重复测量资料的方差分析
方差分析(重复测量)

诱导
患者
方法
序号
T0
t3
A
1
120
A
2
118
A
3
119
A
4
121
A
5
127
B
6
121
B
7
122
B
8
128
B
9
117
B
10
118
C
11
131
C
12
129
C
13
123
C
14
123
C
15
125
麻醉诱导时相
t1 t2 t4
108
112
120
117
109
115
H uy nh-F eldt
2336.453
Low er-bound
2336.453
B * G RO U PS phericity A ssum ed 837.627
G reenhouse-G eisser 837.627
H uy nh-F eldt
837.627
Low er-bound
837.627
T es ts of Within-Sub je cts Effe cts
M easure: M E A S U RE _1
S ource
Ty pe III Sum of S quares
B
S phericity A ssum ed 2336.453
G reenhouse-G eisser 2336.453
Within SubjectsMEfafuecthly 's WC hi-Square
重复测量方差分析

重复测量方差分析1. 引言重复测量方差分析(Repeated Measures Analysis of Variance, RM-ANOVA)是一种统计方法,用于分析在不同时间点或不同处理条件下对同一组个体或样本进行多次测量的数据。
通过比较不同时间点或处理条件下的测量结果,我们可以确定是否存在显著的差异,并了解时间或处理对测量结果的潜在影响。
本文档将介绍重复测量方差分析的基本原理、假设条件、计算方法和结果解读,并提供使用Markdown格式编写重复测量方差分析报告的示例。
2. 基本原理重复测量方差分析的基本原理是基于方差分析(ANOVA)方法,但相对于普通的单因素方差分析,重复测量方差分析考虑了测量数据间的相关性。
在重复测量设计中,同一个个体或样本在不同时间点或处理条件下进行多次测量,因此测量数据之间存在一定的相关性。
为了解决相关性的问题,重复测量方差分析使用了独特的矩阵分解方法,将总体方差分解为组内方差和组间方差。
通过计算组间方差与组内方差的比值,可以判断不同时间点或处理条件下的测量结果是否存在显著差异。
3. 假设条件在进行重复测量方差分析之前,需要满足以下假设条件:•正态性假设:每个时间点或处理条件下的测量结果应当服从正态分布。
•同方差性假设:每个时间点或处理条件下的测量结果应具有相同的方差。
•相关性假设:各个时间点或处理条件下的测量结果之间应具有一定的相关性。
如果数据不满足正态性、同方差性或相关性假设,需要采取适当的数据转换、方差齐性检验或相关性分析等方法进行处理。
4. 计算方法重复测量方差分析的计算方法可以通过计算F统计量来进行。
具体步骤如下:步骤1:计算总体方差首先计算总体方差SSTotal,即测量数据的总体波动情况。
步骤2:计算组间方差然后计算组间方差SSBetween,即不同时间点或处理条件下的测量结果之间的差异。
步骤3:计算组内方差接下来计算组内方差SSWithin,即测量数据在同一个时间点或处理条件下的波动情况。
重复测量设计的方差分析

u 随机区组设计 ●处理因素在区组内随机分配; 每个区组内实验单位彼此独立。
第二节
重复测量数据 的两因素两水平分析
高血压患者治疗前后的舒张压(mmHg)
处理组 a1
对照组(安慰剂组)a2
顺序号 治疗前 治疗后 合计(Mj) 顺序号 治疗前 治疗后 合计(Mj)
●处理因素在区组内随b机1分配; b2
118
124
-6
132
122
10
134
132
2
114
96
18
118
124
-6
128
118
10
118
116
2
132
122
10
120
124
-4
134
128
6
1248
1206
42
124.8
120.6
4.2
7.90
9.75
8.02
三、重复测同相量一关受的设试。计者的(单血样因重素复测)量的结果是高度
受试者血糖浓度(mmol/L)
214
17
118
明“服8药”有效; 138
122
260
18
132
重复测量设计与随机区组设计区别
降压药9物与安慰剂间疗12效6差别无统计学1意08义;
234
19
120
注若意球事 对1项称0 1性、质单不因能素满实足1验2,重4则复方测差量分数析据的1分F0析值6是偏大的,2增3大0了犯第一类错2误0 的概率。 134
重复测量设计的方差分析
讲课内容
第一节 重复测量资料的数据特征 第二节 重复测量数据的两因素两水平分析
重复测量数据方差分析

74.4
77.0
75.2 77.4
82.6
80.4
81.2 79.6
68.6
65.0
63.2 63.4
79.0
77.0
73.8 72.5
69.4
66.8
64.4 60.8
72.6
71.0
68.2 70.2
72.4
72.6
72.8 72.6
75.6
73.4
73.4 72.2
80.0
78.0
76.4 74.8
7.90
9.75 8.02
经检验处理组与对照组的差值 d 方差不齐(F S12 / S22 6.58 , P 0.01),不符合两均数比较 t 检验的前提条件。
设置对照旳前后测量设计
前后测量数据间存在明显差别时,并不能阐明这种差 别是由前后测量之间施加旳处理所产生,还是因为存 在于前后两次测量之间旳时间效应所致。
比较
表9-2 两种措施对乳酸饮料中脂肪含量旳测定成果(%)
编号
1 2 3 4 5 6 7 8 9 10
哥特里-罗紫法
0.840 0.591 0.674 0.632 0.687 0.978 0.750 0.730 1.200 0.870
脂肪酸水解法
0.580 0.509 0.500 0.316 0.337 0.517 0.454 0.512 0.997 0.506
受试 对象j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
剂型 k
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
服药后测定时间i(周)
重复测量方差分析

重复测量方差分析1.理论重复测量:指对同一批研究对象先后施加不同的实验(或在不同的场合)进行测量。
重复测量方差分析:研究在不同的实验或(不同场合)之间是否有差异,或条件和处理间交互项是否有差异。
变量应满足:因变量为连续型随机变量,因素为分类变量。
正态性:不同条件下的个体取自相互独立的随机样本,其总体需满足近似正态分布。
方差齐性:不同条件下的总体方差相等。
满足球形假设:因变量的方差-协方差矩阵满足球形交互项项两两比较结果需要借助语法。
图1交互项两两比较语法2.重复测量方差分析操作步骤操作步骤第一步:首先将数据导入spss中并进行赋值,后点击分析、一般线性模型、重复测量。
图2重复测量方差分析操作步骤第一步操作步骤第二步:进入图中对话框后首先定义主体因子名及实验次数点击添加,后添加测量名称(先在测量名称框中输入名称、后点击添加)点击定义。
图3定义因子操作步骤第三步:定义完成后进入图中对话框后、先将对应的变量放入对应的变量框中,点击事后比较将因子框内的因子放入事后比较框中,勾选假定等方差(LSD)、不假定等方差(塔姆黑尼),点击继续。
图4事后比较勾选操作步骤第四步:点击选项将因子框中的因子放入平均值框中,勾选描述统计、齐性检验,点击继续、确定。
图5选项勾选然后重复测量方差分析的主体间因子、描述统计、等同性检验、主体内效应检验、主体因子事后比较结果就出来了。
图6描述统计结果图7主体内效应操作步骤第一步:点击分析、一般线性模型、重复测量。
图8操作步骤第一步第二步:点击定义。
图9点击定义第三步:进入图中对话框后,点击粘贴。
图10点击粘贴第四步:进入语法编辑窗:在红色框内放入对应的语法(可参考图中语法进行编辑),后选中语法点击红色框内的绿色箭头。
图11语法编写5.交互项结果然后重复测量方差分析的主体因子和因子交互项的主体内因子、主体间因子、描述统计、博克斯等同性酱油结果就出来了。
图12描述统计主体内效应检验、主体内对比检验、误差方差的莱文等同性检验。
第十四章 重复测量的资料方差分析

编号
治疗前
治疗后
差值
1
130
114
16
2
124
110
14
3
136
126
10
4
128
116
12
5
122
102
20
6
118
100
18
7
116
98
18
8
138
122
16
9
126
108
18
10
124
106
18
X
126.2
110.2
16.0
S
7.08
9.31
3.13
比较
表3-3 两种方法对乳酸饮料中脂肪含量的测定结果(%)
SS
MS
F
P
总变异
14 0.5328
处理间
2 0.2280 0.1140 11.88 <0.01
区组间
4 0.2284 0.0571 5.95 <0.05
误差
8 0.0764 0.0096
2.重复测量设计区组内即同一受试者 的重复测量数据是高度相关的。例如,计 算表 12-3 中各时间点数据间的相关系数 结果见表 12-6。
表12-4 表 12-3数据的方差分析表
变异来源 自由度 SS MS F
P
总变异
31 5.751
区组(受试者)
7
2.828 0.361 27.77 <0.01
放置时间
3
2.959 0.986 75.85 <0.01
误差
21 0.264 0.013
表12-7 表12-3数据“球对称”检验结果
重复测量资料的方差分析

ˆ ˆ ˆ2 2k 式中中的 s 是协方差矩阵中的第 k 行第 l 列元素, s = ( = (∑ s ) / a 是主对角线元素的平均值, s = (∑ s ) / a 是第 k 行的平均值。
ε ˆ 的取值在 1.0 与 1/(a -1)之间。
ε =ˆˆ ˆ分子自由度ν 1 =ν 1 ⨯ε 分母自由度ν 2 =ν 2 ⨯ε 。
具体计算时可用或ε 代替。
用 调整所得的ν 1 及ν 2 的 F 值查临界值表,得 F α (ν ' ,ν ' ) 。
由于ε≤ 1.0,所以调整后的重复测量资料方差分析重复测量(repeated measure )是指对同一观察对象的同一观察指标在不同时间 点上进行的多次测量,用于分析该观察指标在不同时间上的变化特点。
这类测量 资料在临床和流行病学研究中比较常见,例如,为研究某种药物对高血压病人的 治疗效果,需要定时多次测量受试者的血压,以分析其血压的变动情况。
1、 重复测量资料方差分析中自由度调整方法1.调整系数 ε 的计算有两个调整系数,第一个是 Greenhouse-Geisser 调整系数 ε (G - G ε ) ,计算 公式为ε =a 2(s kl - s 2) 2(a -1)[∑ ∑ (s kl ) 2 - (2a )(∑ (s 2 ) 2 ) + a 2 (s 2 ) 2 ]k l kkl 2 2 ∑∑ s k l 2 kl ) / a 2 是所有元素的总平均值, s 2 kk l2 2 ll2 2 kkll 第 2 个系数是 Huynh-Feldt 调整系数 ε (H - F ε ) 。
研究表明,当 ε 真值在 0.7 以上时,用 ε 进行自由度调整后的统计学结论偏于保守,故 Huynh 和 Feldt 提 出用平均调整值 ε 值进行调整。
ε 值的计算公式为ng (a - 1)ε - 2 (a - 1)[(n - 1)g - (a - 1)ε ]式中中的 g 是对受试对象的某种特征(如年龄或性别)进行分组的组数,n 是每组的观察例数。
第十章方差分析重复测量资料的方差分析

第十章方差分析重复测量资料的方差分析重复测量设计是一种常用的实验设计方法,特指对同一组被试在不同时间点或不同条件下进行多次测量的实验。
在这种实验设计中,同一组被试的多次测量数据间存在相关性,因此不能简单地使用传统的方差分析方法来分析数据。
为了解决这个问题,可以使用重复测量方差分析方法。
重复测量的方差分析方法可以分为两种:一元重复测量方差分析和多元重复测量方差分析。
一元重复测量方差分析是指只有一个自变量的重复测量设计,而多元重复测量方差分析是指有两个及以上自变量的重复测量设计。
一元重复测量方差分析的基本模型是:Yij = μ + αi + βj + (αβ)ij + εij其中,Yij是第i组第j次测量的观察值,μ是总均值,αi是第i 组的效应,βj是第j次测量的效应,(αβ)ij是第i组第j次测量的交互效应,εij是误差项。
在这个模型中,我们要检验的主要效应是组效应,即是否存在组间差异。
同时,还可以检验时间效应、组内差异以及组间×时间的交互效应。
检验组效应的方法可以使用F检验或t检验。
F检验是比较组间均值之间的差异是否显著,而t检验则是比较每个组的均值与总体均值之间的差异是否显著。
另外,还可以使用Levene检验来检验组间方差的齐性。
如果数据满足方差齐性的假设,则可以使用传统的重复测量方差分析方法进行分析;如果不满足方差齐性的假设,则可以使用非参数的方法,如Friedman检验。
多元重复测量方差分析的基本模型是:Yijk = μ + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijk其中,Yijk是第i组第j次第k条件下的观察值,μ是总均值,αi 是第i组的效应,βj是第j次测量的效应,γk是第k条件的效应,(αβ)ij、(αγ)ik、(βγ)jk和(αβγ)ijk是交互效应,εijk是误差项。
多元重复测量方差分析的检验方法与一元重复测量方差分析类似,可以使用F检验或t检验来检验各个主要效应的显著性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重复测量资料方差分析重复测量(repeated measure )是指对同一观察对象的同一观察指标在不同时间点上进行的多次测量,用于分析该观察指标在不同时间上的变化特点。
这类测量资料在临床和流行病学研究中比较常见,例如,为研究某种药物对高血压病人的治疗效果,需要定时多次测量受试者的血压,以分析其血压的变动情况。
1、 重复测量资料方差分析中自由度调整方法1.调整系数ε的计算有两个调整系数,第一个是Greenhouse-Geisser 调整系数)ˆ(ˆεεG G -,计算公式为∑∑∑+---=klkkklkl s a s a s a s s a ])())()(2()()[1()(ˆ22222222222ε式中中的2kl s 是协方差矩阵中的第k 行第l 列元素,2s =22/)(a sklkl∑∑是所有元素的总平均值,222/)(a ss lllkk ∑=是主对角线元素的平均值,as s lkl k /)(22∑=是第k 行的平均值。
εˆ的取值在1.0与1/(a -1)之间。
第2个系数是Huynh-Feldt 调整系数)(εεF H -。
研究表明,当ε真值在0.7以上时,用εˆ进行自由度调整后的统计学结论偏于保守,故Huynh 和Feldt 提出用平均调整值ε值进行调整。
ε值的计算公式为]ˆ)1()1)[(1(2ˆ)1(εεε------=a g n a a ng 式中中的g 是对受试对象的某种特征(如年龄或性别)进行分组的组数,n 是每组的观察例数。
当ε>1.0时,取ε=1.0。
2. 调整规则 只对具有重复测定性质的时间效应的F 值的自由度,和处理时间交互作用的F 值的自由度进行调整。
由于F 值的有两个自由度v 1和v 2,调整的分子自由度ενν⨯=1'1 分母自由度ενν⨯=2'2。
具体计算时可用或ε代替。
用调整所得的'1ν及'2ν的F 值查临界值表,得),('2'1νναF 。
由于ε≤1.0,所以调整后的F 临界值要大于调整前的F 临界值。
2、单因素重复测量资料的方差分析单因素重复测量资料的例子 一项关于不同药物治疗心律失常效果的对比研究。
对9例经常出现心室早搏的病人于用药前测定其心率后进行随机化给药。
一部分病人按A 药→安慰剂(C药)→B 药的顺序给药,另一部分病人按B 药→安慰剂(C 药)→A 药的顺序给药。
安慰剂(C 药)持续一周,作为药物后效的清除期。
比较用药前与各种药物及A 药与B 药之间的心律差别。
图4-12列出9名受试病人在用药前、安慰剂(C 药)期及药(A 与B )期的心率。
方差分析的步骤1. 提出检验假设 检验假设为:H 0:μ1=μ2=μ3=μ4;H 1:μi ≠μh ,至少有一个不等式成立。
2. 计算离均差平方和、自由度及均方 有总离均差平方和、处理因素离均差平方和、受试对象间离均差平方和及受试对象内离均差平方和等。
计算公式为:(1) 总离均差平方和总ss 及总自由度总ν的计算∑∑==-=-=aj ni ij N T s Y Y 1212/)(ss 总,1-=N 总ν(2) 处理因素的离均差平方和处理ss 及自由度处理ν的计算N T T n Y Y n a j j aj j 21212)(1)(ss -=-⨯=∑∑==处理,1-=a 处理ν (3) 受试对象间离均差平方和对象间ss 及自由度对象间ν的计算∑∑==-=-⨯=n i n i i i N T T a Y Y a 1212)(1)(ss 对象间,1-=n 对象间ν受试对象内离均差平方和对象内ss 及自由度对象内ν的计算∑∑==-=-⨯=ni i i ni i ij a T s Y Y a 1212)()(ss 对象内,)1(-=a n 对象内ν(4) 误差的离均差平方和误差ss 与自由度误差ν的计算对象间处理总误差ss ss ss ss --=,)1)(1(--=a n 误差ν根据以上4种离均差平方和与自由度计算所得的均方见表10-2.3. 计算F 值 由于是处理因素的统计学检验,故只计算处理因素的F 值。
误差处理处理MS /MS =F ,处理F 服从处理νν=1与误差νν=2的F 分布本例,在DPS 数据处理系统中,按图4-12方式编辑、定义数据块,然后执行“试验统计”→“重复测量方差分析” →“单因素分析”功能,得到计算结果如下。
DPS 程序给出处理因素的F 值为8.22,p =0.0006,故拒绝无效假设,说明处理因素间的差别具有统计学意义。
由计算结果可以看出,受试对象内离均差平方和等于处理因素的离均差平方和与误差的离均差平方和两项之和。
DPS 系统还给出εˆG G -=0.7774,εF H -= 1.1169。
用εˆ调整的处理因素的分子自由度为0.7774×3=2.33≌2.0;分母自由度为0.7774×24=18.66≌19。
计算得调整自由度后的显著水平p =0.0020,比未调整的F 临界值大。
未调整的概率P =0.0006。
附:平均值之间的多重比较以上用单因素重复测量方差分析方法对心率资料进行分析之后所得到的统计学结论是:拒绝无效假设,即在治疗药物的四个水平中,至少有一个水平的总体平均值不同于其他水平的总体平均值。
为了确定这个特殊总体,必须进行平均值之间的多重比较。
但此处不能采用一般的多重比较方法,因为那些方法都是建立在独立样本基础上的。
这里可采用配对样本的差值t 检验,因为配对样本就是重复测量试验中一种最简单的对比研究设计。
如果用手算,其检验骤如下:1. 计算每一个病人在不同给药情况的差值:d i (j -h )=Y ij -Y ih ,i 为病人号,j ,h 为药物水平号。
若设计时只考虑用药前与各种药物及A 药与B 药之间差别情况,可只计算d i (1-2)、d i (1-3)、d i (1-4)及d i (2-4)四种组合,而不是所有可能6种组合。
2. 根据公式nS d t d=计算差值t 检验统计量,这里可分别得到t 值为:t (1:2)=4.41, t (1:3)=0.03, t (1:4)=3.19, t (2:4)=-0.963. 计算校正临界值t 由于是对同一份资料进行多重比较,为克服累积I 类错误对结果判断所造成的影响,根据Bonferroni 不等式原理对临界t 值进行调整。
首先确定比较的次数c 。
因该研究已事先确定只作4次比较,故c =4。
若在方差分析之后再作多重比较,则只能取所有可能的比较次数。
例如本例在方差分析之后再进行比较时,则比较的次数应为c =4(4-1)/2=6。
其次是选择累积I 类错误的概率α'=0.10.采用双侧检验,每次检验所用的I 类错误概率水准为α=0.10/4=0.0125,自由度v =n -1=8,在DPS 电子表格中输入“=ttest(8,0.0125)”,回车后即可得到自由度为8时t 0.0125的临界值3.2059。
与前面计算出的t 值相比较,可见用药前心率与服用A 药后心率之差具有统计学意义。
用药后心率平均降低12.44次/分,而用药前心率与服安慰剂后心率之间以及A 药与B 药之间心率之差无统计学意义。
用药前心率与用药后心率之差接近显著性水平。
其实,在DPS 数据处理系统中,只要将数据编辑、定义成如图4-12格式,然后执行“试验统计”→“平均数比较” →“Bonferroni 测验”功能,这时系统会给出如下对话界面:在该对话界面,用户可在左边选择比较的组合,在右边上部选择比较方法,这里采用的配对比较,故在比较方法框中用鼠标点击“配对比较“,然后按确定按钮,这时得到计算结果如下。
计算结果当前日期02-8-16 9:08:52比较组别均值差标准差t p1<->2 12.44444 8.47218 4.40658 0.0434581<->3 0.111111 10.83333 0.030769 0.2500001<->4 10.44444 9.83757 3.18507 0.0596052<->4 -2.000000 6.22495 0.963863 0.167539其结果解释和手算结果相同。
3、两因素重复测定资料的方差分析两因素重复测定资料中的因素是指一个组间因素(处理因素)和一个组内因素(时间因素)。
组间因素是指分组或分类变量,它把所有受试对象按分类变量的水平分为几个组。
组内因素是指重复测定的时间变量,例10-1只有组内因素,没有组间因素。
例如一项药物代谢动力学研究,目的是对比某种药物的不同剂型在体内的代谢速度。
剂型分胶囊型和片剂型。
将16名受试对象随机分为两组,每组8名。
一组给予胶囊,另一组给予片剂,分别在服药后1、2、4、6及8小时测定血中的药物浓度。
测定结果见图4-13。
受试者 1 2 3 4 5 6 7 8本例的组间因素是药物剂型,组内因素是测定时间。
各下标的意义是:i (i =1,2,3…,g )为组间因素的分组号,j (j =1,2…,p )为测定时间点的序号,k (1,2,…n i )为组间因素第i 水平的受试对象号,受试对象总数为n 1+n 2+…+n g 。
当各n i 相等时,则用n 代替n i 。
测量值总个数N =g ×n ×p .本例g =2;各组受试对象数n =8,p =5,受试对象总数为2×8=16例,测量值总个数N =80。
方差分析模型:一个组间因素,一个组内因素的方差分析模型为:ijk k i ij j i ijk Y εδαββαμ+++++=)()(模型中各参数的意义是:μ为总体平均值;i α为处理组i 的效应; j β为第j 个测定时间点的效应;ij )(αβ为第i 组在第j 个测定时点上的效应,属交互作用,为固定效应;k i )(δ为第i 组第k 个观察对象的效应,属随机效应;ijk ε为误差项。
给定限制条件为:0)()(1)1111=====∑∑∑∑∑=====nk k i pj ij gi ij pj jgi i δαβαββα模型中的参数估计值与平均值之间的关系见表4-12。
表4-12 模型中的参数与平均值之间的关系Y∑∑∑ijkijk总平均值 i α YY i -()∑∑⨯=jkijk n p Y Y /第i 组平均值 j βY Y j -()∑∑⨯=ikijk j n g Y Y /第j 时点平均值 ()ij αβ Y Y Y Y j i ij +--()∑=kijk ij n Y Y /第i 组第j 时点的平均值()k i δYY ik -jijk ik第i 组第k 个受试者的均值方差分析的步骤1. 离均差平方和、自由度及均方的计算 令∑∑∑=ijkijkYT 为观察值总和,∑∑∑=ijkijk YS 2为观察值平方总和,∑∑=jk ijki YT 为第i 组观察值之和,∑∑=ikijk j Y T ……第j 时点观察值之和,∑=jijk ik Y T 为第i 组第k 个受试对象的观察值之和,∑=kijkij YT 为在(ij )水平上的观察值之和。