截流时,用载重卡车将一堆石料运到围堰龙口,第一次运了这堆石料的13少2万方,第二次运了剩下的12多3万方,此时还剩下12万方未运,若这堆石料共有x万方,于是可列方程为()A.x−(13x−2)−[12(x−13x+2)+3]=12B.x−(13x−2)−[12(x−13x+2)−3]=12C.x−(13x−2)−[12(x−13x)−3]=12D.x−(13x−2)−(12x+3)=12A解析:A【解析】【分析】找到等量关系为:总共石料数-第一次运的-第二次运的=剩下的.根据题中的条件,代入关系式即可得出所求的方程.【详解】由题意这堆石料共有x万方,且第一次运了这堆石料的13少2万方,即可得出第一次运了(13x−2)万方;∵第二次员了剩下的12多3万,20.下列解方程的过程中,移项正确的是()A.由5x−7y−2=0,得−2=7y+5xB .由6x −3=x +4,得6x −3=4+xC .由8−x =x −5,得−x −x =−5+8D .由x +9=3x −1,得x −3x =−1−9D解析:D【解析】【分析】把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
全效学习七上数学培优专题一元一次方程的定义及解

数学
人教版七年级上册
课件目录
首
页
末
页
a-x bx-3 a b 7. 已知关于 x 的方程 = 的解是 x=2,试求代数式 - + 2 3 4 3 2[5a-4(2a-b)]的值. a- 2 2b- 3 解:把 x= 2 代入方程得: = , 2 3 化简得: 3(a- 2)= 2(2b- 3), 即 3a- 4b= 0,
5 移项,系数化为 1 得: x=- . 3 5 即这个方程的根为: x=- . 3
数学
人教版七年级上册
课件目录
首
页
末
页
二、一元一次方程的解
1 4.已知 y=3 是 6+ (m-y)=2y 的解,试求|-m|+m2 的值. 4
1 解:把 y= 3 代入方程,得: 6+ (m- 3)= 6, 4 解得: m= 3, 则原式= 3+ 9= 12.
数学
人教版七年级上册
课件目录
首
页
末
页
2- 2.5a 解: 设 处的数字是 a, 把 x=- 2.5 代入方程得: 3 + 2.5=- 1, 解得:a= 5, 则 处的数字为 5.
数学
人教版七年级上册
课件目录
首
页
末
页
x- m m 6.已知关于 x 方程 =x+ 与 x-1=2(2x-1)的解互为倒数, 2 3 求 m 的值.
5或 7 . 数值为________
【解析】 kx+2=4x+5, (k-4)x=3, ∵x,k都是正整数,
人教版 七年级数学上册 一元一次方程培优专题-绝对值方程(解析版)

2 - 1 =22 2 2 进而 ⎪⎨,解得 ⎪⎨ ⎩ ⎩一元一次方程培优专题——绝对值方程例题1. 解方程: 2 x + 3 = 5【解析】根据绝对值的意义,原方程可化为 2x + 3 = 5 或者 2x + 3 = -5 ,解得 x = 1 或 x = -4【答案】 x = 1 或 x = -4例题2. 解方程 x + 1 - 1 2 - x + 13【解析】原方程整理得: x + 1 = 13 ,即 x + 1 = 13 或者 x + 1 = - 13 ,所以原方程的解为 x = 8 或 x = - 1855 5 5 5【答案】 x = 8 或 x = - 1855例题3. 已知:当 m > n 时,代数式(m 2- n 2+ 3) 和 m 2+ n 2- 5 的值互为相反数,求关于x 的方程m 1 - x = n的解.【解析】因为代数式 (m 2 - n 2 + 3) 和 m 2 + n 2 - 5 的值互为相反数,所以 (m 2 - n 2 + 3) + m 2 + n 2 - 5 = 0 , 所以 (m 2 - n 2 + 3) = 0 , m 2 + n 2 - 5 = 0 ,⎧m 2 - n 2 = -3 ⎪m 2 + n 2 = 5⎧m 2 = 1 ⎪n 2 = 4,所以 m = ±1, n = ±2 ,因为 m > n ,当 m = 1时, n = -2 ;当 m = -1 时, n = -2 ;当 m = 1,n = -2 时,方程为 1 - x = -2 ,该方程无解;当 m = -1, n = -2 时,方程为 - 1 - x = -2 ,解得 x = -1 或 x = 3 .【答案】 x = -1 或 x = 3例题4.解方程4x+3=2x+9【解析】解法一:令4x+3=0得x=-3,将数分成两段进行讨论:4①当x≤-3时,原方程可化简为:-4x-3=2x+9,x=-2在x≤-3的范围内,是方程的解.44②当x>-3时,原方程可化简为:4x+3=2x+9,x=3在x>-3的范围内,是方程的解.44综上所述x=-2和x=3是方程的解.解法二:依据绝对值的非负性可知2x+9≥0,即x≥-9.原绝对值方程可以转化为①4x+3=2x+9,2解得x=3,经检验符合题意.②4x+3=-(2x+9),解得x=-2,经检验符合题意.综合①②可知x=-2和x=3是方程的解.【答案】x=-2或x=3例题5.解方程4x+3=2x+9【答案】x=3或x=-2例题6.a为有理数,a=2a-3,求a的值.【解析】解法一:要想求出a的值,我们必须先化简a=2a-3.采用零点分段讨论的方法.令a=0,2a-3=0得a=3.2①当a≥3时,由原式可得a=2a-3,求得a=3,在a≥3的范围内;22②当0≤a<3时,由原式可得a=3-2a,求得a=1,在0≤a<3的范围内;22③当a<0,由原式可得-a=-2a+3,求得a=3,不在a<0的范围内.综上可得a的值为3或1.x 解法二:依题意, a 的绝对值和 2a - 3 的绝对值相等,可以得出两者相等或互为相反数,即a = 2a - 3或a = -(2a - 3) 解得 a = 3 或 a = 1.【答案】 a = 3 或 a = 1例题7. 解方程 2 x - 1 = 3x + 1【解析】根据两数的绝对值相等,可以判断这两个数相等或者互为相反数,所以由原方程可以得到2x - 1 = 3x + 1 或 2x - 1 = -3x - 1 ,解得 x = -2, = 0 .【答案】 x = -2 或 x = 0例题8. 解方程 x - 1 + x - 3 = 4【解析】令 x - 1 = 0 , x - 3 = 0 得 x = 1 , x = 3 ,它们可以将数轴分成 3 段:①当 x < 1 时,原方程可化简为: -( x - 1) - ( x - 3) = 4 , x = 0 在 x < 1 的范围内是原方程的解;②当 1 ≤ x < 3 时,原方程可化简为: x - 1 - ( x - 3) = 4 ,此方程无解;③当 x ≥ 3 时,原方程可化简为: x - 1 + x - 3 = 4 , x = 4 在 x ≥ 3 的范围内是原方程的解;综上所述,原方程的解为: x = 0 或 x = 4 .【答案】 x = 0 或 x = 4例题9. 解方程 x - 1 + x - 5 = 4【解析】由绝对值的几何意义可知 1 ≤ x ≤ 5 .【答案】 1 ≤ x ≤ 5例题10. 解方程: 2 x + 1 - 2 - x = 3【解析】零点为: x = - 1 , x = 2 ,它们可将数轴分成三段:22 ①当 x < - 1 时,原方程变形为:-(2 x + 1) - (2 - x) =3 ,x = -6 在 x < - 1 的范围内,是方程的解;22②当 - 1 ≤ x < 2 时,原方程变形为: (2 x + 1) - (2 - x) = 3 , x = 4 在 - 1 ≤ x < 2 的范围内,是方程23 2的解;③当 x > 2 时,原方程变形为:(2 x - 1) - ( x - 2) = 3 ,x = 0 不在 x > 2 的范围内,不是方程的解.综上所述原方程的解为: x = -6 或 x = 4 .3【答案】 x = -6 或 x = 43例题11. 解方程:方程 x + 3 + 3 - x = 9 x + 52【解析】对 x 的值分 4 段讨论:①若 x < -3 ,则原方程化为 - x - 3 + 3 - x = - 9 x + 5 ,解得 x = 2 ,与 x < -3 矛盾;2②若 -3 ≤ x < 0 ,则原方程化为 x + 3 + 3 - x = - 9 x + 5 ,解得 x = - 2 ;29③若 0 ≤ x < 3 ,则原方程化为 x + 3 + 3 - x = 9 x + 5 ,解得 x = 2 ;29④若 x ≥ 3 ,则原方程化为 x + 3 + x - 3 = 9 x + 5 ,解得 x = -2 ,与 x ≥ 3 矛盾.2综上所述方程的解为 x = ± 2 .9【答案】 ± 29例题12. 解绝对值方程: x - 3x - 5- 1 = 62【解析】 x - 3x - 5 - 1 = 6 或 -6 ,即 3x - 5 = x - 7 或 3x - 5 = x + 522 2①当 x - 7 ≥ 0 时(即 x ≥ 7 ), 3x - 5 > 0 , 3x - 5 = x - 7 化为 3x - 5 = x - 7 ,解得 x = -9 ;22②当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 > 0 (即 x ≥ 5 ), 3x - 5 = x + 5 ,解得 x = 15 ;23 2③当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 < 0 (即 x < 5 ), 3x - 5 = - x - 5 ,解得 x = -1 .23 2再来检验这三个解 x = -9 (舍去)、 x = 15 、 x = -1 .【答案】 x = 15 或 x = -13x + 1 = 0,x = - ; x - 3x + 1 = 0 , x = - , - ,这 3 个零点将数轴分成 4 段,我们分段讨论 8例题13. 解方程: 3x - 5 + 4 = 8【解析】3x - 5 + 4 = 8 或 - (舍),即 3x - 5 = 4 ,所以 3x - 5 = 4 或 -4 ,即 3x = 9 或 3x = 1 ,故 x = 3 或 x = 1 .3【答案】 x = 3 或 x = 13例题14. 求方程 x - 3x + 1 = 4 的解.【解析】解法一:1 1 1 32 4研究可以得到结果为: x = 3 或 x = - 5 ,但其实这么做是没必要的.我们来看看解法二.24解法二:①当 x ≤ - 1 时,方程可化为: 4x + 1 = -4 , x = - 5 ,在 x ≤ - 1 范围内,是方程的解;34 3②当 x > - 1 时,方程可化为 -2 x - 1 = 4 :当 -2x - 1 = 4 时,得 x = - 5 , - 5 < - 1 , x = - 5 不是32 23 2解,舍去;当 -2x - 1 = -4 时,得 x = 3 ,∵ 3 > - 1 ,∴ x = 3 是方程的一个解.22 3 2综上可得,原方程的解为 x = 3 或 x = - 5 .24【答案】 x = 3 或 x = - 524例题15. 当 0 ≤ x ≤1 时,求方程 x - 1 - 1 - 1 = 0 的解【解析】根据 x 所在的范围,可得 x ≥ 0 , x - 1≤ 0 ,因此 x = x ,x - 1 = 1 - x ,按从内到外的顺序逐个去除方程中的绝对值符号,原方程可顺次化为: 1 - x - 1 - 1 = 0 ,即 1 - x = 0 ,所以 x = 1 .【答案】1。
七年级上册一元一次方程(培优篇)(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
【七年级数学代数培优竞赛专题】专题17 列一元一次方程解决实际问题【含答案】

专题17 列一元一次方程解决实际问题知识解读1.行程问题行程问题中的基本关系:路程=速度×时间.顺流、逆流问题中,顺流速度=船在静水中的速度+水速,逆流速度=船在静水中的速度-水速.2.销售问题销售问题中常见的数量关系:标价×折率=售价,售价一进价=利润,进价×利润率=利润。
3.分档问题现实生活中,有许多与费用有关的问题,其费用的计算方法会分成多个不同的档次.解题时要对照档次,认准计算方法,如果不能确定属于哪个档次时,要注意分类讨论.培优学案典例示范1.行程问题例1 甲、乙两列火车从A ,B 两地相向而行,乙车比甲车早出发1小时,甲车比乙车每小时快30千米,甲车发车2小时恰好与乙车相遇.相遇后为了错车,甲车放慢了速度,以它原来速度的倍23行驶,而乙车加快了速度,以它原来速度的倍行驶.结果2小时15分钟后,两车距离又等于A ,B 53两地之间的距离.求两车相遇前的速度及A ,B 两地之间的距离。
【提示】设乙车相遇前的速度为x 千米/小时,则甲车相遇前的速度为(x +30)千米/小时.分别用含x 的式子表示出相遇前两车的总行程和相遇后两车的总行程.【技巧点评】行程问题中基本的关系:路程=速度×时间.当问题较为复杂时,可借助表格来帮助分析:跟踪训练1甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.例2一条汽船在一条河上航行,若从A港到B港顺流航行需要3h,从B港到A港逆流航行需要4h,那么一根木棍从A港到B港顺水漂流需要多长时间?【提示】设汽船在静水中的速度为x千米/小时,水流的速度为y千米/小时.根据顺流汽船的行程和逆流汽船的行程都是A,B两港之间的距离可以列出方程,进而求出x与y的关系,而木棍漂流所用的时间等于A,B两港之间的距离除以水流速度。
部编数学七年级上册培优专题08巧用一元一次方程选择方案解析版含答案

培优专题08 巧用一元一次方程选择方案◎类型一:购买方案决策1.(2022·四川·宜宾市叙州区育才中学校七年级期中)为了打造年级体育啦啦队,某年级准备投入一笔资金为啦啦队队员配置一些花球,经过多方比较,准备在甲、乙两个商家中选择一个.已知花球单价是市场统一标价为20元,由于购买数量多,两个商家都给出了自己的优惠条件(见表):甲商家乙商家购买数量x(个)享受折扣购买数量(个)享受折扣x≤50的部分9.5折y≤100的部分9折50<x≤200的部分8.8折100<y≤200的部分8.5折x>200的部分8折y>200的部分8折(1)如果需要购买100个花球,请问在哪个商家购买会更便宜?(2)经年级学生干部商议,最终决定选择在乙商家购买花球,并根据实际需要分两次共购买了350个花球,且第一次购买数量小于第二次,共花费6140元,请问两次分别购买了多少个花球?【答案】(1)在乙商家购买会更便宜;(2)第一次购买140个花球,第二次购买210个花球.【分析】(1)利用总价=单价×数量,结合两个商家的优惠条件,即可分别求出在两个商家购买所需费用,比较后可得出在乙商家购买会更便宜;(2)设第一次购买m 个花球,则第二次购买(350﹣m )个花球,分0<m ≤100,100<m ≤150及150<m <175三种情况考虑,根据两次购买共花费6140元,即可得出关于m 的一元一次方程,解之即可得出第一次购买花球的数量,再将其代入(350﹣m )中即可求出第二次购买花球的数量.(1)解:在甲商家购买所需费用为20×0.95×50+20×0.88×(100﹣50)=20×0.95×50+20×0.88×50=950+880=1830(元);在乙商家购买所需费用为20×0.9×100=1800(元).∵1830>1800,∴在乙商家购买会更便宜.(2)解:设第一次购买m 个花球,则第二次购买(350﹣m )个花球.当0<m ≤100时,20×0.9m +20×0.9×100+20×0.85×(200﹣100)+20×0.8(350﹣m ﹣200)=6140,解得:m =120(不合题意,舍去);当100<m ≤150时,20×0.9×100+20×0.85(m ﹣100)+20×0.9×100+20×0.85×(200﹣100)+20×0.8(350﹣m ﹣200)=6140,解得:m =140,∴350﹣m =350﹣140=210;当150<m <175时,20×0.9×100+20×0.85(m ﹣100)+20×0.9×100+20×0.85(350﹣m ﹣100)=6150≠6140,∴不存在该情况.答:第一次购买140个花球,第二次购买210个花球.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.2.(2022·黑龙江·哈尔滨市风华中学校七年级阶段练习)某书店准备订购一批图书,现有甲、乙两个供应商,均标价每本20元.为了促销,甲说:“凡来我处进货一律九折.”乙说:“如果订货超出100本,则超出的部分打八折”(1)设该书店准备订购x 本图书()100x >,请用含x 的整式表示在甲供应商所需支付的钱数为______元,在乙供应商所需支付的钱数为______元;(2)在(1)的条件下,当购进多少本图书时,去两个供应商处的进货价钱一样多?(3)已知该书店第一次从乙供应商处购进了500本图书,书店以每本24元全部售出.该书店第二次从乙供应商购进的数量比第一次多20%,如果第二次购进的图书也能全部售出,则第二次购进图书每本售价应为多少元时,书店两批图书的总利润率为50%?【答案】(1)()1816400x x +;(2)当购进200本图书时,去两个供应商处的进货价钱一样多.(3)第二次购进图书每本售价为26元时,书店两批图书的总利润率为50%.【分析】(1)根据题意列式即可;(2)利用两个代数式的值相等,进行计算即可;(3)设第二次购进图书每本售价为y 元,根据题意列方程求解即可.(1)解:由题意得:甲:200.918x x ´´=;乙:()20100100200.816400x x ´+-´´=+,故答案为:()1816400x x +;.(2)解:由题意得:1816400x x =+,解得:200x =,答:当购进200本图书时,去两个供应商处的进货价钱一样多.(3)解:设第二次购进图书每本售价为y 元,由题意得:()()()()(){}2450016500400500120%16500120%4001650040016500120%40050%y ´-´++´+-´´++éùëû=´++´´++´éùëû ,整理得:3600600100009200y +-=,解得:26y =.所以第二次购进图书每本售价为26元时,书店两批图书的总利润率为50%.【点睛】本题考查一元一次方程的应用,根据题意正确的列出代数式,再根据题意正确的列出方程是解题的关键.3.(2021·河北·景县北留智镇中学七年级阶段练习)某校计划购买20个书柜和一批书架(书架不少于20个),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每个210元,书架每个70元,A 超市的优惠措施为每买一个书柜赠送一个书架,B 超市的优惠措施为所有商品八折出售.设该校购买x (x >20)个书架.(1)若该校到同一家超市选购所有书柜和书架,则到A 超市和B 超市需分别准备多少元货款(用含x 的式子表示)?(2)若规定只能到其中一家超市购买所有书柜和书架,当购买多少个书架时,无论到哪家超市购买所付货款都一样?(3)若该校想购买20个书柜和100个书架,且可到两家超市自由选购,你认为至少需要准备多少元货款?班长负责买票,每班人数都多于40人,票价每张20元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两个优惠方案可选择:方案1:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)七年级二班有48名学生,他该选择哪个方案比较省钱?请说明理由;(2)一班班长思考一会儿说:“我们班无论选择哪种方案要付的钱是一样的”.请求出一班的人数.【答案】(1)方案1比较省钱,详见解析(2)一班的人数为45人,详见解析【分析】(1)根据题意,直接进行计算即可;(2)设一班的人数为a人,根据所付钱数一样,可列方程:()´=´-,解200.8200.95a a方程即可.(1)解:由题意可知,方案1费用为:200.848768=´´(元),方案2费用为:()´´-(元),=200.9485774综上所述,方案1比较省钱;(2)设一班的人数为a人,由题意列方程为:()´=´-,a a200.8200.95解得:a=45,答:一班的人数为45人.【点睛】本题主要考查的是一元一次方程的应用,重点在于根据题意列出方程.◎类型二:上网计费方案决策5.(2021·广东惠州·七年级期末)下表中有两种移动电话计费方式:月使用费主叫限定时间(分钟)主叫超时费(元/分钟)被叫方式一651600.20免费方式二1003800.25免费(月使用费固定收;主叫不超过限定的时间不再收费,主叫超过限定时间的部分加收超时费;被叫免费)(1)若张聪某月主叫通话时间为200分钟,则他按方式一计费需____元,按方式二计费需____元;李华某月按方式二计费需110元,则李华该月主叫通话时间为_____分钟;(2)是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)直接写出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱.【答案】(1)73,100,420t=或560分钟(2)存在,335(3)每月通话时间小于335分钟或大于560分钟时,选择方式一省钱【分析】(1)根据“方式一”的计费方式,可求得通话时间200分钟时的计费,“方式二”的计费方式,可求得通话时间200分钟时的计费,主叫通话时间为x分钟,根据按方式二计费需110元列出方程,解方程即可;(2)根据题中所给出的条件,分三种情况进行讨论:①160t<…;t…;②160380③380t>;(3)根据(2)所求即可得出结论.(1)解:若张聪某月主叫通话时间为200分钟,则他按方式一计费需:650.20(200160)73+´-=(元),设按方式二计费需100元,设主叫通话时间为x分钟,根据题意得x+-=,1000.25(380)110解得420x=.答:主叫通话时间为420分钟.故答案为73,100;420;(2)解:①当160t…时,不存在;②当160380t<…时,设每月通话时间为t分钟时,两种计费方式收费一样多,+´-=,t650.20(160)100解得335t=,符合题意;③当380t>时,设每月通话时间为t分钟时,两种计费方式收费一样多,+´-=+-,t t650.20(160)1000.25(380)解得560t=,故存在某主叫通话时间335t=或560分钟,按方式一和方式二的计费相等;(3)解:结合(2)知,当通话时间335t=或560分钟,按方式一和方式二的计费相等;当每月通话时间少于335分钟时,650.20(160)100+´-<,故选择方式一省钱;t当每月通话时间大于560分钟时,650.20(160)1000.25(380)+´-<+-,故选择方式一省t t钱;当每月通话时间多于335分钟且小于560分钟时,650.20(160)1000.25(380)+´->+-故选t t择方式二省钱.综上所述:当每月通话时间少于335分钟或大于560分钟时,选择方式一省钱.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.(2019·广西·南宁市三美学校七年级阶段练习)某市上网有两种收费方案,用户可任选其一,A为计时制0.8元/时;B为包月制60元/月,此外每种上网方式都附加通讯费0.2元/时.(1)某用户每月上网50小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)当每月上网多少小时时,A、B两种方案上网费用一样多?【答案】(1)每月上网50小时,选A方案合算.(2)每月100元上网B方案比较合算.(3)每月上网75小时,A、B两种方案上网费用一样多.【分析】(1)根据题意计算即可得结论;(2)根据题意列方程求得结果进行比较即可得结论;(3)根据题意列方程即可求得结论.(1)A方案收费:50×(0.8+0.2)=50,B方案收费:60+50×0.2=70.答:每月上网50小时,选A方案合算.(2)设每月100元上网x小时.根据题意,得A方案上网:0.8x+0.2x=100,解得x=100B方案上网:60+0.2x=100,解得x=200答:每月100元上网B方案比较合算.(3)设每月上网x小时,A、B两种方案上网费用一样多.根据题意,得0.8x+0.2x=60+0.2x解得x=75.答:每月上网75小时,A、B两种方案上网费用一样多.【点睛】本题考查了一元一次方程的应用,解决方案类问题应用题的关键是根据题意分别列出算式或方程.7.(2021·云南大理·七年级期末)某地上网有两种收费方式,用户可以任选其一:方式A:月租费:40元,上网费:1元/小时;方式B:上网费:3元/小时;设某用户每月上网时间为x小时(1)用含x的式子分别写出两种收费方式下,该用户应付的上网费用;方式A应付费用为:方式B应付费用为:(2)若该用户计划1个月上网50小时,应选用哪种上网方式比较划算?(3)该用户每月上网多少小时的时候,两种上网方式的费用相等?【答案】(1)(40+x);3x;(2)方式A;(3)20小时【分析】(1)根据两种方式的费用标准分别列出代数式;(2)当x=50时,分别计算两种方式的费用,然后进行比较,从而求解;(3)根据两种费用相等,列方程求解.【详解】解:(1)方式A应付费用为:(40+x)元方式B应付费用为:3x元故答案为:(40+x);3x;(2)当x=50时,方式A应付费用:40+50=90(元)方式B应付费用:3×50=150(元)∵90<150∴当上网50小时时,选择方式A比较划算(4)根据题意403x x+=,解得:20x=答:当上网时间是20小时的时候,两种上网方式的费用相等【点睛】本题考查一元一次方程的应用,理解题意正确列代数式及方程求解是解题关键.8.(2021·湖南长沙·七年级期末)下表是两种“5G优惠套餐”计费方式.(月费固定收,主叫不超时,流量不超量不再收费,主叫超时和上网超流量部分加收超时费和超流量费)月费(元)主叫(分钟)流量(G B)接听超时(元/分钟)超流量(元/G B)方式一4920050免费0.203方式二6925060免费0.152(1)若某月小玲主叫通话时间为220分钟,上网流量为80 G B ,则她按方式一计费需_______元,按方式二计费需_______元;若她按方式二计费需129元,主叫通话时间为240分钟,则上网流量为________G B .(2)若上网流量为54 G B ,是否存在某主叫通话时间t (分钟),按方式一和方式二的计费相等?若存在,请求出t 的值;若不存在,请说明理由.【答案】(1)143,109,90;(2)存在,t =240【分析】(1)分别按照方式一与方式二的方案进行计算,求解流量时,要注意先减去月费再用剩余的费用除以超流量的单价,最后要加上套餐内包含的流量;(2)分别在0≤t <200,200≤t ≤250,t >250中进行讨论求解即可.【详解】(1)方式一:49+(220-200)×0.2+(80-50)×3=143元,方式二:69+(80-60)×2=109元,使用流量:(129-69)÷2+60=90GB ,故答案为:143;109;90.(2)当0≤t <200时,49+3(54﹣50)=61≠69,∴此时不存在这样的t ;当200≤t ≤250时,49+0.2(t ﹣200)+3(54﹣50)=69,解得t =240;当t >250时,49+0.2(t ﹣200)+3(54﹣50)=69+0.15(t ﹣250),解得t =210(舍).故若上网流量为54GB ,当主叫通话时间为240分钟时,两种方式的计费相同.【点睛】本题考查了一元一次方程的应用,弄清题意,找准数量关系正确进行计算和列方程是解题的关键.◎类型三:收费方案决策9.(2022·四川·成都七中七年级期中)某校长暑假带领该校“三好学生”去旅游,甲旅行社说:“若校长买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括校长在内都6折优惠.”若全票价是1200元/张,设学生人数是x ,甲旅行社收费为1y ,乙旅行社收费为2y .(1)分别写出两家旅行社的收费与学生人数的关系式.(2)学生们通过计算发现,选择两家旅行社的费用一样多,则共有多少人参加旅游?【答案】(1)11200600y x =+,2720720y x =+(2)5【分析】(1)根据收费总额=学生人数´单价+校长的票价就可以分别求出两个旅行社的收费;(2)令12y y =,求得4x =,然后求出总人数即可.(1)解:学生人数是x ,由题意可知,11200600y x =+,21200(1)0.6720720y x x =+´=+;(2)解:∵两家旅行社的费用一样多,∴12y y =,∴1200600720720x x +=+4x \=,\总人数为5,答:共有5人参加旅游.【点睛】本题考查了一次函数的应用,运用一次函数的解析式解决方案设计问题的运用,在解答时根据两个解析式建立方程是关键.10.(2022·山西阳泉·七年级期末)“春节”期间,小明一家人乘坐高铁前往某市旅游,计划第二天开始租用新能源汽车自驾出游,经了解,甲、乙两公司的收费标准如下:甲公司:一次性收取固定租金80元,另外再按租车时间计费,每小时的租费是15元;乙公司:无固定租金,直接以租车时间收费,每小时的租费是30元.(1)若租车时间为x 小时,则租用甲公司的车所需费用为 元,租用乙公司的车所需费用为元(结果用含x 的代数式表示);(2)当租车时间为11小时时,选择哪一家公司比较合算?(3)当租车多少时间时,两家公司收费相同?联系了标价相同的两家旅行社,经洽谈,A 旅行社给的优惠条件是教师全额付款,学生按七折付款,B 旅行社给的优惠条件是全体师生按八折付款.(1)若两家旅行社的标价都是每人a (0a >)元,学生有x 人,请用含a ,x 的代数式分别表示选择A ,B 家旅行社时他们的旅游费用;(2)学生有多少人时,两家旅行社的收费相同?(3)现有学生20人,那么他们选择哪家旅行社旅游费用少?【答案】(1)A 旅行社:50.7a ax +,B 旅行社:0.8(5)x a +(2)10人(3)A 旅行社【分析】(1)根据学生人数和票价直接写出关系式即可;(2)根据收费相同,列出方程,解方程即可;(3)算出A 、B 两个旅行社需要的费用进行对比即可.(1)解:A 旅行社:50.7a ax +,B 旅行社:()0.85x a +;(2)根据题意得:()50.70.85a ax x a +=+,解得:10x =,答:学生10人时,两家旅行社的收费相同;(3)当学生有20人时,A 旅行社的费用为:50.750.72019a ax a a a +=+´=,B 旅行社的费用为:()0.852020a a ´+=,∵0a >,∴2019a a >,∴选择A 旅行社的费用少.【点睛】本题主要考查了列代数式、一元一次方程的应用,方案选择问题,正确列出代数式,得到方程是解题的关键.12.(2022·湖北·武汉市黄陂区教育局七年级期末)用A 4纸在某誊(teng )印社复印文件,复印文件不超过20页时,每页收费0.15元,复印页数超过20页时,超过部分每页收费0.1元;在某图书馆复印同样的文件,不论复印多少页,每页收费0.12元.(1)根据题意,填写下表: 复印页数(页)1030……誊印社收费(元) 1.5……图书馆收费(元)……(2)复印张数为多少时,两处的收费相同?(3)某同学先后两次分别在誊印社、图书馆复印文件共花费12元(两处均有消费),该同学复印文件的最少页数可能为___________(直接写出结果).【答案】(1)见解析(2)50(3)95【分析】(1)根据两种复印方式的收费标准填表即可;(2)设复印x 张时,两处收费相同,根据题意列出方程求解即可;(3)使复印的页数最少,而超过20页后复印社的单价比图书馆的单价低,则复印社复印20页,剩下的都在图书馆复印即可保证复印的页数最少,由此求解即可.解:设复印x张时,两处收费相同,由题意得:()x x´+-=,200.150.1200.12解得50x=,答:复印张数为50张时,两处的收费相同;(3)解:∵要使复印的页数最少,而超过20页后复印社的单价比图书馆的单价低,∴复印社复印20页,剩下的都在图书馆复印即可保证复印的页数最少,∴在图书馆复印的花费=12-20×0.15=9元,∴在图书馆复印的页数=9÷0.12=75张,∴最少复印20+75=95页.【点睛】本题主要考查了一元一次方程的应用,有理数混合计算的应用,正确理解题意是解题的关键.◎类型四:运输方式方案决策13.(2020·江苏·滨海县第一初级中学七年级阶段练习)库尔勒某乡A、B两村盛产香梨,A村有香梨20吨,B村有香梨30吨,现将这些香梨运到C、D两个冷藏仓库.已知C仓库可储存24吨,D仓库可储存26吨,从A村运往C、D两处的费用分别为每吨40元和45元;从B村运往C、D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨.费用C DA40元/吨45元/吨B25元/吨32元/吨(1)从A村运往D仓库的香梨为 吨;从B村运往D仓库的香梨为 吨.(用含x的代数式表示)(2)A村运香梨往两仓库的总运输费用是多少?B村运香梨往两仓库的总运输费用是多少?请分别用含x的代数式表示.(3)请问怎样调运,才能使两村的运费之和为1716元?请求出x的值.【答案】(1)(20﹣x),(6+x)(2)A村:﹣5x+900;B村:7x+792(3)12【分析】(1)由题意可直接求解;(2)由运费=单价×吨数,可求解;(3)由两村的运费之和为1716元,列出方程可求解.(1)解:∵从A村运往C仓库的香梨为x吨,∴从A村运往D仓库的香梨为(20﹣x)吨,从B村运往D仓库的香梨=26﹣(20﹣x)=(6+x)吨,故答案为:(20﹣x),(6+x);(2)解:由题意得:A村:40x+45(20﹣x)=(﹣5x+900)元,B村:25(24﹣x)+32(6+x)=(7x+792)元;(3)由题意得,﹣5x+900+7x+792=1716,解得x=12,答:x的值为12.【点睛】本题考查了一元一次方程的应用,列代数式,找到正确的数量关系是解题的关键.14.(2022·江苏无锡·七年级期末)甲,乙两个仓库向A,B两地运送水泥,已知甲库可调出100t水泥,乙库可调出80t水泥,A地需70t水泥,B地需110t水泥,两库到A,B两地的路程和运费如下表:(表中运费栏“元/(t•km)”表示每t水泥运送1km所需人民币)路程(km)运费(元/t•km)运量(t)甲库乙库甲库乙库甲库乙库A15201212xB2025810设甲库运往A地水泥为x t,请填写好表.(1)设甲库运往A地水泥为x t,请填写好表.(2)根据这张表,甲库运往A地的总费用是 ,乙库运往B地的总费用是 ,所以全部费用是 .(3)若所拨全部费用是35600元,写出一种可行的运输方案.乙库运往B地的总费用是25×10×(10+x)=250x+2500,所以全部费用是15×12x+20×8×(100-x)+20×12×(70-x)+25×10×(10+x)=180x+16000-160x+16800-240x+2500+250x=30x+35300.故答案为:180x,(250x+2500),(30x+35300);(3)根据题意得:30x+35300=35600,解得x=10.100-x=90,70-x=60,10+x=20,故甲向A 地运10吨,向B 地运90吨,乙向A 地运60吨,向B 地运20吨时,总运费为35600元.【点睛】本题考查了列代数式以及一元一次方程的实际应用问题.解题的关键是理解题意,读懂表格求解.15.(2022·重庆涪陵·七年级期末)榨菜鲜嫩香脆、鲜香可口,是经独特的加工工艺制成的风味产品.A ,B 两地分别有榨菜50吨和40吨,需要全部运送到C ,D 两地去销售,其中C 地需要榨菜30吨,D 地需要榨菜60吨;已知从A ,B 两地到C ,D 两地的运价如下表:到C 地到D 地A 地每吨20元每吨16元B 地每吨15元每吨10元请选择相关数据解决下列问题:(1)若从A 地需要运到C 地的榨菜为10吨,则从A 地需运到D 地的榨菜为_______吨,从A 地需运到D 地这部分榨菜的运输费为_______元;(2)设从A 地需要运到C 地的榨菜为x 吨,若从B 地需运到D 地的这部分榨菜的运输费为300元,求x 的值.【答案】(1)40,640(2)x 的值是20【分析】(1)因为从A 地运到C 地的榨菜是10吨,剩下的都运往D 地,所以运往D 地的是50-10=40吨.运输费用=吨数×每吨的运费;(2)从A 地需要运到C 地的榨菜为x 吨,所以运往D 地的是(50-x )吨,则从B 地需运到D 地的这部分榨菜为[40-(50-x )]吨,根据运输费用=吨数×每吨的运费列方程求解即可.(1)解:∵从A 地运到C 地的榨菜是10吨,剩下的都运往D 地,所以运往D 地的是50-10=40吨,运输费用=40×16=640(元);故答案为:40,640;(2)解:设从A 地需要运到C 地的榨菜为x 吨,由题意,得:()403010300x éù--´=ëû,解得:20x =,答:x的值是20.【点睛】本题考查了一元一次方程的应用,读懂题意,找到所求的量的等量关系是解答此题的关键.16.(2022·河北·巨鹿县实验中学七年级阶段练习)现甲、乙两地分别需要蔬菜120吨和180吨,已知丙地、丁地分别有蔬菜160吨和140吨,现要把这些蔬菜全部运往甲、乙两地.若丙地每吨蔬菜运到甲地的费用为30元,运往乙地的费用为35元;丁地每吨蔬菜运到甲地的费用为20元,运往乙地的费用为28元,设丙地运往甲地的蔬菜为x吨.(1)请根据题意将下表补充完整:目的地甲乙出发地丙x______丁____________(2)用含x的式子表示总运输费.(3)总运输费能是9010元吗?若能,请求出x的值;若不能,请说明理由.(2)总运输费为:30x+35(160﹣x)+20(120﹣x)+28(x+20),化简得,3x+8560;(3)根据总运输费是9010元,列方程得,3x+8560=9010,解得,x=150,∵甲地需要蔬菜120吨,小于150吨,总运输费不能是9010元.【点睛】本题考查了一元一次方程的应用,解题关键是熟练把握题目中数量关系,列出代数式和方程.。
七年级数学上册一元一次方程培优训练试题(共7页)

一元(yī yuán)一次方程解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.例1解方程例2解方程练习例3.假设关于x的一元一次方程=1的解是x=-1,那么k的值是〔〕A. B.1 C.- D.0例4.假设方程3x-5=4和方程的解一样,那么a的值是多少?当x = ________时,代数式与的值相等.例5.〔方程与代数式联络〕a、b、c、d为实数,现规定一种新的运算.〔1〕那么的值是;〔2〕当时,= .例6.〔方程(fāngchéng)的思想〕如图,一个瓶身为圆柱体的玻璃瓶内装有高厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,那么瓶内的墨水的体积约占玻璃瓶容积的〔〕不考虑瓶子的厚A .B .C .D .例7.解方程〔分类讨论〕例8.问当a、b满足什么条件时,方程2x+5-a=1-bx:〔1〕有唯一解;〔2〕有无数解;〔3〕无解。
例 9.解方程例10.解以下方程练习解方程解方程例11.+ m = my - m. (1)当 m = 4时,求y的值.(2)当y = 4时,求m的值.例12.小张在解方程〔x为未知数〕时,误将 - 2x 看成 2x 得到的解为,请你求出原来方程的解例13.关于x 的方程无解,求 a关于x 的方程无解,求 k例14.关于x 的方程有唯一的解,求这个方程的解例15.关于x 的方程无穷多解,求 a 、b.关于x 的方程无穷多解,求m 、n例16.不管k 为何值时,总是关于x 的方程的解,求a 、b不管 k为何值时,总是关于x 的方程的解,求a 、b例17.假设(jiǎshè)(3x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,那么a5-a4+a3-a2+a1-a0和a4+a2+a0的值分别为多少?应用题一、数字问题例1.一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?例2.有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,假设把百位与个位数字对调,那么新数比原数大594,求原数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学培优——一元一次方程
重点知识巩固:
专题一:一元一次方程概念的理解:
例1:若()2219203m x x m --
+=+是关于x 的一元一次方程,则方程的解是 。
练习:
1.()()221180m x m x --+-=是关于x 的一元一次方程,则代数式()()199231101m m m +-++的值为 。
2.已知关于y 的方程4232y n y +=+和方程3261y n y +=-的解相同,求n 的值。
3.已知关于x 的方程
23x m m x -=+与1322x x +=-的解互为倒数,则m 的值是 。
4.关于x 的方程1342m x +=的解是23111346
x m x ---=-的解的5倍,则m= , 这两个方程的解分别是 。
5.若方程()()321x k x -=+与
62k x k -=的解互为相反数,则k= 。
6.若
11134220124x ⎛⎫++= ⎪⎝⎭,则1402420122012x ⎛⎫-+ ⎪⎝⎭= 。
7.已知方程
1115420102x ⎛⎫+-= ⎪⎝⎭,则代数式131021005x ⎛⎫+- ⎪⎝⎭的值是 。
8.当m 取什么数时,关于x 的方程
15142323mx x ⎛⎫-=- ⎪⎝⎭
的解是正整数?
9.若k 为整数,则使得方程()199920012000k x x -=-的解也是整数的k 值有( )
A.4个
B.8个
C.12个
D.16个
难点知识突破:
专题二:利用一元一次方程的巧解:
例2:计算
112123122011233444201220122012⎛⎫⎛⎫⎛⎫++++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值。
练习:
10.计算
1111112481632256+++++的值。
11.(1)0.2•表示无限不循环小数,你能运用方程的方法将0.2•化成分数吗?
(2)0.23••表示无限不循环小数,你能运用方程的方法将0.23••化成分数吗?
专题三、方程的解的讨论:
当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax=b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论。
(1)当0a ≠时,方程有唯一解b x a
=; (2)当0,0a b =≠时,方程无解;
(3)当0,0a b ==时,方程有无数个解。
例3:已知关于x 的方程()2132a x x -=-无解,试求a 的值。
练习:
12.如果a ,b 为定值,关于x 的方程
2236
kx a x bk +-=+,无论k 为何值,它的根总是1,求a ,b 的值。
13.对于任何a 值,关于x ,y 的方程()11ax a y a +-=+有一个与a 无关的解,这个解是( )
A.2,x y ==-1
B.2,1x y ==
C.2,1x y =-=
D.2,1x y =-=-
14.若关于x 的方程()42a x b bx a -+=-+-有无穷多个解,则()4ab 等于( )
A.0
B.1
C.81
D.256
15.(1)a 为何值时,方程
()112326x x a x +=--有无数多个解?(2)a 为何值时,该方程无解?
16.若关于x 的方程()()311x x k x -+=-无解,则k= 。
专题四:绝对值方程:
例4:解方程:(1)35x -= (2)30x -= (3)235x -=
例5:解方程:
(1)215x x -++= (2)213x x -++= (3)212x x -++=
练习:
17.解方程:(1)2313x x -=- (2)2313x x -=-。