无理数大小的比较
无理数的常见形式

无理数的常见形式,科学计数法无理数概念:无理数即无限不循环小数。
明确无理数的存在无理数来自实践,无理数并不“无理”,也不是人们臆想出来的,它是实实在在存在的,例如:(1)一个直角三角形,两条直角边长分别为1和2,由勾股定理知,它的斜边长为;(2)任何一个圆,它的周长和直径之比为一常数等等;像这样的数,在我们周围的生活中,不是只有少数几个,而是像有理数一样有无限个。
概念剖析:无限不循环小数叫无理数,这说明无理数是具有两个基本特征的小数:一是小数位数是无限的;二是不循环的。
这对初学者来说有一定难度,因此,我们必须掌握它的表现形式。
无理数的常见形式:在初中阶段,无理数表现形式主要有以下几种:1. 无限不循环的小数,如0.1010010001……(两个1之间依次多一个0)2. 含的数,如:,,等。
3. 开方开不尽而得到的数,如,等。
4. 某些三角函数值:如,等。
无理数与有理数的区别:1、把有理数和无理数都写成小数形式时,有理数能写成整数、小数或无限循环小数,比如4=4.0,4/5=0.8,1/3=0.33333……。
而无理数只能写成无限不循环小数,比如√2=1.414213562…………。
根据这一点,人们把无理数定义为无限不循环小数;2、无理数不能写成两整数之比。
错误辨析:1. 无限小数都是无理数;2. 无理数包括正无理数、负无理数和零;3.带根号的数是无理数;4. 无理数是用根号形式表示的数;5.无理数是开方开不尽的数;6. 两个无理数的和、差、积、商仍是无理数;7.无理数与有理数的乘积是无理数;8. 有些无理数是分数;9. 无理数比有理数少;10. 一个无理数的平方一定是有理数。
综上,学习无理数应把握住无理数的三个特征:(1)无理数是小数;(2)无理数是无限小数;(3)无理数是不循环小数。
判断一个数是否是无理数对照这三个特征一个不能少。
另外,还应注意无理数的几种常见的表示形式,才是弄清无理数概念的关键。
小学生数学练习掌握有理数与无理数的概念

小学生数学练习掌握有理数与无理数的概念在数学学科中,有理数与无理数是两个重要的概念。
小学生学习数学时,需要掌握这两个概念以及它们的特点和应用。
下面将详细介绍有理数与无理数的概念及其相关知识。
一、有理数的概念有理数是可以表示为两个整数之比的数,包括正负整数和分数。
有理数可以用分数形式表示,其中分子是整数,分母是非零整数。
例如,1/2、17/3、-5等都是有理数。
有理数具有以下特点:1. 可以用分数形式表示,包括正负整数和分数。
2. 有理数之间可以进行加、减、乘、除等基本运算。
3. 有理数的大小可以通过比较分数的大小来确定。
有理数在小学数学中的应用非常广泛,常见的应用有:1. 加法和减法运算:小学生可以通过计算两个有理数的和或差,帮助理解整数的加减法运算。
2. 分数运算:小学生可以通过计算两个有理数的乘积或商,帮助掌握分数的乘除运算。
二、无理数的概念无理数是不能表示为两个整数之比的数,它们的小数部分是无限不循环的。
无理数包括无限不循环小数和无限循环小数的非循环部分。
例如,π、√2都是无理数。
无理数具有以下特点:1. 无理数无法用分数形式表示,其小数部分是无限不循环的。
2. 无理数之间可以进行加、减、乘、除等基本运算,但运算结果通常是无限不循环的无理数。
3. 无理数的大小不能通过比较分数的大小来确定,需要通过近似值进行比较。
无理数在小学数学中的应用相对较少,但也有一些重要的应用,例如几何中的π和平方根等。
三、有理数和无理数的关系有理数和无理数是数学中的两个不同的概念,但它们之间存在着一些关系:1. 有理数和无理数的和、差、积、商通常是无理数。
2. 有理数和无理数的和、差、积、商的运算结果可能是有理数,但也可能是无理数。
在实际问题中,有理数和无理数通常是同时出现的,例如在测量中使用的分数和无理数的近似值。
小学生需要通过练习和实践,不断提高对有理数与无理数的理解和应用能力。
总结起来,小学生在数学学习中需要掌握有理数和无理数的概念,了解它们在数学中的特点和应用。
初中数学 无理数关系如何与一元一次方程相关

初中数学无理数关系如何与一元一次方程相关在初中数学中,一元一次方程和无理数关系是两个重要的数学概念。
一元一次方程是指只有一个未知数,并且这个未知数的最高次幂为1的方程。
无理数是指不能表示为两个整数比的实数。
在本文中,我们将探讨无理数关系和一元一次方程之间的相关性,并解释如何在解决一元一次方程的问题中使用无理数的概念和运算规则。
一、无理数关系与一元一次方程的相关性无理数关系和一元一次方程之间有一定的相关性,因为在解决一元一次方程的问题时,我们有时需要用到无理数的概念和运算规则。
例如,在一元一次方程的解中,我们可能需要使用无理数的比较运算,或者使用无理数的加、减、乘、除运算。
因此,理解无理数关系和一元一次方程的相关性是解决数学问题的重要前提。
二、无理数的应用无理数在数学中的应用非常广泛。
在初中数学中,我们通常会学习无理数的定义、性质、比较和运算等方面的知识。
以下是一些常见的无理数应用:1. 几何问题:无理数经常用于解决几何问题,如计算直角三角形的斜边长度、计算圆的周长和面积等。
2. 测量问题:在测量问题中,无理数可以用来表示精确的测量结果,如用π表示圆的周长和面积。
3. 方程求解:无理数的概念和运算规则常常用于解决方程问题,如二次方程的根等。
三、一元一次方程的概念和应用一元一次方程是指只有一个未知数,并且这个未知数的最高次幂为1的方程,通常的形式为ax + b = 0,其中a和b为已知数,x为未知数。
解决一元一次方程的过程是找到x的值,使得方程成立。
在初中数学中,我们通常学习如何使用一元一次方程解决实际问题。
例如,在解决关于长度、面积、体积等问题时,我们可以通过设置一元一次方程来解决问题。
在解决一元一次方程的问题时,我们需要运用一些基本的代数知识和运算规则。
四、无理数关系与一元一次方程的相关性在解决一元一次方程的问题时,我们有时需要使用无理数的概念和运算规则。
例如,我们可能需要使用无理数的比较运算,或者使用无理数的加、减、乘、除运算。
比较无理数大小的几种方法

•比较无理数大小的几种方法:比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
一、直接法直接利用数的大小来进行比较。
①、同是正数:例:与3的比较根据无理数和有理数的联系,被开数大的那个就大。
因为3=>,所以3>②、同是负数:根据无理数和有理数的联系,及同是负数绝对值大的反而小。
③、一正一负:正数大于一切负数。
二、隐含条件法:根据二次根式定义,挖掘隐含条件。
例:比较与的大小。
因为成立所以a-2≧0即a≧2所以1-a≦-1所以≧0,≦-1所以>三、同次根式下比较被开方数法:例:比较4与5大小因为四、作差法:若a-b>0,则a>b例:比较3-与-2的大小因为3---2=3--+2=5-2<=2.5所以:5-2>0即3->-2五、作商法:a>0,b>0,若>1,则a>b例:比较与的大小因为÷=×=<1所以:<六、找中间量法要证明a>b,可找中间量c,转证a>c,c>b例:比较与的大小因为>1,1>所以>七、平方法:a>0,b>0,若a2>b2,则a>b。
例:比较与的大小()2=5+2+11=16+2()2=6+2+10=16+2所以:<八、倒数法:九、有理化法:可分母有理化,也可分子有理化。
十、放缩法:。
估算无理数的大小方法

估算无理数的大小方法一、估算无理数大小的重要性。
1.1 生活中的需求。
无理数在生活中其实很常见呢。
就好比咱们装修房子,计算一些特殊形状的面积或者对角线长度的时候,可能就会碰到像根号2这样的无理数。
要是能快速估算出无理数的大小,就能大概知道材料的用量啦,省得浪费或者不够用。
这就像咱们常说的“心里有数”,不至于稀里糊涂的。
1.2 数学学习的关键。
在数学学习里,估算无理数大小也是个重要的本事。
它能帮咱在做一些复杂的数学题时,先有个大致的方向。
比如说在解一些方程或者几何证明题的时候,知道无理数大概的范围,就好比在黑暗里有了一盏小灯,能引导我们朝着正确的方向去思考。
要是对无理数大小完全没概念,那就像没头的苍蝇一样乱撞,肯定做不好题呀。
二、常用的估算方法。
2.1 夹逼法。
这夹逼法可真是个好办法呢。
就拿根号5来说吧。
我们知道2的平方是4,3的平方是9,那根号5肯定就在2和3之间啦。
这就像把根号5夹在2和3这两个“夹板”中间一样,跑不掉咯。
再精确一点呢,2.2的平方是4.84,2.3的平方是5.29,那我们就知道根号5在2.2和2.3之间了。
这就好比把包围圈越缩越小,最后把无理数这个“小猎物”的范围确定得越来越精确。
2.2 利用近似值。
有些无理数和一些我们熟悉的数很接近呢。
比如说圆周率π,我们都知道它约等于3.14。
这就很方便我们在做一些不太精确的计算时,直接用这个近似值来估算。
就像我们在做一个大概的圆形花坛的周长计算时,用3.14去乘直径就差不多能得到个大概的结果了。
这就叫“八九不离十”,虽然不是精确值,但是能满足我们日常的需求。
2.3 比较法。
比较法也很实用。
比如说比较根号3和1.7的大小。
我们可以把1.7平方一下,得到2.89。
因为3大于2.89,所以根号3就大于1.7啦。
这就像是两个人在比身高,站在一起一比较就知道谁高谁矮了。
三、估算无理数大小的技巧总结。
3.1 多记忆常见无理数。
我们得多记一些常见无理数的大致范围和近似值。
实数的概念及性质

实数实数无理数的概念:无限不循环小数叫做无理数.注意:(1)所有开方开不尽的方根都是无理数,不是所有带根号的数都是无理数.(2)圆周率及一些含的数是无理数.(3)不循环的无限小数是无理数.(4)有理数可化为分数,而无理数则不能化为分数.无理数的性质:设a 为有理数,b 为无理数,则a+b ,a-b 是无理数;实数的概念:有理数和无理数统称为实数.实数的分类:0正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数实数的性质:(1)任何实数a ,都有一个相反数-a .(2)任何非0实数a ,都有倒数1a.(3)正实数的绝对值是它本身,负实数的绝对值是它的相反数,0的绝对值是0.(4)正实数大于0,负实数小于0;两个正实数,绝对值大的数大,两个负实数,绝对值大的反而小.实数与数轴上的点一一对应:即数轴上的每一个点都可以用一个实数来表示,反过来,每个实数都可以在数轴上找到表示它的点.无理数大小的比较方法:(1)比较两个数的平方的大小:a >0,b >0,若2()a >2()b ,则a b ;若2()a<2()b,则a b;若2()a=2()b>,则a b.(2)比较被开方数的大小:a>0,b>0,若a>b,则a b;若a<b,则a b;若a=b,则a b.(3)作差法:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.(4)作商法:a>0,b>0,若ab>1,则a>b;若ab=1,则a=b;若ab<1,则a<b.注意:(1)没有最小的实数,0是绝对值最小的实数;(2)带根号的数不一定是无理数(3)一个实数的立方根只有一个;负数没有平方根.考点一对实数定义的考查【例1】.判断正误.(1)实数是由正实数和负实数组成.()(2)0属于正实数.()(3)数轴上的点和实数是一一对应的.()(4)如果一个数的立方等于它本身,那么这个数是1.()(5)若2x则2x.()【巩固1】下列说法错误的是()A.实数都可以表示在数轴上B.数轴上的点不全是有理数C.坐标系中的点的坐标都是实数对D.2是近似值,无法在数轴上表示准确【巩固2】下列说法正确的是()A.无理数都是无限不循环小数B.无限小数都是无理数C.有理数都是有限小数D.带根号的数都是无理数【巩固3】下列实数317,,3.14159,8,327,21,0.101101110……中无理数有().A.个B.个C.个D.个2345【例2】.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A . 1B .2C . 3D .4考点二对实数性质的考查【例1】.3的相反数是________;15的倒数是________;35的绝对值是________.【例2】.3.141=______;|2332|______.【例3】.若3||3x ,则x =______;若||31x ,则x =______.【例4】.若直径为2个单位长度的圆上的点A 从表示5的点沿数轴向右滚动两周,圆上这一点到达另一点B ,则B 点表示的实数是()A .52B .45C .52D .54【例5】.如图,数轴上A 、B 两点对应的实数分别为a ,b ,则下列结论不正确....的是()A .0ab B .0abC .0a bD .||||0a b 【巩固1】如图,数轴上A ,B 两点表示的数分别为1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .23B .13C .23D .13【巩固1】325的相反数是.【巩固2】23的倒数是.【巩固3】52的绝对值是.【巩固4】256的相反数是;倒数是;绝对值是.1 1 2B A CA OB考点三实数的分类【例1】.把下列各数填入相应的集合:-1、4、5、π、 3.14、12、32、12、7.0、0、38.(1)有理数集合{};(2)无理数集合{};(3)整数集合{};(4)正实数集合{};(5)负实数集合{}.【例2】.把下列各数按照由大到小的顺序,用不等号连接起来.4,4,153,1.414,,0.6,3,34,【巩固1】下列各数:23,722,327,414.1,3,12122.3,9,9641.3中,无理数有个,有理数有个,负数有个,整数有个.【巩固2】下列实数1907,3,0,49,21,31,1.1010010001…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则nm =考点四比较大小【例3】.估计77的大小应在()A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间【巩固1】估计29的值在()A .在4.5和5.0之间B .在5.0和5.5之间C .在5.5和6.0之间D .在6.0和6.5之间【巩固2】实数2.6,7和22的大小关系是()A .2.6227B .2.6722C .72.622D .7222.6【例4】.一个正方体水晶砖,体积为1002cm ,它的棱长大约在()A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间【例5】.(1)若实数a<b<0,则|a| |b|;大于17小于35的整数是;(2)比较大小:633411253【例6】.若01x ,则1x 、x 、2x 的大小关系是【例7】.如果a 是15的整数部分,b 是15的小数部分,a b =__________.【例8】.已知a b ,为两个连续整数,且10ab ,则ab_______.【例9】.414、226、15三个数的大小关系是()A. 41415226B. 22615414C.41422615D.22641415考点五对计算的考查【例1】.计算题(1)32716949(2)233)32(1000216【例2】.化简:(1)2551(2)103104(3)12233420112012【巩固3】已知等腰三角形一边长为a ,一边长b ,且22(2)90ab b.求它的周长.考点六综合运用【例3】.写出符合条件的数.(1)小于25的所有正整数;(2)绝对值小于22的所有整数.【例4】.一个底为正方形的水池的容积是3150m 3,池深14m ,求这个水底的底边长.【例5】.已知a 是11的整数部分,b 是它的小数部分,求32()(3)a b的值.【例6】.若31.8158481.22,则31815848_____.【例7】.已知2a 的平方根是2,27ab的立方根是3,求22a b 的算数平方根.【巩固4】已知3m nAnm 是3nm的算术平方根,237m n Bm n 是7m n 的立方根,求B+A 的平方根.【巩固5】已知3xa ,2y b (0y ),且2(4)8a b (4b a ),33()18a b ,求xy 的值.【巩固6】若1211ab ac ,求23abc 的值.【巩固7】设a 、b 是有理数,并且a 、b 满足等式2522b b a ,求a+b 的平方根习题133的相反数是,|33|= 57的相反数是,21的绝对值=习题2设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为习题3下列说法中,正确的是()A.实数包括有理数,0和无理数B.无限小数是无理数C.有理数是有限小数D.数轴上的点表示实数.习题4下列命题中,错误的命题个数是()(1)2a 没有平方根;(2)100的算术平方根是10,记作10100(3)数轴上的点不是表示有理数,就是表示无理数;(4)2是最小的无理数.A .1个B .2个C .3个D .4个.课后巩固习题5设a 是实数,则|a|-a 的值()A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数习题6数轴上,有一个半径为1个单位长度的圆上的一点A 与原点重合,该圆从原点向正方向滚动一周,这时点A 与数轴上一点重合,这点表示的实数是.习题7设m 是13的整数部分,n 是13的小数部分,求m-n 的值.习题8如图,数轴上两点表示的数分别为和,点B 关于点A 的对称点为C ,则点C 所表示的数为()A .B .C .D .习题9已知实数a 在数轴上的位置如图所示,则化简2|1|a a 的结果为()A .1B .1C .12aD .21a 习题10实数a b ,在数轴上对应点的位置如图所示,则必有()A .0a bB .0a bC .0ab D .a b习题11若a 为217的整数部分,1b 是9的平方根,且a bb a||,求b a的算术平方根.A B ,132313231311aCA OB(第8题图)a110b (第10题图)。
估算无理数的大小

估算——夹逼法
例.估算 7 的近似值(精确到0.01)
解:∵ 22 4,32 9 ∴2 7 3 ∵ 2.62 6.76,2.72 7.29 ∴ 2.6 7 2.7 ∵ 2.642 6.9696,2.652 7.0225 ∴ 2.64 7 2.65 ∵ 2.6452 6.996025,2.6462 7.001316 ∴ 2.645 7 2.646
解:∵ 23 8 ,33 27 8 10 27
且
2 3 10 3
∴
3 10
∴ 的整3 1数0 部2 分是2,小
数部分是
所以 7 2.65 (精确到0.01)
总结:同课本P42估算 2的取值范围
估算算术平方根的取值范围
解:∵ 42 19 52 ∴ 取值范围
例1. 3 10的整数部分是________,小数部分是______ .
估算——夹逼法
估算能力也是一种重要的数学运算能力,特别是对算 术平方根的估算。
结论:被开方数越大,对应的算术平方根也越大.
通常取与被开方数最近的两个完全平方数的算术 平方根相比较.例如:估算 10 的大小,可以取和 10最近的两个完全平方数9和16.因为9<10<16,所 以 9 10 16,即 3 10 4。
6.3.5估算无理数的大小

估算——夹逼法
例.估算
7 的近似值(精确到0.01)
解:∵ ∴ 2 7 3 ∵ 2.62 6.76,2.7 2 7.29 ∴ 2.6 7 2.7 2 2 2 . 64 6 . 9696 , 2 . 65 7.0225 ∵ ∴ 2.64 7 2.65 2 ,2.6462 7.001316 ∵ 2.645 6.996025 ∴ 2.645 7 2.646 所以 7 2.65 (精确到0.01)
估算——夹逼法
估算能力也是一种重要的数学运算能力,特别是对算 术平方根的估算。
结论:被开方数越大,对应的算术平方根也越大.
通常取与被开方数最近的两个完全平方数的算术 平方根相比较.例如:估算 10 的大小,可以取和 10最近的两个完全平方数9和16.因为9<10<16,所 以 9 10 16 ,即 3 10 4。
2 2 4,32 9
总结:同课本P42估算 2 的取值范围
估算算术平方根的取值范围
解:∵ 4 2 19 52 ∴ 42 19 ∴ 4 19 5
Hale Waihona Puke 52答案为:C估算立方根的取值范围
例1. 3 10 的整数部分是________,小数部分是______ . 解:∵ 2 8 , 33 27 且 8 10 27 ∴ 2 3 10 3 ∴ 3 10 的整数部分是2,小 数部分是 3 10 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数
学习目标
1.知识目标
(1)知道实数与数轴上的点是一一对应的
(2)会用有理数估计一个无理数的大致范围.
(3)对实数进行大小比较.
2.能力目标
知道实数与数轴上的点是一一对应的,能够对实数进行大小比较.
3.情感目标
渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系。
学习重点、难点
重点:实数与数轴上的点是一一对应的,对实数进行大小比较.
难点:对实数进行大小比较.
节前预习
教材P106页图17—2,探讨以下问题:
OA=AB=BC=CD=DE=EF=FG=GH=1
计算各直角三角形斜边的长.
OB= , OC= ,OD= ,OE= ,OF= ,OG= ,OH=
其中,是无理数,是有理数。
归纳:
有理数可以表示线段的长度,无理数也可以表示线段的长度。