行列式的定义、排列
第二章 行列式

d , 当 l j , a1l A1j a2l A2 j L anl Anj 0 , 当 l j .
4.拉普拉斯定理 设在行列式中任意取定了k( 1 k n 1 ) 个行.由
这k行元素所组成的一切k级子式与它们的代数余子式
的乘积之和等于行列式的值。
5. 范德蒙德行列式
1 1 1 1
从而,它本身表示 n!个行列式的和。
1
1
例15.求n阶行列式 D L 1
1
1 L 1L LL 1L 1L
1 1
L 展开后的正项总数。
1 1
解:易知D=2n1 设D的展开式中有P个正项,N个负项.
由于D的每一项不是1就是-1,故
P N n! P N 2n1
从而 P 1 (2n1 n!) 2n2 1 n!
a11 a12 a1n a11 a21 an1
a21 a22 a2n a12 a22 an2
an1 an2 ann a1n a2n ann
性质2 有公因数,可以提取.
a11 a12
a1n
a11 a12
kai1 kai2
kain k ai1 ai2
an1 an2 ann
2.逆序(数)
定义2 在一个排列中,如果一对数的前后位置与大
小顺序相反,即前面的数大于后面的数,那么它们就称 为一个逆序,一个排列中逆序的总数就称为这个排列的 逆序数.
排列 j1 j2 jn 的逆序数记为 ( j1 j2 jn ) 3.奇偶排列
定义3 逆序数为偶数的排列称为偶排列;逆序数为 奇数的排列称为奇排列. 4.对换
二、行列式的计算 n级行列式的计算或证明一般比较麻烦,有一
定的难度。但在计算或证明时有一个中心指导思想: 就是化行列式使其元素中出现较多的零,并向下面 两种形式的行列式化简:
第一章 行列式·行列式的定义

当n=4k+2,4k+3时为奇排列. 当n=4k,4k+1时为偶排列;
线 性 代 数
上一页 下一页 返回 结束
第一章
行列式
第一节 行列式的定义
二、 对换
定义4 在排列中, 将任意两个元素对调, 其余的元素不动, 这种作出新排列的手续叫做对换. 将相邻两个元素对换, 叫做 相邻对换. 例如
线
性
代
数
上一页
下一页
返回
结束
第一章
行列式
第一节 行列式的定义
1 三阶行列式
定义6 行标
a11 D = a 21 a 31 a 12 a 22 a 32
a11 a 21 a 31 a12 a 22 a 32 a13 a 23 a 33
记为三阶行列式.
列标
a 13 a 23 = a11a 22 a 33 + a12 a 23 a 31 + a13 a 21a 32 − a11a 23 a 32 − a12 a 21a 33 − a13 a 22 a 31, a 33
− 1 × 1 × 4 − 2 × ( − 2 ) × ( − 2 ) − ( −4 ) × 2 × ( − 3 )
1 1 2 3 4 9 1 x = 0. x2
[例5] 求解方程
解 方程左端
2 D = 3 x 2 + 4 x + 18 − 9 x − 2 x 2 − 12 = x − 5 x + 6,
由于方程组的系数行列式
−2 1 = 1 × 1 × (− 1) + (− 2 ) × (− 3 ) × (− 1) + 1 × 2 × 1 1 − 3 − 1 × 1 × (− 1) − (− 2) × 2 × (− 1) − 1 × (− 3) × 1 −1 1 −1 = − 5 ≠ 0,
(一)行列式

a11 a12 a 21 a 22
a11a 22 a12 a 21
2.三阶行列式
a11 a12 a13
由 9 个数 aij (i, j 1,2,3) 得到下列式子: a 21 a 22 a 23
a 31 a 32 a 33
称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法, 我们采用递 归法,为此先要定义行列式中元素的余子式及代数余子式的概念.
3、行列式的计算
行列式的计算主要采用以下两种基本方法: (1)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低, 再求出它的值; (2)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值。 注意:结合上述两种方法:利用性质在某一行或某一列中产生很多个“0” 元素,再按这一行或这一列展开;
对角行列式
ann
a11a22 ann
例1 计算下列行列式的值 1 1 2 () 0 4 1 3 2 1 1 (2) 1 1 0 2 1 2 1 1 0 0 0 3 0 2 1
1
a b c d e f g h (3) x 0 0 0 y 0 0 0
(三)行列式的性质与计算
解:方程组的系数行列式
1 2 D 1
4
1 3 4 1 0 2 1 1 1 1 1 1 (1 )
2 3 1 2列 1列 2 1 1 3 4
第三行展开 按
1 3
3 5 2 6 ( 2)( 3)
2 1 4 1
例 2 计算行列式 D 4
3 1 2 1 5 2 3 2 7 0 2 5
解:观察到第二列第四行的元素为 0,而且第二列第一行的元素是 a12 1 ,利用这个元素可以把这一 列其它两个非零元素化为 0,然后按第二列展开.
行列式的三种定义

行列式的三种定义行列式是线性代数中一个非常重要的概念,它具有着许多重要的性质和应用。
在学习行列式的过程中,需要掌握三种不同的定义方法,包括代数定义、几何定义、和递推定义。
本文将从这三个方面一步一步讲解,帮助读者更好地理解行列式的概念和计算方法。
1. 代数定义行列式的代数定义是最基本也是最常用的定义方法。
对于一个n阶矩阵A,其行列式记为|A|或det(A),代数定义为:|A| = Σ(-1)^(i+j) * a_ij * M_ij其中i和j分别表示矩阵A中的第i行和第j列,a_ij表示A中第i行第j列的元素值,M_ij表示去掉矩阵A中第i行和第j列的子矩阵的行列式值。
这个定义可能看起来比较复杂,但是实际上非常好理解。
它的基本思路是将n阶矩阵A转化为n个n-1阶矩阵的运算,然后不断地递归计算,最终得出行列式的值。
这种方法的优点在于,它不仅适用于方阵,也适用于非方阵,所以可以广泛地应用到各种各样的问题中。
2. 几何定义几何定义是行列式另一种常用的定义方法。
它的基本思路是将矩阵A对应的线性变换视为对n维空间中一个向量的拉伸,从而将行列式的值解释为拉伸的比例因子。
具体来说,对于一个n阶矩阵A,其行列式的几何定义为:|A| = S*B/S*A其中S*A和S*B分别表示矩阵A和B对应线性变换后向量的长度,也就是表示空间中一个体积的大小。
这个定义方法非常直观,可以帮助我们更好地理解行列式的含义,也适用于二维和三维空间中的向量计算。
3. 递推定义递推定义是行列式的另一种常见定义方法。
它的基本思路是不断地删减矩阵的行和列,直至得到一个常数值。
这个定义方法虽然比较抽象,但是它有着较高的计算效率和便利性。
对于一个n阶矩阵A,其行列式的递推定义为:|A| = a_11 * |A'|其中A'是去掉A中的第一行和第一列所得的(n-1)阶矩阵。
这个定义方法可以方便地使用递归或循环算法实现,对于大规模矩阵的计算尤其有效。
线性代数-行列式(完整版)

01
对于二元一次方程组,可以直接应用克拉默法则求解
未知数。
02
对于三元一次方程组,需要先判断系数矩阵的行列式
是否为零,若不为零,则可以使用克拉默法则求解。
03
对于更高元次的线性方程组,克拉默法则同样适用,
但计算量会随着元次的增加而急剧增大。
矩阵可逆性判别方法
01
一个方阵可逆的充分必要条件是其行列式不等于零。
行列式基本性质
行列式中如果有两行(或两列)元素成比例,则此行列式等于零。
若行列式的某一行(或某一列)的元素都是两数之和,例如第i行的元素都是两数之 和:$a_{ij}=b_{ij}+c_{ij}$,则此行列式等于两个行列式之和,这两个行列式的第i行 分别为$b_{ij}$和$c_{ij}$,其余各行与原行列式的相应的行相同。
对于一个n阶方阵A,其行列式记作|A|或det(A), 是一个数值。
行列式的值可以通过对矩阵元素进行特定的运算 得到,该运算满足一定的性质。
行列式基本性质
行列式与它的转置行列式相等。
交换行列式的两行(或两列),行列式变号。 行列式的某一行(或某一列)中所有的元素都乘以同一数k,等于用数k乘 此行列式。
克拉默法则介绍
克拉默法则(Cramer's Rule)是线性 代数中一个关于求解线性方程组的定理。
该法则适用于具有相同数量方程的方程组, 且系数矩阵的行列式不为零的情况。
克拉默法则通过计算系数矩阵的行 列式以及将系数矩阵的某一列替换 为常数项列后得到的新矩阵的行列 式,来求解方程组的解。
克拉默法则在方程组求解中应用
应用领域
范德蒙德行列式在多项式插值、数值分析等领域有广 泛应用。
范德蒙德行列式在多项式拟合中应用
1.排列,行列式的定义_546406555

11
a 2 2 a1 2 a 2 1 0
时, 得
x1
b1 a 2 2 a 1 2 b 2 a11a 22 a12 a 21
, x2
a 1 1 b 2 b1 a 2 1 a11a 22 a12 a 21
.
由方程组的四个系数确定, 定义
a11 a21 a12 a22 a11a22 a12 a21
故方程组的解为:
x1
D1 D
1, x 2
D2 D
2, x3
D3 D
1.
11
问题 怎样定义 n 阶行列式?
三、排列与排列的逆序数以及行列式的定义 定义1 由 1, 2, …, n 组成的有序数组称为一个 n 阶排列, 一般 记为: j1 j2 jn . 例如 12…n 是一个 n 阶排列, 叫自然排列, 有多少 n 阶排列? 定义2 在一个排列 j1 j2 jn中如果一个大数排在小数前面, 则 这两个数构成一个逆序. 一个排列的逆序总数叫逆序数, 记为:
a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 a x a x a x b m2 2 mn n m m1 1
(1)
x1 , x 2 ,, xn 表示
st
偶排列 t 个
例如
2112, 132231, 213123, 321312
14
a11 a21
a11 a21 a31
a12 a22
a12 a22 a32
a11a22 a12a 21 (1) (12 ) a11a22 (1) ( 21) a12 a21 ,
第二章(行列式)ppt课件
③
看看D1与D有 何关系。
代
数
则
a aa aaa a aa a aa a aa a aa 1 1 2 23 3 1 22 33 1 1 3 2 13 2 1 3 2 23 1 1 2 2 13 3 1 1 2 33 2
b 1 a 1 2 a 1 3 b 3 a 2 3 a 3 3 b aa b aa b aa b aa b aa b aa 1 2 23 3 3 1 22 3 2 1 33 2 3 1 32 2 2 1 23 3 1 2 33 2
D b 1 2 a 2 2 a 2 3
a 1 1 b 1 a 1 3 D a b a a b a a b a a b a a b a a b a a 2 2 1b 2 a 2 3 1 2 3 3 1 2 1 1 3 3 3 1 3 2 1 1 2 1 3 3 2 1 3 3 1 3 1 1 2 3 a 3 1b 3 a 3 3
代
数
b a 2 a 22 21 b 2 x , x 1 2 a a a 11 12 11 a 12 a a 21 a 22 21 a 22
称符号① 蓝线表示 次对角线
a11 a 21
a12 a 22
看看与矩阵 有什么差别
红线表示 主对角线
a ij 称为它的(i, j)-元, 为二阶行列式。它含有两行、两列, 其下角标i 表示 a ij 所在的行数,j 表示 a ij 所在的列数。
a11 引用符号 a 21 a12 ① a 22
a a a 表示 a 11 22 12 21 , 即令
第二讲 行列式
a1 D2 = c1
n
b1 = a1d1 b1c1 d1
得
D2 n = ∏ (ai di bi ci )
i =1
计算下列行列式: 例3. 计算下列行列式:
x b1 D = b2 M bn a1 c1 0 M 0 a2 L an 0 L 0 0 M c2 L M O 0
L cn
解:该行列式的特点是:非零元素分布在第一行,列 该行列式的特点是:非零元素分布在第一行, 及主对角线上, 形分布.根据这一特点, 及主对角线上,成"爪"形分布.根据这一特点,可借助 主对角线上的元素利用倍加变换将第一行(列)元素化为 主对角线上的元素利用倍加变换将第一行( 即可. 零.即可.
aj cj r j +1 + r1
D
j =1,L, n
=
n a b j j ∏ ci x ∑ c j =1 i =1 j n
1 + x12 x2 x1 L xn x1 2 x1 x2 1 + x2 L xn x2 例4 计算 Dn = M M M 2 x1 xn x2 xn L 1 + xn
bn
0 N
a b c d
1 1
0 O
d n 1 0 0 dn
c c
n
n 1
d
0
n 1
0
都按最后一行展开
an d n D2 n2 bn cn D2 n2
由此得递推公式: 由此得递推公式: D2 n = (an d n bn cn ) D2 n 2 即 而
D2 n = ∏ (ai di bi ci ) D2
(8)计算 (8)计算 D2 n = 0
;
an O
第一章 行列式
第一章 行列式本章主要内容是行列式的定义、性质及其计算方法.此外还介绍了用行列式解线性方程组的克莱姆法则.§1. 全排列的逆序数本节考虑由1,2,3,…, n 这n 个数排成的不重复数字的全排列,不同的全排列共有n !个.以后对这种全排列简称排列.例如,由1,2,3这三个数有以下3!=6个排列:123, 132, 213, 231, 312, 321定义 设1p 2p …n p 是1,2,…, n 的一个排列,考察其中任意两个数,如果大的数排在小的数之前,就说有一个逆序.所有逆序的总数称为排列1p 2p …n p 的逆序数,记作τ(1p 2p …n p ).逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列. 例1. 计算由1,2,3排成的六个排列的逆序数 [解] 排列123没有逆序,逆序数τ(123)=0. 排列132中,仅有3在2之前一个逆序,τ(132)=1. 排列213中,仅有2在1之前一个逆序,τ(213)=1. 排列231中,2在1之前,3在1前,τ(231)=1+1=2. 排列312中,3在1,2之前,τ(312)=2.排列321中,3在2,1之前,又2在1前,τ(321)=2+1=3. 其中132,213,321为奇排列,123,231,312为偶排列. 例2. 求τ(42315)及τ(54321).[解] τ(42315)=3+1+1=5,τ(54321)=4+3+2+1=10. 性质1. 交换排列中的两个数,排列的奇偶性改变. [证] 先讨论交换相邻两数的情形.设排列为 1p ……S p a b 1+S p …m p (1)交换a 与b ,得排列1p ……S p b a 1+S p …m p(2) 任意一个i p 与a 或b 的大小关系在(1)与(2)两个排列中是一样的.所以当a >b 时,排列(2)的逆序数比排列(1)的逆序数减少1,当a <b 时,排列(2)的逆序数比排列(1)的逆序数增加1.因此,当(1)为奇排列时,(2)为偶排列;当(1)为偶排列时,(2)为奇排列.即排列(1)与(2)有不同的奇偶性.再讨论交换不相邻两个数的情形.设排列为1p ……S p a 1c …k c b 1+S p …m p (3)交换a 与b ,得排列1p ……S p b 1c …k c a 1+S p …m p (4)我们也可以对排列(3)中的a 依次与1c ,…,k c 进行k 次相邻的交换,得到排列 1p ……S p 1c …k c a b 1+S p …m p再对这个排列中的b 依次与a ,k c ,…,1c 进行k +1次相邻的交换,就得到排列(4).因此,经过2k +1(奇数)次相邻的交换可以由(3)得到(4).由前面已证明的结论可知,进行奇数次相邻的交换,排列的奇偶性要改变,所以排列(3)与排列(4)有不同的奇偶性. (证毕)性质2 由1,2,…,n (n >1)所作的n !个排列中,奇排列与偶排列各占一半. [证] 设奇排列有s 个,偶排列有t 个.对每一个奇排列都交换1与2,就得到s 个不同的偶排列.因此,s ≤t .同理可证t ≤s ,故s =t .(证毕)§2. 行列式的定义将2n 个数ij a (i ,j =1,2,…,n )排成n 个横行及n 个竖列的方形表格,两边再用竖线围起, 就得到n 阶行列式的记号:nnn n nn a a a a a a a a a ............ (21)2222111211其中每个数ij a 称为行列式的元素,它有两个下标,第一个下标表示该元素所在的行数,第二个下标表示所在的列数,ij a 就是i 行j 列的元素.行列式的行数是从上到下依次为第一行,第二行,…,第n 行.列数是从左到右依次为第一列,第二列,…,第n 列.行列式有两条对角线,由左上到右下那条对角钱称为主对角线,在主对角线上的元素为11a ,22a ,…,nn a .由右上到左下的对角线有时称为副对角线.n 阶行列式是由代数和组成的一个数,其定义如下.定义n 阶行列式为nnn n nna a a a a a a a a ............ (21)2222111211=21212121)1(p p P P P )P P (P a a nn ∑⋯⋯-τ…n np a其中τ(21p p …n p )是列标排列21p p …n p 的逆序数,∑nP P P 21表示对所有n !个排列求和.上述定义说明n 阶行列式是含有n !项的代数和,其中每一项是不同行不同列的n 个元素的乘积,当把这n 个元素按行标从小到大的顺序排列时,其列标排列21p p …n p 的逆序数τ(21p p …n p )若为偶数,这项冠以“+”号,若为奇数,这项冠以“-”号.根据行列式的定义,一二三阶行列式可以计算如下: 一阶行列式:11a =110)1(a -=11a 二阶行列式:22211211a a a a =22110)1(a a -+21121)1(a a -=2211a a -2112a a三阶行列式:333231232221131211a a a a a a a a a =3322110)1(a a a -+3123122)1(a a a -+3221132)1(a a a -+3122133)1(a a a -=332211a a a +312312a a a +322113a a a -312213a a a -332112a a a -322311a a a 如果在三阶行列式中,将冠以“+”号的项的三个数用实线加以连接,将冠以“-”号的项的三个数用虚线加以连接,就可以得到如下图形:利用这个图形,很容易写出三阶行列式的六项代数和.例1. 计算以下两个行列式:(1)1D =4321 (2)2D =432501123--[解] (1)1D =3241⨯-⨯=64-=2-(2)2D =)3(1)1(252403-⨯⨯-+⨯⨯+⨯⨯412)3(5320)1(⨯⨯--⨯⨯-⨯⨯--=84503200-+-++=60四阶行列式有4!=24项,要写出并计算这24个乘积的代数和是很麻烦的.对于三阶以上的高阶行列式,一般要利用下节要介绍的行列式的性质进行计算.不过,像下面例2的几个特殊的高阶行列式,却可以用定义直接得到它的值.+3321121)1(a a a -+3223111)1(a a a -例2. 利用行列式的定义计算下列的行列式1D =nn n n a a a a a a21222111000 2D =nn nn a a a a a a 000222112113D =nna a a000002211 4D =nnnn n n n n a a a a a a 112121000--[解] 行列式1D 在主对角线之上的元素全为0,这种行列式称为下三角行列式.根据定义,行列式是由不同行不同列元素的乘积的代数和,因为含0元素的项必为0,只要考察不含0元素的项.设这种项为:n n np p p )P P (P a a a 212121)1(τ-因为1D 的第一行除了11a 之外为0,所以必有11p a =11a ,1D 的第二行除了21a ,22a 之外都为0,但21a 与11a 位于同一列,与11a 不同列的只有22a ,所以22p a =22a ,依次类推,可知1D 中不含0元素的项只有如下一项:nn n )a a a 221112()1(⋅⋅⋅-τ=nn a a a 2211因此,1D =nn a a a 22112D 的主对角线之下的元素都是0,这种行列式称为上三角行列式.依次讨论第n 行,第1-n 行,…,第1行,可知2D 中不含0元素的项与1D 相同,所以2D =nn a a a 2211上三角与下三角行列式统称为三角行列式.行列式3D 中除对角线上的元素之外,其它元素都是0,这种行列式称为对角行列式,它是三角行列式的特例,因此3D =nn a a a 2211以上说明三角行列式及对角行列式的值都等于主对角线上元素的乘积.4D 在副对角线上方的元素为0,它不是三角行列式.类似于前面的讨论可知4D 中不含0元素的项只有121121121()1(n n n n )n n a a a a ---- τ,因为)121( -n n τ=12)1(+++- n =)1(21-n n ,所以 4D =1211212)1()1(n n n n n n a a a a ----即4D 等于副对角线上元素的乘积再乘以2)1()1(--n n .例3. 设)(x f =)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a nn n n n n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯,其中各元素)(x a ij 都是可导函数.试证)(x f '=)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a nn n n n n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯'''+)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a nn n n n n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯'''+…+)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a nn n nn n '''⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(即对行列式求导,等于对各行求一次导的n 个行列式的和) [证] 根据行列式定义,有)(x f '='⎥⎦⎤⎢⎣⎡-∑⋯n n n P P nP P P P P P x a x a x a 12121)()()()1(21)( τ=[]∑⋯'-nn n P P nP P P P P x a x a x a1211)()()()1(21)( τ=∑⋯'-nn n P P nP P P P P x a x a x a 1211)()()()1(21)( τ+ +'-∑⋯nn n P P nP P P P P x a x a x a 1211)()()()1(21)(τ +∑⋯'-nn n P P nPP P P P x a x a x a 1211)()()()1(21)( τ=)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a nn n n n n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯'''+)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a nn n n n n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯'''+…+)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a nn n nn n '''⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (证毕)下面的定理是对行列式定义的另一种说法. 定理. 对于上述行列式定义中的任意一项n n nP P P )P P P a a a 212121()1(τ-若对乘积21P a 22P a …n nP a 的因子顺序进行若干次交换,变为乘积11j i a 22j i a …n n j i a ,则有n n nP P P )P P P a a a 212121()1(τ-=n n n n j i j i j i j j j )i i i a a a 22112121)(()1(ττ+-换句话说,如果行列式各项的乘积21P a 22P a …n nP a 的因子不是按行标从小到大的自然顺序排列,而是任意排列成11j i a 22j i a …n n j i a ,则这项应冠以符号)((2121)1(n n j j j )i i i ⋯+⋯-ττ[证] 因为21P a 22P a …n nP a =11j i a 22j i a …n n j i a ,所以只要证明)P P P n 21()1(τ-= )((2121)1(n n j j j )i i i ττ+⋯-设21P a 22P a …n nP a 的因子经过k 次交换,成为11j i a 22j i a …n n j i a ,则行标排列1 2…n 经过k 次交换,成为排列n i i i 21.列标排列n p p p 21经过k 次交换,成为排列n j j j ⋯21,根据§1性质1,若k 为奇数,则行标排列与列标排列都同时改变奇偶性,因而)12()1(n τ-=)()(2121)1()1(n n P P P i i i , ττ---=)(21)1(n j j j τ--若k 为偶数,则行标排列与列标排列的奇偶性都不变,因而有)12()1(n τ-=)()(2121)1()1(n n P P P i i i , ττ--=)(21)1(n j j j τ-不论k 是哪一种情况,都有)()12(21)1(n p p p n ττ+-=)()(2121)1(n n j j j i i i ττ+-因为0)12(=n τ,所以要证的等式成立.(证毕)§3. 行列式的性质设n 阶行列式D =nn n n nn a a a a a a a a a ............ (212222111211)将行列式D 的第一行,第二行,…,第n 行,依次改写成第一列,第二列,…,第n 列,得到行列式 TD =nnn nn n a a a a a a a a a ............ (212)221212111T D 称为D 的转置行列式.D 中i 行j 列的元素ij a ,在T D 中位于j 行i 列的位置上.性质1. 行列式与其转置行列式相等. [证] D 中任意一项为n n nP P P )P P P a a a 212121()1(⋯-τ其中21P a 22P a …n nP a 也是T D 中不同行不同列元素的乘积,但在TD 中,其行标排列为n p p p ⋯21,列标排列则为12…n ,根据上节定理,在T D 中,这个乘积应冠以符号)()12((2121)1()1(n n P P P n )P P P τττ-=-⋯+这就证明了D 中每一项也是TD 中的一项,D 中不同的项在TD 中也是不同的,并且D 与TD 的项数一样,都是n !,因此有D=TD .(证毕)由性质1可知,行列式中的行与列具有同等地位,行列式的性质凡是对行成立的,对列也必定成立,反之也一样.因此,以下的行列式性质,我们只对行的情形加以证明,将行列式转置就可得到列的相应性质,以后不再说明.性质2. 交换行列式的两行(列),行列式变号. [证] 设D =⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯jn j j in i i a a a a a a 2121行第行第j i ←← 交换第i 行与第j 行,得1D =⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯in i i jn j j a a a a a a 2121行第行第j i ←← 其中D 与D 1中未写出的行的元素都对应相同. 根据行列式定义,D 中任一项为n j i n j i nP jP iP P P P P P a a a a 111)()1(τ-其中n j i nP jP iP P a a a a 11也是D 1中不同行不同列元素的乘积,其列标排列没有变化,但行标排列为n i j 1它是由自然顺序n j i 1交换i ,j 得到的,由§1性质1,有)1()1(n i j τ-= )1()1(n j i τ--=0)1(--=1-.根据上节定理,乘积n j i nP jP iP P a a a a 11在D 1中应冠以符号)()1(1)1(n j i P P P P n i j ττ+-=)(1)1(n j i P P P P τ--与在D 中的符号相反,这说明将D 中每一项变号,就得到D 1的所有项,故有D=-D 1.(证毕)推论 若行列式有两行(列)相同,则此行列式等于零.[证] 将这两行交换,行列式未改变,由性质2得到D=-D ,所以D=0.性质3. 行列式某一行(列)中所有元素都乘以同一个数k ,等于用数k 乘此行列式,即有 ⋯⋯⋯⋯⋯⋯⋯⋯in i i ka ka ka 21=k ⋯⋯⋯⋯⋯⋯⋯⋯in i i a a a 21 两个行列式中除第i 行之外,未写出的元素都对应相同.(这性质也可以叙述成行列式某行(列)的公因子可以提到行列式外面相乘)[证] 根据行列式定义,有 等式左边=npn ip P P P P P P a ka a i n i n)()1(1111)(τ∑⋯-=npn ip P P P P P P a a a ki n i n1111)()1(τ∑-=等式右边. (证毕)性质4. 行列式中如有两行(列)成比例,则此行列式等于零.即D =⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯jn j j in i i a a a ka ka ka 2121=0[证] 根据性质3,将D 的第i 行提出公因子k 以后,行列式的第i 行与第j 行相等,由性质2的推论得D=0. (证毕)性质5. 若行列式的某行(列)的元素都是两数之和,例如第i 行的元素都是两数之和:D =nn n n in in i i i i na a ab a b a b a a a a21221111211)()()(⋯⋯⋯⋯+++⋯⋯⋯⋯则D 等于下列两个行列式之和:D =nn n n in i i na a a a a a a a a 212111211⋯⋯⋯⋯⋯⋯⋯⋯+nnn n in i i n a a a b b b a a a 212111211⋯⋯⋯⋯⋯⋯⋯⋯ [证] 记等式右边两个行列式为D 1,D 2,则根据行列式的定义,有D=n i i n nnp ip ip P P P P P a b a a )()1(1111)(+-⋯∑τ=n i n nnp ip P P P P P a a a 1111)()1(τ∑⋯-+n i n nnp ip P P P P P a b a 1111)()1(τ∑-=D 1+D 2 (证毕)性质6. 将行列式的某行(列)乘以数k ,再加到另一行(列)上,行列式的值不变,即D =⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯jn j j in i i a a a a a a 2121=⋯⋯⋯⋯⋯⋯⋯⋯+++⋯⋯⋯⋯jn j j jnin j i j i a a a ka a ka a ka a 212211=1D D 与D 1中未写出的元素对应相同.[证] 由性质5及性质4,有1D =⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯jn j j in i i a a a a a a 2121+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯jn j j jnj i a a a ka ka ka 2121=D+0=D 在举例之前,先引进行列式运算的几个记号: (1)“交换i ,j 两行(列)”记作j i r r ↔)(j i c c ↔. (2)“0≠k 乘i 行(列)”记作i kr )(i kc(3)“k 乘j 行(列)加到i 行(列)上”记作j i kr r +)(j i kc c +要注意:行列式经运算j i kr r +后,第i 行改变,但第j 行不变.同样,运算j i kc c +使行列式的第i 列改变,但第j 列不变.例1. 计算四阶行列式 D=123412121124021231-----[解] 计算数字的高阶行列式,有一种方法是利用行列式性质,尤其是用行列式的性质6,将行列式化为上三角行列式,于是上三角行列式主对角线上元素的乘积就是行列式的值.本题先以2乘第1行,再以2除行列式,使行列式的元素都为整数,方便计算.再用行列式性质(主要是性质6),将其化为上三角行列式.整个计算过程如下:1490134013800132211234121211240132212141312221--------++-r r r r rr r D15001100011001322194149013400110013221242342----+r r r r r r 400110011013--=)4()1(1221-⨯-⨯⨯⨯=4例2.计算行列式D =2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a[解] 这是文字元素的行列式,计算这种行列式,要先分析行列式的特点,采用适当的行列式性质进行化简计算.本行列式的特点是各行的构造相类似,对列作变换可达到化简的目的.具体运算如下.341223c c c c c c D ---2212221222122212523212523212523212523212222223342222++++-++++++++++++d d c c b b a a c c d d d d c c c c b b b b a a a a =0注意:在对行列式连续做两次以上的运算时,第一次运算以后,行列式已变化,第二次再作运算时,是对变化后的行列式作运算,而不是对原来行列式作运算.例如连续作两次运算12c c -,23c c -,当作了运算12c c -后,行列式的第2列已变化,再作23c c -时,应是第三列减去变化后的行列式的第二列,如果还是减去原行列式的第二列,就会产生错误.避免错误的方法之一,就是做了一次运算就将行列式写出来,再做第二次运算.但这样做又太麻烦了.要不麻烦,就像我们在本题中所做的那样,连续对行列式作运算34c c -,23c c -,在作运算34c c -时,第二三列并未改变,因此再做23c c -的运算时,对原行列式作23c c -,与对变化后的行列式作23c c -是一样的结果.例3. 计算n 阶行列式D =ab b b a b b b a ⋯⋯⋯⋯ (主对角线元素都为a ,其它元素都为b ).[解] 本行列式的特点是各行元素之和相等,若将第2列之后各列都加到第1列,将公因子提出,再对行作运算,就可化为上三角行列式了.具体运算过程如下.D a b b n a b a b n a b b b n a cc c n )1()1()1(21-+⋯⋯⋯⋯-+-++++=])1([b n a -+ab b a b b 111⋯⋯⋯⋯ 11213r r r r r r n --- ])1([b n a -+ba b a b a b b b -⋯⋯⋯⋯⋯-- 0000001=1)]()1([---+n b a b n a例4. 计算行列式D =111222+++z yzxzyz y xyxz xy x [解] 第一二三行依次提公因子x ,y ,z ,得D =zz y xz yy x z y xx xyz111+++再对第一二三列依次乘x ,y ,z ,得D =111222222222+++z y x z y x z y x行列式各行之和相等,可按例3的方法计算,得D11111222222222222222+++++++++++z y z y z y z y z y z y =)1(222+++z y x 11111222222++z y z y z y10101)1(222221312z y z y x r r r r +++--=1222+++z y x§4. 行列式按行(列)展开定义. 在n 阶行列式中,划去元素ij a 所在的第i 行和第j 列剩下的1-n 阶行列式记作ij M ,称为元素ij a 的余子式,而ij A =ij j i M +-)1(称为元素ij a 的代数余子式.例如三阶行列式D =321321321c c c b b b a a a则1行1列元素1a 的余子式11M 及代数余子式11A 为11M =3232c c b b ,11A =1111)1(M +-=11M =3232c c b b 2行3列元素3b 的余子式23M 及代数余子式23A 为23M =2121c c a a ,23A =2332)1(M +-=23M -=2121c c a a -由定义可知,当元素所在的(行数+列数)为偶数时,代数余子式和余子式相等,为奇数时,代数余子式和余子式相差一个符号.引理. 在n 阶行列式D 的第i 行所有元素中,除元素ij a 外,其余元素都为零,则D=ij a ij A .[证] 先证i =j =1的情形.设D =nnn n na a a a a a a 21222211100⋯⋯⋯⋯根据行列式定义,有 D=n n nnp p P P P P P P P a a a 21212121)()1(τ∑- (11>P 时,11P a =0) =n n nnp p P P P P a a a 222211)1(1)1(τ∑- (1,2≠n ,P P ) =n n nnp P P P P P a a a 2222)(11)1( τ∑-=1111M a =1111A a再证一般情形.设D =nnnj njnj n ij n j j j a a a a a a a a a a a111111111110000+-+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯将D 中第i 行依次与第1-i 行,2-i 行,…,1行相交换,再将得到的行列式的第j 列依次与第1-j 列,2-j 列,…,1列相交换,设得到的行列式为D 1.则D 1中1行1列的元素为ij a ,D 1中1行1列元素的余子式11M '=D 中i 行j 列的余子式ij M .由前面证过的结论,有 1D =ij a 11M '=ij a ij M 因为D 1是由D 经过)1()1(-+-j i 次行、列的交换得到的,所以有D =ij ij ij j i ij ij ij j i j i A a M a M a D =-=-=-++-+-)1()1()1(1)1()1(. (证毕)定理. 设n 阶行列式D =nnn n n n a a a a a a a a a 212222111211⋯⋯⋯⋯则有按第 i 行展开式:D =in in i i i i A a A a A a +++ 2211.(i =1,2,…,n ) 按第j 列展开式:D =nj nj j j j j A a A a A a +++ 2211.(j =1,2,…,n ) [证]D =nnn n in i i na a a a a a a a a212111211000000+⋯+++⋯+++⋯++根据§3行列式性质5,D 等于n 个行列式之和,即D =nn n n i n a a a a a a a2111121100+nn n n i n a a a a a a a2121121100+…+nnn n in n a a a a a a a211121100 根据引理,就得到按第i 行的展开式D =in in i i i i A a A a A a +++ 2211按列的展开式同理可证.(证毕)推论 行列式某一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于零.即jn in j i j i A a A a A a +++ 2211=0,)(j i ≠,和 nj ni j i j i A a A a A a +++ 2211=0,)(j i ≠[证] 根据定理,将D 按j 行展开,有jn jn j j j j A a A a A a +⋯++2211=nnn jn j in i n a a a a a a a a111111行第行第j i ←← 在等式两边,将1j a ,2j a ,…, jn a 依次换作1i a ,2i a ,…in a ,(jnj j ,A A A ,,21不含第j 行元素)得jn in j i j i A a A a A a +⋯++2211=nnn in i in i n a a a a a a a a111111行第行第j i ←← 右边行列式有两行相同,等于零.故得jn in j i j i A a A a A a +++ 2211=0 (j i ≠)同理可证列的情况. (证毕)利用行列式的展开式,可以将计算n 阶行列式化为计算n -1阶行列式.对于数字元素的行列式,经常将某行(列)的元素除一个元素外都化为零,再按该行(列)展开,达到降阶的目的.例1 计算行列式D=1234121211240132-----[解] 第4列比较简单,并且还有一个0,所以我们对行作运算,使第4列除一个元素外,其余元素都是0,具体计算如下.022121201120132-按第4列展开02211213243)1(1--+-⨯2204013212----r r 按第3列展开224031)1(--+--=)]2)(4(20[---⨯-=8 例2 设D =2235007022220403-- 求(1)D 中第三行各元素的代数余子式之和34333231A A A A +++ (2)D 中第四行各元素余子式之和44434241M M M M +++[解](1)将34333231A A A A +++看作D 中第3行元素改为1,1,1,1后,再按第3行展开的展开式,故有34333231A A A A +++=2235111122220403-=0 (2)44434241M M M M +++=44434241A A A A +-+-=1111007022220403---按第3行展开1112224323)1(7--+-∙- =28)4(7-=-⨯例3 证明n 阶)1(>n 范德蒙(Vandermonde )行列式n V =112112222121111---⋯⋯⋯⋯n nn n n n x x x x x x x x x =∏≥>≥-1)(j i n j i x x=⋅----)())()((1141312x x x x x x x x n )()())((122423-----⋅n n n x x x x x x x x(其中记号∏表示同类因子的连乘积.)[证] 对阶数n 用数学归纳法.2=n 时,有2V =2111x x =12x x -=∏≥>≥-12)(j i jix x ,结论成立.设结论对1-n 阶范德蒙行列式成立,即设223222232232111---⋯⋯⋯⋯n nn n n n x x x x x x x x x =∏≥>≥-2)(j i n j i x x 下面要证明对n 阶范德蒙行列式,结论也成立.对n V ,从第n 行开始,直到第2行,将后行减去前行的1x 倍,即对n V 依次作运算11--n n r x r ,211---n n r x r ,…,112r x r -,得n V =)()()(0)()()(011111213231222113312211312x n x x x x x x x x x x x x x x x x x x x x x x n n n n n n n n ------------按第1列展开后,再提出各列的公因子,就得n V =)())((11312x x x x x x n -⋯--2232232111---⋯⋯⋯⋯n nn n nx x x x x x 右端的行列式是1-n 阶的范德蒙行列式,由上面的归纳假设得n V =)())((11312x x x x x x n --- ∏≥>≥-2)(j i n jix x =∏≥>≥-1)(j i n jix x即结论对n 阶范德蒙行列式也成立.由归纳法,该等式对一切2≥n 的自然数都成立.(证毕)n 阶范德蒙行列式等于2nC =2)1(-n n 个形如j i x x -的因子的乘积,例如4V 是24C =6个形如j i x x -的因子的乘积,即4V =343332312423222143211111x x x x x x x x x x x x =∏≥>≥-24)(j i j i x x =))()()()()((342423141312x x x x x x x x x x x x ------当n x x x ,,21 中有两个数相等时,就有n V =0,只有这n 个数都互不相等时,才有n V ≠0.例4 计算n 阶行列式D=na bbbb b a b bb b a ⋯⋯⋯⋯⋯21,),,2,1,(n i a b i =≠[解] 利用加边法计算.即添加一行一列,将D 表示成n +1阶行列式,再利用行列式性质进行运算得出结果.具体作法如下.将下面右边n +1阶行列式按第1列展开,可知下面的等式成立D=n a bb b b b a b bb b a bb b b00121,(右边为n +1阶)以1-乘第1行加到其它各行,得D=ba b a b a b b bbn --⋯⋯⋯⋯⋯⋯----100010001121因为0≠-b a i ),,2,1(n i ⋯=,依次以b a -11,b a -21,…,ba n -1乘第2,3,…,n +1列再加到第1列,得到D=ba b a b a b b b b b a bn ni i ----+∑= 000000000001211这是上三角行列式,故得D=)())()(1(211b a b a b a ba bn ni i ----+∑=§5. 解线性方程组的克莱姆(Cramer )法则本章最后,介绍用行列式解线方程组的克莱姆法则,即下面的定理. 定理(克莱姆法则)设有n 个方程n 个未知量的线性方程组⎪⎪⎩⎪⎪⎨⎧=+++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 若系数行列式D=nnn n n n a a a a a a a a a 212222111211⋯⋯⋯⋯≠0则线性方程组(1)有唯一解D D x 11=,D D x 22=,…,DDx n n = 其中),,2,1(n j D j ⋯=是用常数项n b b b ,,,21⋯替换D 中第j 列所得的行列式,即j D =nnj n n j n n nj j n j j a a b a a a a b a a a a b a a .......................................1,1,121,221,22111,111,111+-+-+-[证] 这里只对2=n 的情形证明,一般情况的证明留到第二章给出.设方程组为⎩⎨⎧=+=+22221211212111b x a x a b x a x a 系数行列式D =22211211a a a a =012212211≠-a a a a以22a 乘第1方程,12a 乘第2方程,再相减得121122211)(x a a a a -=122221a b a b -以21a 乘第1方程,11a 乘第2方程,再将第2方程减第1方程得221122211)(x a a a a -=211112a b a b -因11a 0211222≠-a a a ,故得1x =12212211122221a a a a a b a b --=22211211222121a a a a a b a b =DD 1, 2x =12212211211112a a a a a b a b --=22211211221111a a a a b a b a =D D 2. 以上证明了如果方程组有解,则它的解只能是 1x =D D 1,2x =D D2 (*) 其中D=22211211a a a a ,D 1=222121a b a b ,D 2=221111b a b a若将得到的1x ,2x 的表达式(*)代入方程组中,容易验证(*)式确是方程组的解.(证毕)例 解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+-+-=+-=--=+-+067452296385243214324214321x x x x x x x x x x x x x x[解] 系数行列式为D=674121200311512-----674121201277011970------按1列展开21212771197------21c c +21112701192----21112715110231-----r r 列展开按1127152---=1271511=0271051321571211≠=-=⨯-⨯方程组有唯一解.再计算出1D =816740212560391518=------,2D =1086701215060911582-=-----3D =276041252069311812-=---,4D =270741512090318512=-----根据克莱姆法则得3278111===D D x ,42710822-=-==D D x 1272733-=-==D D x ,1272744===D D x方程组的唯一解为1x =3,2x =-4,3x =-1,4x =1.。
行列式的定义是什么
行列式的定义是什么行列式在数学中,是由解线性方程组产生的一种算式。
行列式的定义是什么?以下是店铺为大家整理的关于行列式的定义,欢迎大家前来阅读!行列式的定义一个矩阵A的行列式有一个乍看之下很奇怪的定义:其中s g n(σ)是排列σ的符号差。
对于比较小的矩阵,比如说二阶和三阶的矩阵,行列式表达如下,有些像是主对角线(左上至右下)元素的乘积减去副对角线(右上至左下)元素的乘积(见图中红线和蓝线)。
2阶: 3阶:。
但对于阶数较大的矩阵,行列式有 n!项,并不是这样的形式。
二维向量组的行列式行列式是向量形成的平行四边形的面积设P是一个二维的有向欧几里得空间,即一个所谓的欧几里得平面。
两个向量 X和X’的行列式是:经计算可知,行列式表示的是向量 X和X ’形成的平行四边形的有向面积。
并有如下性质:行列式为零当且仅当两个向量共线(线性相关),这时平行四边形退化成一条直线。
如果以逆时针方向为正向的话,有向面积的意义是:平行四边形面积为正当且仅当向量X和X’逆时针排列(如图)。
行列式是一个双线性映射。
三维向量组的行列式设E是一个三维的有向欧几里得空间。
三个三维向量的行列式是:这时的行列式表示 X、X’和X’’三个向量形成的平行六面体的有向体积,也叫做这三个向量的混合积。
同样的,可以观察到如下性质:行列式为零当且仅当三个向量共线或者共面(三者线性相关),这时平行六面体退化为平面图形,体积为零。
这时行列式是一个“三线性映射”,也就是说,对第一个向量有,对第二、第三个向量也是如此。
基底选择在以上的行列式中,我们不加选择地将向量在所谓的正交基下分解,实际上在不同的基底之下,行列式的值并不相同。
这并不是说平行六面体的体积不唯一。
恰恰相反,基底变换可以看作线性映射对基的作用,而不同基底下的行列式代表了基底变换对“体积”的影响。
可以证明,对于所有同定向的标准正交基底,向量组的行列式的值是一样的。
也就是说,如果我们选择的基底都是“单位长度”,并且两两正交,那么在这样的基底之下,平行六面体的体积是唯一的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j1 j2 j3
n阶行列式:
(1) an1 ann j1 jn a11 a1n
( j1 jn )
a1 j1 anjn
i1in
(i1in ) ( 1 ) ai11 ainn
(2)对角线法则 a11 a12 a13
a21 a22 a31 a32
a23 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号.
2 1 1
3 1 1 1 2 3 1 1
1
1 2 1 1 1 1 2 2 1 1 3 1 5 0,
同理可得
2 2 D1 1 0 1 D3 2 1 1 1 1 1
(6)式称为数表(5)所确定的三阶行列式.
a11 a12 a13 D a21 a22 a23 .列标 a31 a32 a33 行标 三阶行列式的计算 a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a21 a22 a31 a32 a33 a31 a32
D a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31 .
x 2 Байду номын сангаас x 6,
由 x 2 5 x 0 解得
x 2 或 x 3.
例4
解线性方程组 x1 2 x2 x3 2, 2 x1 x2 3 x3 1, x x x 0. 1 2 3
解
由于方程组的系数行列式
1 D 2 1
24 2018/1/4
2、对换
对换
在排列中 将任意两个元素对调 其余的元素不动 就得到另一个排列 这种对排列的变换方法称为对换 将相邻两个元素对换 叫做相邻对换 举例 在排列21354中 对换1与4 得到的排列是24351 排列21354的逆序数是2 排列24351的逆序数是5 经过对换 排列的奇偶性发生了变化
25 2018/1/4
>>> 定理 一个排列中的任意两个元素对换 排列改变奇偶性 推论 奇排列变成标准排列的对换次数为奇数 偶排列变成 标准排列的对换次数为偶数 这是因为 由定理1知对换的次数就是排列奇偶性的变 化次数 而标准排列是偶排列 因此知推论成立
26 2018/1/4
当 a11a22 a12a21 0 时, 方程组的解为
b1a22 a12b2 a11b2 b1a21 x1 , x2 . a11a22 a12a21 a11a22 a12a21
由方程组的四个系数确定.
(3)
定义
由四个数排成二行二列(横排称行、竖排
称列)的数表
a11 a12 a21 a22 ( 4)
23 2018/1/4
逆序数的计算 在排列p1p2 pn中 如果pi的前面有ti个大于pi的数 就 说元素pi的逆序数是ti排列的逆序数为 t1t2 tn 举例 在排列32514中 t 2 t 1 t 2 t 0 t 0 1 3 4 5 2 排列32514的逆序数为 (32514 )5 标准排列12345的逆序数是多少? 奇排列与偶排列 逆序数为奇数的排列叫做奇排列 逆序数为偶数的 排列叫做偶排列 举例 排列32514的逆序数是5 它是奇排列 标准排列12345的逆序数是0 它是偶排列
若
b1 b2 b 1
a11 a12 a13 D a21 a22 a23 a31 a32 a33 a12 a13 a22 a23 , a32 a33
记
b1 D1 b2 b3
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 a11 a12 a13 D a21 a22 a23 a31 a32 a33 a11 b1 D2 a21 b2 a31 b3 a13 a23 , a33
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 a12 D , a21 a22 a11 b1 D2 . a21 b2
则二元线性方程组的解为
b1
a12
a11
b1
D1 b2 a22 x1 , D a11 a12 a21 a22
注意
D2 a21 b2 x2 . D a11 a12 a21 a22
分母都为原方程组的系数行列式.
例1 求解二元线性方程组
3 x1 2 x2 12, 2 x1 x2 1.
解
D
3 2 2 1
3 ( 4) 7 0,
D1
12 2 1 1
14, D2
a11 a12 a13 的系数行列式 D a21 a22 a23 0, a31 a32 a33
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
11 行列式的定义
1.1.1 二阶行列式与三阶行列式 1.1.2 排列与对换 1.1.3 n阶行列式
1 2018/1/4
一、二阶行列式的引入
用消元法解二元线性方程组
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
1 2
1 a22 : 2 a12 :
得
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 a11 a12 b1 D3 a21 a22 b2 . a31 a32 b3
a22
a11 x1 a12 x2 b1 , 对于二元线性方程组 a21 x1 a22 x2 b2 .
若记 系数行列式
a11 a12 D , a21 a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 a12 D , a21 a22 b1 D1 b2 a12 , a22
a11 a12 a13 D a21 a22 a23 a31 a32 a33
a11 a12 a13 D a21 a22 a23 a31 a32 a33 a11 a12 b1 D3 a21 a22 b2 . a31 a32 b3
b1 D1 b2 b3
a12 a13 a22 a23 , a32 a33 a13 a23 , a33
3 12 2 1
21,
D1 14 D2 21 x1 2, x 2 3. D 7 D 7
二、三阶行列式
定义
设有9个数排成 3行3列的数表 a11 a12 a21 a22 a13 a23 a33 ( 5)
记 a11
a31 a32
a21 a31
a12 a13 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a a a a a a a a a 11 23 32 12 21 33 13 22 31, a32 a33
a11 b1 D2 a21 b2 a31 b3
则三元线性方程组的解为:
D1 x1 , D D2 x2 , D D3 x3 . D
1
2 -4
例2 计算三阶行列式 D - 2 2 解 按对角线法则,有
1 -3 4 -2
D 1 2 ( 2 ) 2 1 ( 3 ) ( 4 ) ( 2 ) 4
1 1 4 2 ( 2 ) ( 2 ) ( 4 ) 2 ( 3 )
4 6 32 4 8 24 14.
1 1
例3 解
1 x 0. x2
求解方程 2 3 4 9
方程左端
D 3 x 2 4 x 18 9 x 2 x 2 12
表达式 a11a22 a12a21称为数表(4)所确定的二阶 行列式,并记作
即
a11 a12 a21 a22
( 5)
a11 a12 D a11a22 a12a21 . a21 a22
二阶行列式的计算
主对角线 副对角线
对角线法则
a11a22 a12a21 .
a11 a12
a12
Pn的计算公式
举例
Pnn(n1)(n2) 321n!
由a b c组成的所有排列为abc acb bac bca cab cba abb是排列吗?
22 2018/1/4
标准排列 在n个自然数的全排列中排列123 n称为标准排列 逆序与逆序数 在一个排列中 如果某两个元素的先后次序与标准 排列的次序不同 就说这两个元素构成一个逆序 一个排列中所有逆序的总数叫做这个排列的逆序数 记作 提示 以下我们只讨论n个自然数的全排列
采用先选定百位数 再选定十位数 最后选定个位 数的步骤:
百位数有3种选法 十位数有2种选法 个位数有1种选法 因为3216 所以可以组成6个没有重复数字的三位数 这6个三位数是
123 132 213 231 312 321
21 2018/1/4
1、排列
我们把 n 个不同的对象 1,2,….n( 称为元素 ) 排成一列 叫做一个n元排列(也称n阶排列) n个不同元素的所有排列的总数 通常用Pn表示