导数的概念导学案(14)
高等数学-导数的概念-教案

辽宁省农村信用社招聘:时政考点模拟试题本卷共分为1大题50小题,作答时间为180分钟,总分100分,60分及格。
一、单项选择题(共50题,每题2分。
每题的备选项中,只有一个最符合题意)1.(★★☆☆☆)张某窃得同事一张银行借记卡及身份证,向丈夫何某谎称路上所拾。
张某与何某根据身份证号码试出了借记卡密码,持卡消费5000元。
关于本案,下列哪一说法是正确的__A.张某与何某均构成盗窃罪B.张某与何某均构成信用卡诈骗罪C.张某构成盗窃罪,何某构成信用卡诈骗罪D.张某构成信用卡诈骗罪,何某不构成犯罪2.我国对法律溯及力问题,实行的原则是__。
A.法在任何情况下均溯及既往B.法在任何情况下均不溯及既往C.法在一般情况下溯及既往,但为了更好地保护公民、法人或者其他组织的权利和利益而作的特别规定除外D.法在一般情况下不溯及既往,但为了更好地保护公民、法人或者其他组织的权利和利益而作的特别规定除外3.出席中国共产党第一次全国代表大会的12名党员代表所代表的党员数为__。
A.40多名B.100多名C.70多名D.50多名4.人民群众之所以是历史的创造者,其根本的原因在于__。
A.人民群众是人口的大多数B.人民群众是社会生产力的体现者C.人民群众具有先进思想D.人民群众通晓历史发展规律5. 中国倡导包容性增长,根本目的是__。
A.让所有的人都能参与到经济社会发展过程中B.在可持续发展中实现经济社会协调发展C.消除社会阶层,社会群体之间的隔阂和裂隙D.让经济全球化和经济发展成果惠及所有国家6. 社会主义法治理念是中国特色社会主义理论体系的组成部分,这个理论体系包含邓小平理论。
20世纪70年代末至90年代初,中共中央领导集体的主要代表邓小平曾创造性地提出一系列具体的法律思想。
判断下列哪一项不是邓小平理论法律思想的重要内容__ A.“有法可依、有法必依、执法必严、违法必究”的十六字方针B.一手抓建设和改革,一手抓法制C.用法律措施维护安定团结的政治局面D.明确提出“依法治国,建设社会主义法治国家”的基本方略7. 以下是客观唯心主义的是__。
《导数的概念》教案

《导数的概念》教案教案:导数的概念1.教学目标:1.1.知识目标:学生能够了解导数的概念及其基本性质。
1.2.能力目标:学生能够应用导数的概念解决实际问题。
1.3.情感目标:通过对导数的学习,培养学生的分析和解决问题的能力,并培养学生的兴趣和热爱数学的情感。
2.教学重点:2.1.导数的定义和概念。
2.2.导数的基本性质。
3.教学难点:3.1.导数的基本性质的理解和应用。
3.2.导数的计算和应用。
4.教学过程:4.1.导入(10分钟):引入导数的概念,通过一个简单的例子说明导数的作用和意义。
4.2.导数的定义(20分钟):4.2.1.简单介绍导数的定义和符号表示。
4.2.2.讲解导数的物理意义和几何意义。
4.2.3.通过实例和图像说明导数的计算。
4.3.导数的基本性质(30分钟):4.3.1.导数的定义区间和存在性。
4.3.2.导数的唯一性和连续性。
4.3.3.导数的运算法则。
4.4.导数的应用(30分钟):4.4.1.导数在函数图像的研究中的应用。
4.4.2.导数在最值问题中的应用。
4.4.3.导数在速度和加速度中的应用。
4.5.小结(10分钟):对导数的概念及其应用进行总结,并布置相应的作业。
5.教学手段:5.1.板书与讲解相结合的教学方法。
5.2.生动形象的实例和图像辅助讲解。
5.3.教师提问和学生互动的教学方式。
6.教学资源:教材、黑板、彩色粉笔、投影仪等。
7.教学评价:7.1.反馈评价:学生在课堂上积极参与,课堂气氛活跃。
7.2.笔试评价:设计一套综合性的习题,考查学生对导数概念理解和应用的能力。
7.3.直观评价:观察学生在计算和解决实际问题时运用导数的能力和方法。
8.教学延伸:8.1.导数的计算和应用在微积分的后续学习中具有重要的作用,学生还需继续加深对导数概念和应用的理解。
8.2.练习不同类型的导数计算题目,提高运算能力和分析解决问题的能力。
8.3.进一步了解导数的发展与应用,拓宽数学知识的广度。
导数的概念教学设计

《导数的概念》教学设计1. 教学目标(1)知识与技能目标:掌握导数的概念,并能够利用导数的定义计算导数.(2)过程与方法目标:通过引入导数的概念这一过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想;提高类比归纳、抽象概括的思维能力.(3)情感、态度与价值观目标:通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.2. 教学重、难点重点:导数的定义和利用定义如何计算导数.难点:对导数概念的理解.3.教学方法1. 教法:引导式教学法在提出问题的背景下,给学生创设自主探究、合作交流的空间,指导学生类比探究形成导数概念的形成.2. 教学手段:多媒体辅助教学4.教学过程(一)情境引入导数的概念和其它的数学概念一样是源于人类的实践。
导数的思想最初是由法国数学家费马(Fermat)为研究极值问题而引入的,但导数作为微积分的最主要的概念,却是英国数学家牛顿(Newton)和德国数学家莱布尼兹(Leibniz)在研究力学与几何学的过程中建立起来的。
17世纪数学家遇到的三类问题:一是光的反射问题。
光的反射和折射在17世纪是一个十分盛行的研究课题,早在公元1世纪,古希腊数学家海伦(Heron)就已经证明了光的反射定律:光射向平面时,入射角等于反射角。
海伦还将该定律推广到圆弧的情形,此时,入射光与反射光与圆弧的切线所成角相等。
那么,对于其他曲线,光又如何反射呢?这就需要确定曲线的切线。
A图 1 光在平面上的反射图 2 光在球面上的反射二是曲线运动的速度问题。
对于直线运动,速度方向与位移方向相同或相反,但如何确定曲线运动的速度方向呢?这就需要确定曲线的切线。
三是曲线的交角问题。
曲线的交角是一个古老的难题。
自古希腊以来,人们对圆弧和直线构成的角——牛头角(图3中AB弧与AC构成的角)和弓形角(图4中AB与ACB弧所构成的角)即有过很多争议。
《导数的概念教案》

教案名称:导数的概念教案课时安排:2课时教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学方法:1. 采用讲解、示例、练习相结合的方式进行教学;2. 引导学生通过观察、思考、讨论,发现导数的本质;3. 利用多媒体课件辅助教学,提高学生的学习兴趣。
教学内容:第一课时一、导入(5分钟)1. 复习相关概念:函数、极限的概念;2. 提问:函数在某一点的极限有什么意义?二、新课讲解(15分钟)1. 引入导数的定义:导数是函数在某一点的瞬时变化率;2. 解释导数的物理意义:描述物体在某一时刻的瞬时速度;3. 示例讲解:利用极限的概念推导函数的导数;4. 强调导数的计算方法:求导数的关键是找到函数的导数公式。
三、课堂练习(10分钟)1. 请学生独立完成练习题,巩固导数的定义和计算方法;2. 教师选取部分学生的作业进行讲解和评价。
第二课时四、新课讲解(15分钟)1. 介绍导数的运算法则:加法、减法、乘法、除法的导数法则;2. 示例讲解:利用导数法则计算复合函数的导数;3. 强调导数在实际问题中的应用:优化问题、物理问题等。
五、课堂练习(10分钟)1. 请学生独立完成练习题,巩固导数的运算法则和应用;2. 教师选取部分学生的作业进行讲解和评价。
教学评价:1. 课后作业:检查学生对导数的定义、计算方法和应用的掌握程度;2. 课堂表现:观察学生在课堂上的参与程度、思考能力和合作意识。
教学反思:本节课通过讲解、示例和练习,使学生初步掌握了导数的定义、计算方法和应用。
在教学过程中,要注意引导学生积极参与,提高学生的思考能力和合作意识。
加强对学生的个别辅导,提高学生的学习效果。
教案名称:导数的概念教案课时安排:2课时教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学方法:1. 采用讲解、示例、练习相结合的方式进行教学;2. 引导学生通过观察、思考、讨论,发现导数的本质;3. 利用多媒体课件辅助教学,提高学生的学习兴趣。
导数概念教案

导数概念教案教案标题:导数概念教案教学目标:1. 理解导数的概念和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学准备:1. 教材:包含导数概念和计算方法的相关章节;2. 教具:黑板、白板、彩色粉笔或马克笔、计算器;3. 学具:练习题集、实际问题案例。
教学过程:引入:1. 引导学生回顾函数的概念和图像特征;2. 提问学生是否知道如何描述函数在某一点的变化情况;3. 引出导数的概念,并解释导数是描述函数变化速率的工具。
讲解导数的定义:1. 介绍导数的定义:函数f(x)在点x处的导数表示函数在该点的变化率,记作f'(x)或dy/dx;2. 解释导数的几何意义:导数是函数曲线在某一点处的切线斜率;3. 通过几个示例图形化展示导数的概念。
计算导数的方法:1. 讲解导数的计算方法:使用极限的概念,计算函数在某一点的导数;2. 指导学生通过求导法则计算导数:常数法则、幂法则、和差法则、乘法法则和除法法则;3. 给予学生一些练习题,巩固导数计算方法。
应用导数解决问题:1. 引导学生思考导数在实际问题中的应用:如速度、加速度、最优化问题等;2. 通过实际问题案例,让学生应用导数解决相关问题;3. 强调导数在实际问题中的重要性和实用性。
总结:1. 总结导数的概念和意义;2. 强调导数的计算方法和应用;3. 鼓励学生继续练习和应用导数,提高数学问题解决能力。
教学延伸:1. 鼓励学生自主学习更多导数的性质和应用;2. 引导学生进一步探究导数的图像和曲线变化特征;3. 提供更多的实际问题案例,让学生应用导数解决更复杂的问题。
教学评估:1. 教师观察学生对导数概念的理解和计算方法的掌握情况;2. 课堂练习题的完成情况和准确度;3. 学生在实际问题解决中的应用能力。
导数的计算导学案

导数的计算导学案导数是微积分中的一个重要概念,它描述了函数在其中一点的变化速率。
导数的计算方法非常重要,下面将介绍导数的计算导学案。
一、导数的定义根据导数的定义,函数f在点x处的导数可以通过极限的方法得到:f'(x) = lim(h->0) (f(x+h) - f(x))/h二、导数的基本计算方法根据导数的定义,我们可以利用一些基本的规则计算导数:1.常数的导数为0若c为常数,则d(c)/dx = 02.幂函数的导数对于幂函数y = x^n(n为正整数),导数为dy/dx = nx^(n-1)例如,y = x^2,则dy/dx = 2x3.指数函数的导数对于指数函数y = a^x(a>0且a≠1),导数为dy/dx = a^x * ln(a)例如,y = e^x,则dy/dx = e^x * ln(e) = e^x4.对数函数的导数对于对数函数y = log_a(x)(a>0且a≠1),导数为dy/dx =(1/ln(a)) * (1/x)特别地,自然对数函数y = ln(x)的导数为dy/dx = 1/x5.三角函数的导数对于三角函数,有以下导数公式:sin(x)的导数为cos(x)cos(x)的导数为-sin(x)tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)tan(x)csc(x)的导数为-csc(x)cot(x)6.反三角函数的导数对于反三角函数,有以下导数公式:arcsin(x)的导数为1/√(1-x^2)arccos(x)的导数为-1/√(1-x^2)arctan(x)的导数为1/(1+x^2)7.速度与加速度若y表示物体的位移,t表示时间,则速度v的导数为dy/dt,加速度a的导数为d^2y/dt^2三、导数的基本运算法则导数具有一些基本的运算法则,例如和差法则、积法则和商法则等,它们可以辅助我们计算复合函数的导数。
导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 理解导数的定义和物理意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
二、教学内容1. 导数的定义:引入极限的概念,讲解导数的定义及求导法则;2. 导数的计算:讲解基本函数的导数公式,四则运算法则,复合函数的链式法则;3. 导数的应用:讲解导数在实际问题中的应用,如运动物体的瞬时速度、加速度,函数的单调性、极值等。
三、教学重点与难点1. 导数的定义及求导法则;2. 导数的计算方法;3. 导数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解导数的定义、求导法则及应用;2. 利用例题,演示导数的计算过程;3. 引导学生运用导数解决实际问题。
五、教学过程1. 引入极限的概念,讲解导数的定义:导数表示函数在某一点的瞬时变化率,通过极限的概念来理解导数;2. 讲解基本函数的导数公式,四则运算法则,复合函数的链式法则:引导学生掌握导数的计算方法;3. 利用例题,演示导数的计算过程:让学生通过例题,加深对导数计算方法的理解;4. 讲解导数在实际问题中的应用:如运动物体的瞬时速度、加速度,函数的单调性、极值等,培养学生运用导数解决实际问题的能力;5. 课堂练习:布置相关练习题,巩固所学知识。
教学评价:通过课堂讲解、例题演示、练习题等方式,评价学生对导数的概念、计算方法及应用的掌握程度。
六、教学拓展1. 导数的几何意义:讲解导数表示曲线在某一点的切线斜率,引导学生理解导数的几何interpretation;2. 导数与函数的单调性:讲解导数与函数单调性的关系,引导学生理解如何利用导数判断函数的单调性;3. 导数与函数的极值:讲解导数与函数极值的关系,引导学生如何利用导数求函数的极值。
七、教学案例分析1. 分析实际问题,引导学生运用导数求解:如物体运动的速度、加速度问题,函数的单调性问题等;2. 分析复杂函数的导数求解过程:引导学生理解并掌握复杂函数导数的求解方法。
高等数学导数的概念教案

1. 让学生理解导数的概念,掌握导数的定义和性质。
2. 培养学生运用导数解决实际问题的能力。
3. 引导学生掌握求导数的基本方法。
二、教学内容1. 导数的定义2. 导数的性质3. 求导数的方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、性质和求导数的方法。
2. 难点:导数的直观理解和求复杂函数的导数。
四、教学过程1. 导入:通过生活中的实例,如速度、加速度等,引导学生思考导数的概念。
2. 讲解:讲解导数的定义,引导学生理解导数的几何意义。
3. 练习:让学生独立完成一些简单函数的导数计算,巩固导数的求法。
4. 应用:结合实际问题,让学生运用导数解决问题,体会导数的应用价值。
5. 总结:对本节课的内容进行总结,强调导数的重要性和求导数的方法。
五、课后作业1. 完成教材上的课后练习题。
2. 找一些实际问题,运用导数解决。
3. 复习本节课的内容,准备下一节课的学习。
1. 评价学生对导数概念的理解程度。
2. 评价学生掌握导数性质和求导数方法的情况。
3. 评价学生在实际问题中运用导数的熟练程度。
七、教学策略1. 采用生动的生活实例引入导数概念,提高学生的学习兴趣。
2. 通过多媒体手段展示导数的几何意义,增强学生的直观感受。
3. 设计具有梯度的练习题,让学生在实践中掌握求导数的方法。
4. 鼓励学生参与课堂讨论,提高学生的思维能力和解决问题的能力。
八、教学资源1. 教材:高等数学导数部分。
2. 多媒体课件:用于展示导数的几何意义和实例分析。
3. 练习题库:用于巩固所学知识和提高解题能力。
4. 网络资源:用于拓展学生视野,了解导数在实际应用中的广泛性。
九、教学反思在教学过程中,要及时关注学生的学习反馈,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,要加强针对性训练,提高学生的理解能力和应用能力。
注重培养学生的数学思维,激发学生学习高等数学的兴趣。
十、教学拓展1. 导数在微积分学中的应用:极限、积分等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
。
【展示点评】------我自信
具体要求: 、看规范(书写、格式)
、看对错。找出关键词,补充、完善。
、点评内容,讲方法规律。
、面带微笑,全面展示自我。
【整合提升】------我能做
、构建本节课的知识体系。
、理解并熟记基本知识点。
、不明白的问题及时请教老师。※学习小结
-------------------------------------------------------------------------------------
【达标检测】------一定行(对所学内容进行巩固、深化)
巩固练习:
二、新课导学
※学习探究
探究任务一:瞬时速度
问题1:在高台跳水运动中,运动员在不同时刻的速度是
新知:
1.瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.
探究任务二:导数
问题2:瞬时速度是平均速度 当 趋近于0时的
得导数的定义:函数 在 处的瞬时变化率是 ,我们称它为函数 在 处的导数,记作 或 即
(1)当t=2,Δt=0.01时,求 .
(2)当t=2,Δt=0.001时,求 .
(3)求质点M在t=2时的瞬时速度
小结:
利用导数的定义求导,步骤为:
第一步,求函数的增量 ;
第二步:求平均变化率
第三步:取极限得导数 .
※动手试试
练1.在例1中,计算第3h和第5h时原油温度的瞬时变化率,并说明它们的意义.
小结:由导数定义,高度h关于时间t的导数就是运动员的瞬时速度,气球半径关于体积V的导数就是气球的瞬时膨胀率.
课堂探究案
-------------------------------------------------------------------------
【合作探究】------我参与
合作探究一:对学、互学,小组里学习对子互相探讨,完成本节的知识总结和归纳。
1.一直线运动的物体,从时间 到 时,物体的位移为 ,那么 为()
A.从时间 到 时,物体的平均速度;
B.在 时刻时该物体的瞬时速度;
C.当时间为 时物体的速度;
D.从时间 到 时物体的平均速度
2. 在 =1处的导数为()
A.2 B.2 C. D.1
3.在 中, 不可能()
A.大于0 B.小于0
C.等于0 D.大于0或小于0
合作探究二:群学,全体起立,组内探讨疑问,展示收获,完成探究任务。
我的疑问
我的收获
※典型例题
例1将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第xh时,原油的温度(单位: )为 .计算第2h和第6h时,原油温度的瞬时变化率,并说明它们的意义.
例2已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),
2、完成导学案上相关的任务.
课前预习案
【自主学习】------大胆试
一、课前准备
预习教材P74~P76,找出疑惑之处)
复习1:气球的体积V与半径 之间的关系是 ,求当空气容量V从0增加到1时,气球的平均膨胀率.
复习2:高台跳水运动中,运平均速度.
.高台跳水运动中, 时运动员相对于水面的高度是: (单位: m),求运动员在 时的瞬时速度,并解释此时的运动状况.
4.如果质点A按规律 运动,则在 时的瞬时速度为
5.若 ,则 等于
--------------------------------------------------------------------------------------
课后训练案
--------------------------------------------------------------------------------------
河高“自主探究,合作学习”高效课堂高二数学文科选修1-1导学案(14)
3.1导数的概念导学案
编制人:王彩霞审核人:张新涛
【学习目标】
1.掌握用极限给瞬时速度下的精确的定义;
2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度.
3掌握导数的定义,会利用导数的定义求导。
【使用说明及学法指导】
1、认真阅读课本74-76页的内容。
注意:(1)函数应在点 的附近有定义,否则导数不存在
(2)在定义导数的极限式中, 趋近于0可正、可负、但不为0,而 可以为0
(3) 是函数 对自变量 在 范围内的平均变化率,它的几何意义是过曲线 上点( )及点
)的割线斜率
(4)导数 是函数 在点 的处瞬时变化率,它反映的函数 在点 处变化的快慢程度.