高一数学一次函数知识点

合集下载

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳<hr style="height:3px;border:none;border-top:3px double red;" />更多高一学习方法知识,欢迎大家点击高中语文知识归纳高中化学基础知识归纳高一历史必修一知识点总结高一政治下册公民的政治生活复习要点<hr style="height:3px;border:none;border-top:3px double red;" />高一数学必修一函数知识点总结篇一1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或 (f(x)0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式ag(x)b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由同增异减判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对xR时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.方程k=f(x)有解 kD(D为f(x)的值域);6.af(x) 恒成立 a[f(x)]max,; af(x) 恒成立a[f(x)]min;7.(1) (a0,a1,b0,nR+); (2) l og a N= ( a0,a1,b0,b1);(3) l og a b的符号由口诀同正异负记忆; (4) a log a N= N ( a0,a1,N0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

高一数学知识点总结:一次函数

高一数学知识点总结:一次函数

高一数学知识点总结:一次函数
高一数学知识点总结:一次函数
这篇高一数学知识点总结:一次函数是查字典数学网特地为大家整理的,希望对大家有所帮助!
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x
次函数。

设水池中原有水量S。

g=S-ft。

六、常用公式:(部分)
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:(x1-x2)^2+(y1-y2)^2(注:根号下
(x1-x2)与(y1-y2)的平方和)
以上就是由查字典数学网为您提供的高一数学知识点总结:一次函数,希望给您带来帮助!。

高一数学公式及理解知识点

高一数学公式及理解知识点

高一数学公式及理解知识点一、一次函数1. 定义:一次函数是指函数的自变量的最高次数为1的函数。

2. 公式:y = kx + b,其中k和b为常数,k为斜率,b为截距。

3. 理解知识点:- 斜率:代表了函数图像的倾斜程度,正值表示递增趋势,负值表示递减趋势,斜率为0表示水平线。

- 截距:代表函数与y轴的交点,y轴上的值。

二、二次函数1. 定义:二次函数是指函数的自变量的最高次数为2的函数。

2. 公式:y = ax^2 + bx + c,其中a、b、c为常数,a≠0。

3. 理解知识点:- 抛物线:二次函数的图像是一条开口朝上或朝下的曲线,称为抛物线。

- 顶点坐标:抛物线的顶点坐标为(h,k),其中h为x轴对称的值,k为抛物线的最值。

- 轴对称性:二次函数关于垂直于x轴的直线x = h对称。

三、三角函数1. 定义:三角函数是指以角度或弧度为自变量的函数。

2. 常见三角函数:- 正弦函数(Sine function):y = sin(x)- 余弦函数(Cosine function):y = cos(x)- 正切函数(Tangent function):y = tan(x)3. 理解知识点:- 周期性:正弦函数和余弦函数的周期为2π,正切函数的周期为π。

- 幅值:正弦函数和余弦函数的函数值介于-1和1之间,正切函数的函数值没有上下界。

- 正交性:在一个周期内,正弦函数和余弦函数是相互正交的。

四、概率与统计1. 定义:概率与统计是研究随机现象的规律性和统计规律的数学分支。

2. 知识点:- 事件与样本空间:事件是样本空间的子集,样本空间是所有可能结果的集合。

- 随机变量:随机变量是样本空间到实数轴上的一个映射。

- 概率:概率是事件发生的可能性的度量,用一个介于0和1之间的数来表示。

五、立体几何1. 定义:立体几何是研究三维空间内图形的形状、大小、位置关系等的数学分支。

2. 知识点:- 体积:立体图形所占的三维空间的大小。

高一必修一数学第二单元知识点:一次函数和二次函数

高一必修一数学第二单元知识点:一次函数和二次函数

精心整理
高一必修一数学第二单元知识点:一次函数和二次函数
一次函数
一、定义与定义式:
即:1.y 即:2.当1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)(-b/k,
0)
3.k




(1)
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

设水池中原有水量S。

g=S-ft。

六、常用公式:(不全,希望有人补充)
1.
2.
3.
4.与。

一次函数知识点总结

一次函数知识点总结

一次函数知识点总结一次函数是数学中非常重要的一个概念,它在解决实际问题和数学理论中都有着广泛的应用。

下面我们就来详细总结一下一次函数的相关知识点。

一、一次函数的定义一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。

当 b = 0 时,即 y = kx(k 为常数,k ≠ 0),这时称 y 是 x的正比例函数。

这里要注意的是,一次函数的表达式中,x 的次数为 1,且系数 k不能为 0。

如果 x 的次数不是 1 或者 k 为 0,那就不是一次函数。

二、一次函数的图像一次函数 y = kx + b 的图像是一条直线。

当 k > 0 时,直线从左到右上升;当 k < 0 时,直线从左到右下降。

b 的值决定了直线与 y 轴的交点。

当 b > 0 时,直线与 y 轴交于正半轴;当 b < 0 时,直线与 y 轴交于负半轴;当 b = 0 时,直线经过原点。

例如,函数 y = 2x + 1,k = 2 > 0,直线上升,b = 1 > 0,与 y 轴交于正半轴。

三、一次函数的性质1、当 k > 0 时,y 随 x 的增大而增大;当 k < 0 时,y 随 x 的增大而减小。

2、直线 y = kx + b 与 x 轴的交点坐标为( b / k ,0 )。

四、一次函数的解析式的确定通常我们可以使用待定系数法来确定一次函数的解析式。

具体步骤如下:1、设出一次函数的解析式 y = kx + b 。

2、根据已知条件列出关于 k、b 的方程组。

3、解方程组,求出 k、b 的值。

例如,已知一次函数经过点(1,3)和( 1, 1),设解析式为 y = kx + b,将两点坐标代入可得:\\begin{cases}k + b = 3 \\k + b = 1\end{cases}\解这个方程组,可得 k = 2,b = 1,所以解析式为 y = 2x + 1 。

五、一次函数与方程、不等式的关系1、一次函数 y = kx + b 的图像与 x 轴的交点的横坐标,就是方程kx + b = 0 的解。

一次函数的知识点总结

一次函数的知识点总结

一次函数的知识点总结一、一次函数的基本概念一次函数是数学中最基础的函数之一,它的表达式为y = ax + b,其中a和b是常数,a不等于0。

在这个函数中,x称为自变量,y称为因变量,a称为斜率,b称为截距。

斜率表示了函数图象的倾斜程度,而截距表示了函数图象与y轴的交点位置。

从函数的表达式中可以看出,一次函数的图象是一条直线,即直线函数。

一次函数的定义域为实数集R,值域也为实数集R。

它的图象可以延伸到整个坐标平面上。

当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。

二、一次函数的性质1. 斜率和截距一次函数的斜率a表示了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。

当a大于0时,函数图象向右上方倾斜;当a小于0时,函数图象向右下方倾斜。

而截距b表示了函数图象与y轴的交点位置,当b大于0时,函数图象在y轴上方;当b小于0时,函数图象在y轴下方。

2. 函数值对于一次函数y = ax + b,当给定x的值时,我们可以通过代入x的值得到对应的函数值y。

一次函数的函数值可以用来描述一根直线上的点的位置。

3. 函数的奇偶性一次函数是一个奇函数,它的图象关于原点对称。

这意味着,如果(x, y)在函数的图象上,则(-x, -y)也在函数的图象上。

4. 函数的单调性当a大于0时,一次函数是递增的;当a小于0时,一次函数是递减的。

递增意味着函数图象自左向右是上升的,递减意味着函数图象自左向右是下降的。

三、一次函数的图象一次函数的图象是一条直线,在坐标平面上呈现出一种特定的形状。

它的位置、斜率、倾斜方向和截距等特征可以通过图象来直观地展现。

1. 斜率和截距斜率a决定了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。

当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。

而截距b决定了函数图象与y轴的交点位置,它是函数图象与y轴的交点的纵坐标。

2. 基本图象y = x + 1是一次函数的基本图象,它是一条经过原点,斜率为1的直线。

高一数学一次函数知识点总结

高一数学一次函数知识点总结

高一数学一次函数知识点总结高一数学一次函数知识点1一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)高一数学一次函数知识点2.一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

高一数学一次函数知识点3一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

高一数学一次函数知识点4确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

高一数学一次函数知识点5一次函数在生活中的应用:ft。

(完整word版)高一数学必修一函数知识点总结

(完整word版)高一数学必修一函数知识点总结

3.函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型f(x) ax2 bx c,x (m, n)的形式;②逆求法(反求法):通过反解,用y 来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;常用来解,型如:y ,x (m,n);cx d④换元法:通过变量代换转化为能求值域的函数,化归思想;常针对根号,举例:-—-- —— -J—J- —- —~ - - - —~ - —L T™Lr——y--1 十一,再利用配方法。

令\戈;-1 = t,则/ = F' + 1,原式转化为:•'亠八:—一+5⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;k⑥基本不等式法:转化成型如:y x (k 0),利用平均值不等式公式来求值域;x⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

^WWWMWVWMWWWWWWV.⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

二•函数的性质1.函数的单调性(局部性质)(1) 增函数设函数y=f(x)的定义域为|,如果对于定义域I内的某个区间D内的任意两个自变量X i, X2,当X i<X2时,都有f(xi)<f(x 2),那么就说f(x)在区间D上是增函数. 区间D称为y=f(x)帀单调增区间—如果对于区间D上的任意两个自变量的值X i,X2,当X i<X2时,都有f(x 1) >f(x 2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(Xf的单调减注意:函数的单调性是函数的局部性质;⑴单调性:定义(注意定义是相对与某个具体的区间而言)增函数:对任意的X i ,X2 [a,b],X i X2 f (x i) f (X2) 减函数对任意的X i, X2 [a,b], X i X2 f (x i) f (X2)注:① 函数上的区间I且X i,X2 € I.若f ( X i ) f ( X2 ) >0 ( X i工X2),则函数f(x)在区间I上是增函数;X i X2若f(x i ) f ( x2 ) < 0 ( X i工X2),贝寸函数f(x)是在区间I上是减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学一次函数知识点
高一数学一次函数知识点汇总
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的.截距。

三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:
y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交
于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:
当k0时,直线必通过一、三象限,y随x的增大而增大;
当k0时,直线必通过二、四象限,y随x的增大而减小。

当b0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数
的图像。

这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的
表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b①和y2=kx2+b②
(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

设水池中原有水量S。

g=S-ft。

六、常用公式:(不全,希望有人补充)
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)。

相关文档
最新文档