自动控制实验报告二

合集下载

自动控制实训实验报告

自动控制实训实验报告

一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。

二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。

本实验主要研究典型环节的阶跃响应和频率响应。

1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。

阶跃响应可以反映系统的稳定性、快速性和准确性。

2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。

频率响应可以反映系统的动态性能和抗干扰能力。

三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。

四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录阶跃响应曲线。

(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。

2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入正弦信号,改变频率,观察并记录频率响应曲线。

(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。

3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。

(3)根据期望的性能指标,设计校正环节,并搭建校正电路。

(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。

(5)分析校正后的阶跃响应曲线,验证校正效果。

五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。

(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。

2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。

自动控制原理 matlab实验报告

自动控制原理 matlab实验报告

自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。

三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。

四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。

会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。

(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。

1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。

幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。

自动控制原理实验报告 (2)

自动控制原理实验报告 (2)

实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。

实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。

利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。

T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。

自动控制原理实验报告

自动控制原理实验报告

学生实验报告PID 控制器是一种线性控制器,它根据给定值()t r 与实际输出值()t y 构成控制偏差()t e()()()t y t r t e -=(2.2.1)将偏差的比例()P 、积分()I 和微分()D 通过线性组合构成控制量,对被控对象进行控制,故称PID 控制器。

其控制规律为()()()()⎥⎦⎤⎢⎣⎡++=⎰dt t de T dt t e T t e K t u D tp 011(2.2.2)或写成传递函数的形式()()()⎪⎪⎭⎫ ⎝⎛++==s T s T K s E s U s G D p 111(2.2.3) 式中:p K ——比例系数;I T ——积分时间常数;D T ——微分时间常数。

在控制系统设计和仿真中,也将传递函数写成()()()sK s K s K s K s K K s E s U s G I p D D Ip ++=++==2(2.2.4) 式中:P K ——比例系数;I K ——积分系数;D K ——微分系数。

上式从根轨迹角度看,相当于给系统增加了一个位于原点的极点和两个位置可变的零点。

简单说来,PID 控制器各校正环节的作用如下:A 、比例环节:成比例地反映控制系统的偏差信号()t e ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。

B 、积分环节:主要用于消除稳态误差,提高系统的型别。

积分作用的强弱取决于积分时间常数I T ,I T 越大,积分作用越弱,反之则越强。

C 、微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。

2、 PID 参数的确定方法 (1) 根轨迹法确定PID 参数 PID 的数学模型可化为:()s K s K s K s G IP D ++=2从仿真曲线看出未校正系统震荡不稳定。

设球杆系统PID 校正的结构图为如图2.2.5 示:要求采用凑试法设计PID校正环节,使系统性能指标达到调节时间小于令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.1,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.4,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.6,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:PID参数整定:Time Offset(s) Kp Ki Kd SampleTime sT(s) %5 2.5 0.9 1.5 -1 23 4%学生实验报告从仿真曲线看出未校正系统震荡不稳定。

自控实验报告实验二

自控实验报告实验二

自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。

通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。

二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。

三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。

一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。

二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。

通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。

四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。

设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。

使用示波器观察并记录系统的输出响应。

2、二阶系统的阶跃响应实验同样按照电路图连接好设备。

改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。

用示波器记录输出响应。

五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。

随着时间的推移,输出逐渐稳定在一个固定值。

当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。

2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。

当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。

通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。

自控实验报告实验二

自控实验报告实验二

实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、实验内容1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。

2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。

2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数nω对系统的影响。

3.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G试判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

三、实验报告1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。

1) 程序代码如下: >> num=[1 3 7];den=[1 4 6 4 1 0]; impulse(num,den) grid曲线如下:2) 程序代码如下:num=[1 3 7 0]; den=[1 4 6 4 1 0]; step(num,den) grid曲线如下:2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。

自动控制实验报告二-二阶系统阶跃响应

自动控制实验报告二-二阶系统阶跃响应

实验二二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。

定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。

2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。

二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2) 检查USB线是否连接好,在实验项目下拉框中选中实验,点击按钮,出现参数设置对话框设置好参数,按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。

电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。

检查无误后接通电源。

4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。

5)鼠标单击按钮,弹出实验课题参数设置对话框。

在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。

自动控制实训实验报告

自动控制实训实验报告

一、实验目的1. 熟悉自动控制系统的基本组成和原理。

2. 掌握常用控制元件的性能和特点。

3. 学会搭建简单的自动控制系统。

4. 通过实验,加深对自动控制理论知识的理解。

二、实验原理自动控制系统是一种通过反馈机制实现被控对象状态控制的系统。

它主要由被控对象、控制器和执行器组成。

控制器根据被控对象的实际状态与期望状态之间的偏差,产生控制信号,驱动执行器实现对被控对象的控制。

三、实验仪器与设备1. 自动控制实训台2. 电源3. 控制器4. 执行器5. 测量仪器四、实验内容1. 搭建简单控制系统(1)根据实验要求,搭建一个简单的自动控制系统,如图1所示。

(2)检查系统连接是否正确,确保各个元件连接牢固。

(3)开启电源,观察系统运行情况。

2. 观察控制过程(1)通过手动调节控制器,使被控对象的输出达到期望值。

(2)观察控制过程,分析控制效果。

3. 改变系统参数(1)改变控制器的参数,观察系统响应的变化。

(2)分析参数变化对系统性能的影响。

4. 故障排除(1)人为制造故障,观察系统响应。

(2)分析故障原因,并排除故障。

五、实验结果与分析1. 搭建简单控制系统通过搭建简单的控制系统,我们掌握了自动控制系统的基本组成和原理。

在实验过程中,我们观察到控制器通过调整控制信号,使被控对象的输出达到期望值。

2. 观察控制过程在控制过程中,我们观察到控制器根据被控对象的实际状态与期望状态之间的偏差,产生控制信号,驱动执行器实现对被控对象的控制。

通过手动调节控制器,我们可以使被控对象的输出达到期望值。

3. 改变系统参数在改变控制器参数的过程中,我们观察到系统响应的变化。

当控制器参数改变时,系统响应速度、稳定性和超调量等性能指标都会发生变化。

这表明控制器参数对系统性能有重要影响。

4. 故障排除在故障排除过程中,我们学会了分析故障原因,并采取相应措施排除故障。

这有助于我们更好地理解自动控制系统的运行原理。

六、实验总结通过本次实验,我们掌握了自动控制系统的基本组成和原理,学会了搭建简单的自动控制系统,并加深了对自动控制理论知识的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理实验报告
实验三 基于MATLAB 的根轨迹绘制与性能分析
一、实验目的
1、利用计算机完成控制系统的根轨迹作图。

2、了解控制系统根轨迹图的一般规律。

3、利用根轨迹进行系统分析。

二、实验设备
PC 机,MATLAB 仿真软件。

三、实验内容
1、作系统)2)(1()(01++=
s s s k s G g 的根轨迹图,记录并观察曲线,依此分析系统的性能。

2、作系统)164)(1()
1()(202++-+=s s s s s k s G g 的根轨迹图,记录并观察曲线,依
此分析系统的性能。

3、作系统)2()3()(03++=
s s s k s G g 的根轨迹图,记录并观察曲线,依此分析系统
的性能。

四、实验步骤
给定如下系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。

1. )2)(1()(01++=
s s s k s G g
程序如下:
clear;
num=[1];
den=[1,3,2,0];
rlocus(num,den);
[k,r]=rlocfind(num,den); 根轨迹图如下:
要求:(a) 准确记录根轨迹的起点、终点于根轨迹的条数。

根轨迹的起点为:Kg=0时,开环传递函数的极点。

即为:0,-1,-2 根轨迹的终点为:无限零点。

根轨迹的条数为3条。

(b) 确定根轨迹的分离点与相应的根轨迹增益。

根轨迹的分离点为:(-0.42+0.0644i ,0),根轨迹增益为0.392
(c)确定临界稳定时的根轨迹增益。

临界稳定时Kg=6, 根轨迹增益为:k=5.9582
2.)164)(1()
1()(202++-+=s s s s s k s G g
程序如下:
clear;
num=[1,1];
den=[1,3,12,-16,0];
rlocus(num,den);
[k,r]=rlocfind(num,den);
根轨迹图如下:
要求:确定根轨迹与虚轴交点并确定使得系统稳定的根轨迹增益取值范围根轨迹与虚轴交点如图:
根轨迹与虚轴交点为:(0,-0.0122+2.54i),(0,-0.00748+1.62i),
(0,-0.00748-1.61i) ,(0,-0.0151-2.53i)
使得系统稳定的根轨迹增益取值范围:23.9<k<30.6
3.)2()
3()(03++=s s s k s G g
程序如下:
clear;
num=[1,3];
den=[1,2,0];
rlocus(num,den);
[k,r]=rlocfind(num,den);
根轨迹图如下:
要求:(a )确定系统具有最大超调量M Pmax 时的根轨迹增益。

系统具有最大超调量M Pmax 时为1.17,根轨迹增益为2.01
(b )确定系统阶跃响应无超调量时的根轨迹增益取值范围。

系统阶跃响应无超调量时的根轨迹增益取值范围为:
6.93<k<
7.46和0.536<k<0.582
五、预习要求
1、仔细阅读实验指导书。

2、预习相关控制理论知识。

3、完成相关仿真程序的书面设计。

4、有条件的可提前上机练习。

六、实验报告要求
1、记录给定系统与显示的根轨迹图。

2、完成上述各题要求,分析闭环极点在s平面上的位置与系统动态性能的关系。

答:闭环极点在s平面上的位置与系统动态性能的关系有:
如果闭环系统有两个负实极点,那么单位阶跃响应是指数型的。

如果两个实极点相距较远,则暂态过程主要决定于离虚轴近的极点。

如果闭环极点为一对复极点,单位阶跃响应是衰减振荡型的,它由两个特征参数决定,即阻尼比和自然振荡角频率。

如果θ不变,则随着ωn的增加,极点将沿矢量方向延伸ξωn是表征系统指数衰减的系数,它决定系统的调节时间。

如果闭环系统除一对复极点外还有一个零点,则将增大超调量。

如果大于5倍左右,则可以不计零点的影响。

闭环系统中一对相距很近的实极点和零点称为偶子,偶子对系统暂态响应很小,可以忽略不计。

相关文档
最新文档