线性代数习题标准答案(IMUST版)__相似矩阵及二次型[]

合集下载

(完整版)线性代数习题答案综合题

(完整版)线性代数习题答案综合题

2、题型:综合题3、难度级别:34、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:10分钟7、试题关键字:矩阵的初等变换 8、试题内容:设,A B 为两个同型矩阵,试证:,A B 的秩满足()()R A R B =是A 与B 等价的充分必要条件.9、答案内容: 证明:()()()()()()()()12121122111221.,..,,,,.~~rr n r n r r n r n r r r n r n r r n r n r A B E F E B F P P Q Q P AQ P BQ A P P BQ Q ⨯--⨯-⨯-⨯--⨯-⨯---⇒⨯O ⎛⎫= ⎪O O ⎝⎭O ⎛⎫= ⎪O O ⎝⎭∴==rc r c 必要性与等价则存在可逆矩阵P,Q,使PAQ=B R(A)=R(B).充分性.设A,B 为m n 矩阵,R(A)=R(B)=r.则A 存在可逆矩阵使即.A B ⇒与等价10、评分细则:由题设()()PAQ B R A R B =⇒=(2分);将A 经初等变换化为标准形(2分) 将B 经初等变换化为标准形(2分);得出11221122,,,,P AQ P BQ P Q P Q =均可逆(2分);所以得出A 与B 等价(2分)._____________________________________________________________________________ 1、试题序号:347 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:已知四元非齐次线性方程组的系数矩阵的秩为3,123,,ααα是其解,且()()12231,1,0,2,1,0,1,3T Tαααα+=+=,求方程组的通解.9、答案内容: 解:412231312231223.() 3.0.()0.()(0,1,1,1)0,(0,1,1,1)0.111115()(2,1,1,5)(,,,)442444.12141454s T T T T A x b R A Ax Ax Ax Ax b Ax b αααααααααααααα⨯===+-+=-=+-+=--≠∴--=+++===⎛ ∴=⎝设方程组为对于其基础解系含4-3=1个解.是的解可以作为的一个基础解系为的一个解的通解为01,.11c c ⎫⎪⎪⎛⎫ ⎪ ⎪⎪⎪+ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪⎭为任意数 10、评分细则:由题设说明0Ax =的基础解系含一个解向量(2分);()122313αααααα+-+=-是0Ax =的一个解(2分);说明13αα-可以作为0Ax = 的一个基础解系(2分);说明()123414αααα+++为Ax b =的一个解(2分);所以得出Ax b =的通解(2分)._____________________________________________________________________________ 1、试题序号:348 2、题型:综合题 3、难度级别:44、知识点:第五章 相似矩阵及二次型5、分值:106、所需时间:15分钟7、试题关键字:初等矩阵及矩阵的相似与合同 8、试题内容:设1111400011110000,1111000011110000A B ⎛⎫⎛⎫⎪⎪⎪⎪== ⎪ ⎪⎪⎪⎝⎭⎝⎭试判断A 与B 是否合同,是否相似.若是,则求出使它们合同的矩阵. 9、答案内容:()()()()()()()()()()()()()()()()()()()()()()()()()()1234:4113112112113114112111010021131141100100001,211101000010000100,40143,T A B E E E E E E B P E E E P P AP BA E R A E R A A λλλλλ------=---⎛⎫ ⎪⎪=---= ⎪ ⎪⎝⎭=---⎛⎫ ⎪⎪∴ ⎪ ⎪⎝⎭-=⇒====-===-∴解与合同且相似.E 12E 12令E 12则可逆且使A 与B 合同的矩阵为且一定可以40000000,.00000000A B ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭对角化即与相似10、评分细则:判断出A 与B 合同且相似(2分);将A 进行初等行变换与列变换化为B 的过程以左乘及右乘初等矩阵的形式写出来(3分);因而写出使A 与B 合同的可逆矩阵P (2分);计算A 的特征值(2分);写出与A 相似的对角矩阵(1分)._____________________________________________________________________________1、试题序号:3492、题型:综合题3、难度级别:44、知识点:第四章 向量组的线性相关性5、分值:106、所需时间:15分钟7、试题关键字:向量组的线性关系与矩阵的秩 8、试题内容:设向量组12:,,,r B b b b L 能由向量组12:,,,s A a a a L 线性表示为()()1212,,,,,,r s b b b a a a K =L L ,其中K 为s r ⨯矩阵,且A 组线性无关.证明B 组线性无关的充分必要条件是()R K r =. 9、答案内容:()()()()()()()()()1212122121212122.,...,,,0..0.,00.,,,.0,,00.,r r r r r r r s R K r R b b b R K r R b b b r R b b b r b b x xb b b x x xx Bx B AK AKx A Kx x a a a S Kx R K r Kx x b =≥=≤∴=⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪====⇒= ⎪⎪⎝⎭∴=∴==∴=⇒=∴L L LL LL Q L Q L 11证充分性则有同时,则b 线行无关.必要性.设令则则有线行无关,R A b ,,r b L 线行无关.10、评分细则:充分性,由题设推出()12,,,r R b b b L r =()R K r ⇒≥,且有()()R K r R K r ≤⇒=(4分).必要性,令()12r B b b b =L ,设0Bx =,则有0AKx =(2分),由题设推出0Kx =0x ⇒=(2分);所以12,,,r b b b K 线性无关(2分)._____________________________________________________________________________ 1、试题序号:350 2、题型:综合题 3、难度级别:34、知识点:第二章 矩阵及其运算5、分值:106、所需时间:8分钟7、试题关键字:可逆矩阵及分块运算 8、试题内容:已知3阶矩阵A 与3维列向量x 满足323A x Ax A x =-,且向量组2,,x Ax A x 线性无关.(1) 记()2,,P x Ax A x =,求3阶矩阵B ,使AP PB =;(2)问A 是否可逆,说明理由. 9、答案内容:2232222()()(3)000()103.011000103.011(2).,,,.0..A x AxA x Ax A xA x AxA xAx A x x Ax A x B AP PB A P P B x Ax Ax P A B A ⇒=-⎛⎫⎪ ⎪ ⎪-⎝⎭⎛⎫ ⎪∴= ⎪ ⎪-⎝⎭=⇒=∴==∴Q 解:(1)AP=PB =线性无关可逆则不可逆10、评分细则:由题设及矩阵的分块运算法,计算出B (6分);由AP PB A B =⇒=(2分);所以0A B A ==⇒不可逆(2分)._____________________________________________________________________________ 1、试题序号:351 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:设4元非齐次线性方程组Ax b =的系数矩阵A 的秩为3,123,,ηηη是它的3个解向量,且()()1232,3,4,5,1,2,3,4T Tηηη=+=,求该方程组的通解.9、答案内容:1312131131:.() 3.0,2()()0.34200.562334,.4556Ax b R A Ax Ax Ax Ax b c c ηηηηηηηηηη===+-=-+-=-⎛⎫ ⎪- ⎪+-=≠= ⎪- ⎪-⎝⎭-⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪∴=+ ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭解设方程组为且对于其基础解系只含一个解.为的一个解而可以作为一个基础解系的通解为为任意常数 10、评分细则:由题设推出0Ax =的基础解系含一个解向量(2分);由题设得出0Ax =的一个非零解(2分);说明这非零解可以作为0Ax =的一个基础解系(2分);求出Ax b =的一个解(2分);得出Ax b =的通解(2分)._____________________________________________________________________________ 1、试题序号:352 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:10分钟7、试题关键字:矩阵的秩与方程组的解 8、试题内容:设()()()123123123,,,,,,,,TTTa a ab b bc c c αβγ===,证明三直线11112222:0;0l a x b y c l a x b y c ++==++=;3333:0,l a x b y c ++=其中220,1,2,3i i a b i +≠=,相交于一点的充分必要条件为:向量组,αβ线性无关,而向量组,,αβγ线性相关. 9、答案内容:()()()()11122233333.2,,,2,,,2,;b b c R b R b c b b c R R R R αβαβγαβαβγαβα⎧⎪⇔⎨⎪⎩-⎧⎛⎫⎛⎫⎪ ⎪ ⎪⇔=-=⎨ ⎪ ⎪⎪⎪ ⎪-⎩⎝⎭⎝⎭⇔=-=⇔==⇔1112223331111122222333证明:a x+b y+c =0三直线交于一点a x+b y+c =0有唯一解a x+b y+c =0a x+b y+c =0a a a x+b y+c =0有唯一解a a a x+b y+c =0a a 线性无关,,βγ线性相关.10、评分细则:由题设得出111222333000a xb yc a x b y c a x b y c ++=⎧⎪++=⎨⎪++=⎩有唯一解(2分)1111122222333332a b a b c R a b R a b c a b a b c -⎛⎫⎛⎫⎪ ⎪⇔=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(2分)()()()()22R R R R αβαβγαβαβγ⇔=-=⇔==(4分),αβ⇔线性无关,,,αβγ线性相关(2分)._____________________________________________________________________________1、试题序号:3532、题型:综合题3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:设矩阵()1234,,,A αααα=,其中234,,ααα线性无关,1232ααα=-.向量1234βαααα=-+-,求方程组Ax β=的通解.9、答案内容:()()()()12123412343412342341231234123412123434.11.11,,,2,,,,3,0x xx x x x Ax x x R R A Ax x x x x βααααααααββαααααααααααααααααα⎛⎫⎪ ⎪=-+-= ⎪ ⎪⎝⎭⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪∴== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=-⇒===⎛ ⎝Q Q 解:,且为的一个解又线性无关且线性相关则有所以,的基础解系只含一个非零解。

《线性代数》第五章相似矩阵及二次型精选习题及解答

《线性代数》第五章相似矩阵及二次型精选习题及解答

6
1 6
即为单位向量。
7
二, 正交向量组 1.向量的正交:
当x, y 0时,称为向量 x 与 y 正交。
显然,零向量与任何向量正交。
1
1
如:a1
1
,a2
2
1
1
由于:a1,a2 a1a2 1 1
a1 与 a2 正交。
1
1 2
0
1
8
2,正交向量组 ⑴ 定义:一组两两正交的非零向量。 ⑵ 定理 1:正交向量组是线性无关组。 即:若 n 维向量a1, a2,ar 是一组两两正交的非零
x
x2
令:[ x,
y]
x1
y1
x2
y2
xn
yn
xn
[x, y]称为向量 x 与 y 的内积。
y1
y
y2
yn
例 如 :x
1 2
,
3 y 1
1
0
x, y= 1 3 21 1 0 5 x, x = 12 22 (1)2 6
3
内积实际上是一种向量的运算
不难看出:X ,Y X Y Y X
向量(正交向量组),则a1, a2,ar 线性无关。 证明:设有 1, 2 ,r 使
1a1 2a2 r ar 0 以a1与上式做内积,即以a1 左乘上式两端得:
1 a1 2 0 由于 a1 0 1 0 若以a2 与(1.3) 式做内积,则易知2 0 同理可证:3 4 r 0 a1 a2 ar 线性无关。
则a3
应满足齐次方程组:
Ax
O
即:1 1 1 2
1 x1 0
1
x2 x3
0
10
解此方程组:

线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx

线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx

习题三A 组1 •填空题.(1)设口 = (1,1,1), 6 = (-1,-1,-1),则ah x= _____________ , a vh= _________ro o>1 ](3)若么=(1, 2, 3), B — 1, —, — , A — a}d ,则 A n =I 2 3丿‘1 0⑷设A= 0 2J o解0.(5)设 a = (l, 0, -if ,矩阵 A=aa l \ 斤为正整数,贝 i\kE - A n解 k 2(k-2n ).(6)设昇为斤阶矩阵,且A =2,贝ij AA T= _________ , AA : = _______2(2)设八1-3 2),B =-3丿1 -13 1 3>则AB = (0 0丿(—3 -3丿2 13232 3 1 1)0 ,正整数 /7 > 2 ,则 A n -2A ,l ~' =2“+i2".(cos& -sin&\(7)、sin& cos& 丿cos& sin&\、一sin& cos& 丿0 0、2 0 ,则(A*y =4 5,解討丫2(10)设矩阵/二,矩阵B满足BA = B + 2E,则B二,B<-1 2(2 0(11)设/,〃均为三阶矩阵,AB = 2A + B f B= 0 4,2 0‘0 0 P解0 1 0b o oj(12)设三阶矩阵/满足|力|二*, (3A)~l-2A* =1627(13)设/为加阶方阵,B为兀阶方阵,同=Q,\B\ = b, C =°, 则\c\ =(8)设…®?工0 ,则、\Z曾丿1)a n1%■■1 1■色丿丿a lP(9)设A= 22、0 ,贝=2丿/0、0 ,矩阵〃满足关系式ABA =2BA ^E,其屮才'为力的伴随矩阵,则|B | =解*•解0.解一3・是nxp 矩阵,C 是pxm 矩阵,加、n 、p 互不相等,则下列运算没有(B) ABC ;解D.(2)设/是mxn 矩阵(m n), B 是nxm 矩阵,则下列解(一l)〃5b ・(15)设4阶矩阵/的秩为1,则其伴随矩阵/的秩为 (14)设三阶矩阵/ =R(4)解1.(17)设矩阵力'a 、b\ a }b 2■ ■a 2b 2 ■ • ■a n b2,其中匕・工0, (Z=l,2,•••,/?),则力的秩,且7?(J) = 3,则丘=0、 -2i,则将/可以表示成以下三个初等矩阵的乘积(D) AC T .的运算结果是n 阶力•阵.(A) AB ;解B.(B) A YBT;(C) B r A T ;(D) (4B)T.(16 )设?1 = •咕、 ・仇 ・ a n b n)解2.选择题.(1)设/是mxn 矩阵,(3) 设力」是斤阶方阵,AB = O,贝I 」有 ________ • (A) A = B = Ox(B) A + B = O ; (C)同=0或|同=0;(D)同 + 圖=0・解C ・(4) 设力,〃都是斤阶矩阵,则必有 _______ . (A) \A + B\ = \^ + \B\; (B) AB = BA ; (C) \AB\ = \BA\ ;(D) (/1 + B)T M /T + BT ・解C ・(5) 设/,B 是斤阶方阵,下列结论正确的是 __________ ・ (A)若均可逆,则A^B 可逆; (B)若力,〃均可逆,则力〃可逆; (C)若A + B 可逆,则A-B 可逆;(D)若A + B 可逆,则4〃均可逆.解B.(6) 设斤阶方阵A,B,C 满足关系式 ABC = E ,则必有 ___________ ・ (A) ACB = E ; (B) CBA = E ;(C) BAC = E ;(D) BCA = E .解D.(7) 设昇,B,力 + B, /T+BT 均为斤阶可逆矩阵,贝等于 ________________________ (A)(B) A + B ;(C) (D) g + 3)".解C.(8) 设£B,C 均为兀阶矩阵,若B = E + MB , C = A^CA.则B-C 为 ________________ . (A) E\ (B) —E ; (C) ; (D) —A.. 解A.(9) 设矩阵A = (a i .} 满足才其中才是/的伴随矩阵,川为昇的转置矩阵.若\ "3x3。

线性代数第五章(答案)

线性代数第五章(答案)

第五章 相似矩阵与二次型一、是非题〔正确打√,错误打×〕1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. <√>2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. <√>3.n 阶正交阵A 的n 个行<列>向量构成向量空间n R 的一个规X 正交基. <√>4.若A 和B 都是正交阵,则AB 也是正交阵. <√>5.若A 是正交阵,Ax y =,则x y =. <√>6.若112⨯⨯⨯=n n n n x x A ,则2是n n A ⨯的一个特征值. <×>7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. <×>8.n 阶矩阵A 在复数X 围内有n 个不同的特征值. <×>9. 矩阵A 有零特征值的充要条件是0=A . <√>10.若λ是A 的特征值,则)(λf 是)(A f 的特征值<其中)(λf 是λ的多项式>.<√>11.设1λ和)(212λλλ≠是A 的特征值,1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. <×>12.T A 与A 的特征值相同. <√>13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. <×>14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足:B PAP =-1,则A 与B 有相同的特征值. <√>15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. <√>16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. <√>17.实对称矩阵A 的非零特征值的个数等于它的秩. <√>18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. <√>19.实对称阵A 与对角阵 Λ相似:Λ=-AP P 1,这里P 必须是正交阵. <×>20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. <×>21.任一实对称矩阵合同于一对角矩阵. <√>22.二次型Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为标准型.<×>23.任给二次型Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化为规X 型.<×>二、填空题1.向量⎪⎪⎪⎭⎫ ⎝⎛=1111α,求两向量2α=____,3α=____,使321,,ααα两两正交.Ans:()T 1,0,12-=α,T⎪⎭⎫ ⎝⎛--=21,1,213α 2.若A 是正交阵,即E A A T =,则=A _____. Ans:1或-13.设⎪⎪⎪⎭⎫ ⎝⎛--=121001065A ,则A 的特征值为________.<-1,2,3>4.n 阶方阵A =)(ij a 的特征值为n λλλ,,,21 ,则=A ___________,=+++nn a a a 2211_____________.5.设二阶行列式A 的特征值为2,3,λ,若行列式482-=A ,则____=λ.<-1>6.设三阶矩阵A 的特征值为-1,1,2,则=--E A 14_____,=-+*E A A 23______. Ans:-15,97. 已知⎪⎪⎪⎭⎫ ⎝⎛=x A 00110002的伴随矩阵*A 有一特征值为2-,则=x -1或2 .8. 若二阶矩阵A 的特征值为1-和1,则2008A =E .9.当x =___时,矩阵⎪⎪⎪⎭⎫ ⎝⎛=01010110x A 能对角化.<-1,见教材>10.设A 为2阶矩阵,1α,2α是线性无关的二维列向量,01=αA ,2122ααα+=A ,则A 的非零特征值为_______.提示:由⎪⎪⎭⎫ ⎝⎛=1200)()(2,12,1ααααA 知A 与⎪⎪⎭⎫ ⎝⎛1200相似,⎪⎪⎭⎫ ⎝⎛1200非零特征值为1.11、设A 为正交矩阵,λ为A 阵的特征值,则λA E -=_____0___.12、设3阶方阵A 的特征值为互不相同,若0=A 行列式则A 的秩为_____.<2>13.<3分>二次型32312123222144)(x x x x x x x x x a f +++++=经过正交变换Py x =可化为标准型216y f =,则a =_____.<a =2>14.二次型()222123123121323,,222f x x x x x x x x x x x x =+++++的秩是______; 二次型432143212),,,(x ax x x x x x x f -=的秩为2,则=a .15.已知二次型yz xz xy z y x a f 222)(222-++++=,a 的取值为_____时f 为正定, a 的取值为_____时f 为负定. <1;2- a a >16. 二次型322322214332x x x x x f +++=经过正交变换=⎪⎪⎪⎭⎫ ⎝⎛321x x x ______⎪⎪⎪⎭⎫ ⎝⎛321y y y 化为标准形=f _______,从而1),,(321=x x x f 表示的曲面类型是_________. Ans:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛3212121212132100001y y y x x x ,23222152y y y f ++=,椭球面 三、 选择题 1. 若n 阶非奇异矩阵A 的各行元素之和均为常数a ,则矩阵12)21(-A 有一特征值为< C >.<A> 22a ; <B>22a - ; <C>22-a ; <D>22--a .2.若λ为四阶矩阵A 的特征多项式的三重根,则A 对应于λ的 特征向量最多有<A >个线性无关.<A> 3个; <B> 1个; <C> 2个; <D> 4个.3.特征值一定是实数的矩阵是<B ><A>正交矩阵 <B> 对称矩阵<C>退化矩阵 <D>满秩矩阵4. 设α是矩阵A 对应于其特征值λ的特征向量,则其对角化矩阵AP P 1- 对应于λ的特征向量为< D >.<A>α1-P ; <B>αP ; <C>αT P ; <D>α .5. 若A 为n 阶实对称矩阵,且二次型Ax x x x x f T n =),,,(21 正定,则下列结论不正确的是< C > .(A) A 的特征值全为正;<B> A 的一切顺序主子式全为正; <C> A 的元素全为正;<D>对一切n 维列向量x ,Ax x T 全为正.6.下列各式中有<A >等于22212136x x x x ++.<A> ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛21213421,x x x x ; <B> ()112213,23x x x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; <C> ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--21213511,x x x x ; <D> ()112211,43x x x x -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; 7.矩阵〔 C 〕是二次型22212136x x x x ++的矩阵. <A>⎪⎪⎭⎫ ⎝⎛--3111;<B>⎪⎪⎭⎫ ⎝⎛3421;<C>⎪⎪⎭⎫ ⎝⎛3331; <D>⎪⎪⎭⎫ ⎝⎛3151;8.设A 、B 为同阶方阵,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21,且BX X AX X T T =,当〔 D 〕时,B A =. <A>)()(B r A r =; <B>A A =T ;<C>B B =T ; <D>A A =T 且B B =T ;9.A 是n 阶正定矩阵的充分必要条件是〔 D 〕. <A>0>A ; <B>存在n 阶矩阵C,使C C A T =; <C>负惯性指标为零; <D>各阶顺序主子式均为正数; 10.1)()()(),,(22221,21--++-+-=n a x a x a x x x x f n n 是< B >. <A>非正定二次型 ;<B>正定; <C>负定; <D>不定;11.正定二次型),,(,21n x x x f 的矩阵应是〔 B 〕.<A>非对称且左右对角线上元素都是正数;<B>对称且各阶顺序子式都是正数;<C> 对称且所有元素都是正数;<D> 对称且矩阵的行列式是正数;12.使实二次型 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛z y x k k k k k z y x 0101),,( 正定的参数k 应该是< C >.<A>0>k ;<B>02>k ;<C>不存在; <D>0<k ;13.阶矩阵A 为正定的充分必要条件是< C >. <A>0>A ; <B> 存在n 阶矩阵,使A=C C T ;<C> A 的特征值全大于0; <D> 存在n 维列向量α≠0,有0>ααA T ;14.次型232221321)2()1()1()(x k x k x k x x x f -+-++=,当< B >时是正定的.<A>k>0; <B> k>2; <C> k>1;<D> k=1;15.设A ,B 为正定矩阵,则< C >.<A>AB 、B A +都正定; <B>AB 正定,B A +不一定正定; <C>AB 不一定正定,B A +正定; <D>AB 和B A +都不一定正定;16.设A ,B 都是n 阶实对称矩阵,且都正定,那么AB 是<C> <A>实对称矩阵 <B> 正定矩阵<C>可逆矩阵 <D>正交矩阵17.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=211121112A , ⎪⎪⎪⎭⎫ ⎝⎛=000010001B ,则A 与B<A>合同, 且相似. <B> 合同, 但不相似 .<C>不合同, 但相似. <D> 既不合同, 又不相似.[ B ]18. 设矩阵⎪⎪⎭⎫ ⎝⎛=1221A , 则在实数域上与A 合同矩阵为〔 D 〕 <A> ⎪⎪⎭⎫ ⎝⎛--2112 <B>⎪⎪⎭⎫ ⎝⎛--2112 <C> ⎪⎪⎭⎫ ⎝⎛2112<D> ⎪⎪⎭⎫ ⎝⎛--1221 19.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是<A> 01≠λ <B> 02≠λ <C> 01=λ <D>02=λ [ B ]20.n 阶实对称矩阵A 为正定矩阵的充分必要条件是 < C > <A> 所有k 级子式为正),,2,1(n k = <B>A 的所有特征值非负 <C> 1-A 为正定矩阵 <D>秩<A >=n。

线性代数二次型习题及答案

线性代数二次型习题及答案

第六章 二次型1.设方阵1A 与1B 合同,2A 与2B 合同,证明12A ⎛⎫ ⎪⎝⎭A 与12⎛⎫ ⎪⎝⎭B B 合同. 证:因为1A 与1B 合同,所以存在可逆矩1C ,使T1111=B C A C ,因为2A 与2B 合同,所以存在可逆矩2C ,使T2222=B C A C .令 12⎛⎫=⎪⎝⎭C C C ,则C 可逆,于是有 TT 1111111T2222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭B C A C C AC B C A C C A C 1T 2⎛⎫= ⎪⎝⎭A C C A 即 12A ⎛⎫ ⎪⎝⎭A 与12⎛⎫ ⎪⎝⎭B B 合同.2.设A 对称,B 与A 合同,则B 对称证:由A 对称,故T=A A .因B 与A 合同,所以存在可逆矩阵C ,使T=B C AC ,于是T T T T T T ()====B C AC C A C C AC B即B 为对称矩阵.3.设A 是n 阶正定矩阵,B 为n 阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使BP P AP P T T 与均为对角阵.证:因为A 是正定矩阵,所以存在可逆矩阵M ,使E AM M =T记T1=B M BM ,则显然1B 是实对称矩阵,于是存在正交矩阵Q ,使T 11diag(,,)n D μμ==Q B QT 11,,.n μμ=B M BM 其中为的特征值令P=MQ ,则有D BP PE AP P ==T T ,,A B 同时合同对角阵.4.设二次型2111()mi in n i f ax a x ==++∑,令()ij m n a ⨯=A ,则二次型f 的秩等于()r A .证:方法一 将二次型f 写成如下形式:2111()mi ij j in n i f a x a x a x ==++++∑设A i = 1(,,,,)i ij in a a a ),,1(m i =则 1111111jn i ij in i m mj mj m a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A A A A于是 1T T T TT 11(,,,,)mi m i i i i m =⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭∑A A A A A A A A A A故 2111()mi ij j in n i f a x a x a x ==++++∑=1211[(,,)]i m j n ij i in a x x x a a =⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑=11111[(,,)(,,)]i m j n ij i ij in j i in n a x x x x a a a a x a x =⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑=1T11(,,)()mj n i i j i n x x x x x x =⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑A A=X T(A TA )X因为A A T为对称矩阵,所以A A T就是所求的二次型f 的表示矩阵. 显然r (A A T )=r (A ),故二次型f 的秩为r (A ) .方法二 设11,1,,i i in n y a x a x i n =++=. 记T 1(,,)m y y =Y ,于是=Y AX ,其中T 1(,,)n x x =X ,则222T T T 11()m i m i f y y y ===++==∑Y Y X A A X .因为A A T为对称矩阵,所以A A T就是所求的二次型f 的表示矩阵. 显然r (A A T )=r (A ),故二次型f 的秩为r (A ) . 5.设A 为实对称可逆阵,Tf x x =A 为实二次型,则A 为正交阵⇔可用正交变换将f 化成规范形.证:⇒设i λ是A 的任意的特征值,因为A 是实对称可逆矩阵,所以i λ是实数,且0,1,,i i n λ≠=.因为A 是实对称矩阵,故存在正交矩阵P ,在正交变换=X PY 下,f 化为标准形,即T T T T T1()diag(,,,,)i n f λλλ====X AX Y P AP Y Y DY Y Y22211i i n n y y y λλλ=++++ (*)因为A 是正交矩阵,显然T1diag(,,,,)i n λλλ==D P AP 也是正交矩阵,由D 为对角实矩阵,故21i λ=即知i λ只能是1+或1-,这表明(*)恰为规范形.⇐因为A 为实对称可逆矩阵,故二次型f 的秩为n . 设在正交变换=X QY 下二次型f 化成规范形,于是T T()f ==X AX Y Q AQ Y 222211r r n y y y y +=++---T =Y DY其中r 为f 的正惯性指数,diag(1,,1,1,,1)=--D .显然D 是正交矩阵,由T =D Q AQ ,故T=A QDQ ,且有T T ==A A AA E ,故A是正交矩阵.6.设A 为实对称阵,||0<A ,则存在非零列向量ξ,使T0<ξAξ. 证:方法一因为A 为实对称阵,所以可逆矩阵P ,使T 1diag(,,,,)i n λλλ==P AP D其中(1,,)i i n λ=是A 的特征值,由||0<A ,故至少存在一个特征值k λ,使0k λ<,取010⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ξP ,则有T T0(0,,1,,0)10⎛⎫⎪⎪⎪= ⎪⎪⎪⎝⎭ξAξP AP 1(0,,1,0,0)kn λλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭010⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭0k λ=< 方法二(反证法)若∀≠X 0,都有T0≥X AX ,由A 为实对称阵,则A 为半正定矩阵,故||0≥A 与||0<A 矛盾.7.设n 元实二次型AX X T =f ,证明f 在条件122221=+++n x x x 下的最大值恰为方阵A 的最大特征值.解:设f n 是λλλ,,,21 的特征值,则存在正交变换=X PY ,使2222211T T T )(n n y y y f λλλ+++=== Y AP P Y AX X设k λ是n λλλ,,,21 中最大者,当122221T =+++=n x x x X X 时,有122221T T T T =+++===n y y y Y Y PY P Y X X因此k n k n n y y y y y y f λλλλλ≤+++≤+++=)( 222212222211这说明在22221n x x x +++ =1的条件下f 的最大值不超过k λ.设 TT 10)0.,0,1,0,,0(),,,,( ==n k y y y Y 则 10T0=Y Yk n n k k y y y y f λλλλλ=+++++=22222211令00PY X =,则1T 00T0==Y Y X X并且k f λ===0T T 00T00)()(Y AP P Y AX X X这说明f 在0X 达到k λ,即f 在122221=+++n x x x 条件下的最大值恰为方阵A 的最大特征值.8.设A 正定,P 可逆,则T P AP 正定.证:因为A 正定,所以存在可逆矩阵Q ,使T=A Q Q , 于是 TTTT()==P AP P Q QP QP QP ,显然QP 为可逆矩阵,且T T T T ()()==P AP QP QP P AP ,即T P AP 是实对称阵,故T P AP 正定.9.设A 为实对称矩阵,则A 可逆的充分必要条件为存在实矩阵B ,使AB +A B T 正定. 证:先证必要性取1-=B A ,因为A 为实对称矩阵,则2E A A E A B AB =+=+-T 1T )(当然A B AB T+是正定矩阵. 再证充分性,用反证法.若A 不是可逆阵,则r (A )<n ,于是存在00,≠=X AX 使00因为A 是实对称矩阵,B 是实矩阵,于是有0 )()()(0T T00T 00T T 0=+=+AX B X BX AX X A B AB X这与AB T+AB B A 是正定矩阵矛盾.10.设A 为正定阵,则2*13-++A A A 仍为正定阵.证:因为A 是正定阵,故A 为实对称阵,且A 的特征值全大于零,易见2*1,,-A A A全是实对称矩阵,且它们的特征值全大于零,故2*1,,-A A A 全是正定矩阵,2*13-++A A A 为实对称阵. 对∀≠X 0,有T 2*1T 2T *T 1(3)0--++=++>X A A A X X A X X A X X A X即 2*13-++A A A 的正定矩阵.11.设A 正定,B 为半正定,则+A B 正定.证:显然,A B 为实对称阵,故+A B 为实对称阵. 对∀≠X 0,T0>X AX ,T 0≥X BX ,因T ()0+>X A B X ,故+A B 为正定矩阵.12.设n 阶实对称阵,A B 的特征值全大于0,A 的特征向量都是B 的特征向量,则AB 正定.证:设,A B 的特征值分别为,(1,,)i i i n λμ=.由题设知0,0,1,,i i i n λμ>>=.因为A 是实对称矩阵,所以存在正交矩阵1(,,,,)i n =P P P P ,使T 1diag(,,,,)i n λλλ=P AP即 ,i i i i λ=AP P P 为A 的特征向量,1,,i n =. 由已知条件i P 也是B 的特征向量,故1,,,i i ii i n μ==BP P因此 ()i i i i i i μλμ==ABP A P P ,这说明i i λμ是AB 的特征值,且0i i λμ>,1,,i n =.又因为 T 111diag(,,,,),i i n n λμλμλμ-==ABP P P P .故 11diag(,,,,)i i n n λμλμλμ=AB P P ,显然AB 为实对称阵,因此AB 为正定矩阵. 13.设n n ij a ⨯=)(A 为正定矩阵,n b b b ,,,21 为非零实数,记()ij i j n n a b b ⨯=B则方阵B 为正定矩阵.证:方法一 因为A 是正定矩阵,故A 为对称矩阵,即ji ij a a =,所以i j ji j i ij b b a b b a =,这说明B 是对称矩阵,显然211112*********222221121n n n n n n n n nn n n a b a b b a b b a b b a b a b b a b b a b b a b b ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭B =1111110000n n n nn n a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 对任给的n 维向量1(,,)T 0n x x =≠X ,因n b b b ,,,21 为非零实数,所以),,(11n n x b x b T 0≠,又因为A 是正定矩阵,因此有1111110000TT n n n nn n a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭X BX X X =),,(11n n x b x b 1111n n nn a a a a ⎛⎫⎪ ⎪⎝⎭11n n b x b x ⎛⎫ ⎪ ⎪⎝⎭0> 即B 是正定矩阵. 方法二 记211112121122121222221121n n n n n n n n nn n n a b a b b a b b a b b a b a b b a b b a b b a b b ⎛⎫ ⎪= ⎪⎪ ⎪⎝⎭B则因为A 是实对称矩阵,显然B 是实对称矩阵,B 的k 阶顺序主子阵k B 可由A 的阶顺序主子阵分别左,右相乘对角阵100n b b ⎛⎫⎪ ⎪⎝⎭而得到,即=k B 1111110000k k k kk k a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 计算k B 的行列式,有012>=∏=k k A B ni i b故由正定矩阵的等价命题知结论正确.14.设A 为正定矩阵,B 为实反对称矩阵,则0>+B A .证:因为M 是n 阶实矩阵,所以它的特征值若是复数,则必然以共轭复数形式成对出现;将M 的特征值及特征向量写成复数形式,进一步可以证明对于n 阶实矩阵M ,如果对任意非零列向量X ,均有0T >MX X可推出M 的特征值(或者其实部)大于零. 由于M 的行列式等于它的特征值之积,故必有0>M .因为A 是正定矩阵,B 是反对称矩阵,显然对任意的 非零向量X ,均有,0)(T >+X B A X而A +B 显然是实矩阵,故0>+B A .15.设A 是n 阶正定矩阵,B 为n ⨯m 矩阵,则r (B TAB )=r (B ).证:考虑线性方程组T00==BX B ABX 与,显然线性方程组0=BXT 0=B ABX 的解一定是的解.考虑线性方程组T0=B ABX ,若0X 是线性方程组T 0=B ABX 的任一解,因此有0T 0=B ABX .上式两端左乘有T0XT 00()()0=BX A BX因为A 是正定矩阵,因此必有00=BX ,故线性方程组0=BX 与 T0=B ABX 是同解方程组,所以必有r (B T AB )= r (B ).16.设A 为实对称阵,则存在实数k ,使||0k +>A E . 证:因为A 为实对称阵,则存在正交矩阵P ,使11diag(,,,,)i i λλλ-=P AP .其中i λ为A 的特征值,且为实数,1,,2i =. 于是11diag(,,,,)i n λλλ-=A P P11||||||i n kk kkλλλ-++=++A E PP 1()ni i k λ==+∏取1max{||1}i i nk λ≤≤=+,则1()0nii k λ=+>∏,故 ||0k +>A E .17.设A 为n 阶正定阵,则对任意实数0k >,均有||nk k +>A E . 证:因为A 为正定矩阵,故A 为实对称阵,且A 的特征值0,1,,i i n λ>=. 则存在正交矩阵P ,使1111,iin n λλλλλλ--⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP A P P 于是对任意0k >,有11||||||i n kk kkλλλ-++=++A E PP 1()n i i k λ==+∏1ni k =>∏n k =.18.设A 为半正定阵,则对任意实数0k >,均有||0k +>A E . 证:因为A 为半正定矩阵,故A 为实对称矩阵,且A 的特征值0i λ≥,1,,i n =. 则存在正交矩阵P ,使11diag(,,,,)i n λλλ-=P AP ,11diag(,,,,)i n λλλ-=A P P于是对任意0k >,有11||||diag(,,,,)||i n k k k k λλλ-+=+++A E P P 1()ni i k λ==+∏n k ≥0>.19.A 为n 阶实矩阵,λ为正实数,记Tλ=+B E A A ,则B 正定.证:T T T T()λλ=+=+=B E A A E A A B ,故B 是实对称矩阵. 对∀≠X 0,有(,)0,(,)0>≥X X AX AX ,因此有TTT()λ=+X BX X E A A X T T Tλ=+X X X A AX (,)(,)λ=+X X AX AX 0>故 Tλ=+B E A A 为正定矩阵.20.A 是m ⨯n 实矩阵,若A A T 是正定矩阵的充分必要条件为A 是列满秩矩阵. 证:先证必要性方法一设A A T 是正定矩阵,故00∀≠X ,有0)()()(0T 00T T 0>=AX AX X A A X由此00≠AX ,即线性方程组0=AX 仅有零解,所以r (A )=n ,即A 是列满秩矩阵.方法二因为A A T是正定矩阵,故r(A A T)=n ,由于n r r n ≤≤≤)()(T A A A所以r (A )=n . 即A 是列满秩矩阵.再证充分性:因A 是列满秩矩阵,故线性方程组仅有零解,0∀≠X ,X 为实向量,有0≠AX .因此0),()()()(T T T >==AX AX AX AX X A A X显然A A T 是实对称矩阵,所以A A T 是正定矩阵.21.设A 为n 阶实对称阵,且满足2640-+=A A E ,则A 为正定阵.证:设λ为A 的任意特征值,ξ为A 的属于特征值λ的特征向量,故≠ξ0,则22,λλ==A ξξA ξξ由 2640-+=A A E 有 264-+=A ξAξξ02(64)λλ-+=ξ0由 ≠ξ0,故 2640λλ-+=.30λ=>.因为A 为实对称矩阵,故A 为正定阵.22.设三阶实对称阵A 的特征值为1,2,3,其中1,2对应的特征向量分别为T T 12(1,0,0),(0,1,1)==ξξ,求一正交变换=X PY ,将二次型Tf =X AX 化成标准形.解:设T3123(,,)x x x =ξ为A 的属于特征值3的特征向量,由于A 是实对称矩阵,故123,,ξξξ满足正交条件12312310000110x x x x x x ⋅+⋅+⋅=⎧⎨⋅+⋅+⋅=⎩ 解之可取3(0,1,1)=-ξ,将其单位化有T T T123(1,0,0),,===P P P令123100(,,)0⎛⎫⎪⎪⎪== ⎪⎪⎝P P P P.则在正交变换=X PY下,将f化成标准形为T T T222123()23f y y y===++X AX Y P AP Y23.设1222424aa-⎛⎫⎪=- ⎪⎪⎝⎭A二次型Tf=X AX经正交变换=X PY化成标准形239f y=,求所作的正交变换.解:由f的标准形为239f y=,故A的特征值为1230,9λλλ===.故2122||24(9)24aaλλλλλλ---=--=----E A令0λ=,则12224024aa----=---解之4a=-.由此122244244-⎛⎫⎪=--⎪⎪-⎝⎭A对于12λλ==有1221220244000244000---⎛⎫⎛⎫⎪ ⎪-=-→⎪ ⎪⎪ ⎪--⎝⎭⎝⎭E A可得A的两个正交的特征向量12222,112-⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭ξξ对于39λ=,可得A 的特征向量为122⎛⎫ ⎪- ⎪ ⎪⎝⎭将特征向量单位化得1232211112,1,2333122-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P P P则1232211(,,)2123122-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P P P P 为正交矩阵, 正交变换=X PY 为22112123122-⎛⎫ ⎪=- ⎪ ⎪⎝⎭X Y .注:因特征向量选择的不同,正交矩阵P 不惟一.24.已知二次型22212312132(1)22f x x k x kx x x x =++-++正定,求k .解:二次型的表示矩阵1120101kk k ⎛⎫ ⎪= ⎪ ⎪-⎝⎭A由A 正定,应有A 的各阶顺序主子式全大于0. 故 102||0k k A ⎧>⎪⎨⎪>⎩,即2220(2)0k k k k ⎧-<⎪⎨-->⎪⎩. 解之 10k -<<.25.试问:三元方程2221231213231233332220x x x x x x x x x x x x +++++---=,在三维空间中代表何种几何曲面.解:记222123121323123333222f x x x x x x x x x x x x =+++++---则 111232233311(,,)131(1,1,1)113x x f x x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=+--- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭设 311131113⎛⎫ ⎪= ⎪ ⎪⎝⎭A .则2||(2)(5)λλλ-=--E A . 故A 的特征值为1232,5λλλ===.对于122λλ==,求得特征向量为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ.由Schmidt 正交化得1212111,201⎛⎫- ⎪-⎛⎫ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭ββ.对于35λ=得特征向量3111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,标准化得123,,0⎛⎛ ⎪=== ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭P P P 令123(,,)0⎛ ==⎝P P P P则在正交变换=X PY 下2221233225f y y y =++于是0f =为2221233225(1020y y y ++-= 为椭球面.26.求出二次型222123123123(2)(2)(2)f x x x x x x x x x =-+++-+++-的标准形及相应的可逆线性变换.解:将括号展开,合并同类项有2221231213234442f x x x x x x x x x =++--+2221231213234424x x x x x x x x x +++-+-2221231213234244x x x x x x x x x ++++--222123121323666666x x x x x x x x x =++---2221231213236()x x x x x x x x x =++---2221232323113336[()]22442x x x x x x x =--++-22123231196()()222x x x x x =--+- 令 1123223331122y x x x y x x y x⎧=--⎪⎪=-⎨⎪=⎪⎩即 11223311122011001y x y x y x ⎛⎫--⎪⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭则可逆变换为1122331112011001x y x y x y ⎛⎫ ⎪⎛⎫⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭在此可逆线性变换下f 的标准形为2212962f y y =+. 27.用初等变换和配方法分别将二次型(1)222112412142432442f x x x x x x x x x =--++-+ (2)2122313262f x x x x x x =-+化成标准形和规范形,并分别写出所作的合同变换和可逆变换. 解:先用配方法求解(1)2221112142424(44)322f x x x x x x x x x =-+--++2221242424(22)66x x x x x x x =--+++-222124244(22)(3)3x x x x x x =--++--令 11242243344223y x x x y x x y x y x =-+⎧⎪=-⎪⎨=⎪⎪=⎩ 即 11242243344243x y y y x y y x y x y =++⎧⎪=+⎪⎨=⎪⎪=⎩令 1204010300100001⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭P 则二次型f 经可逆线性变换=x Py 化成标准形22211243f y y y =-+-若再令11223344z y z y z y z =⎧⎪=⎪⎨=⎪⎪=⎩ 即11223344y z y zy z y z =⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩令111⎛⎫ ⎪⎪⎪=⎝Q 则原二次型1f 经可逆线性变换=x PQz 化成规范形2221124f y y y =-+-.(2)先线性变换11221233x y y x y y x y=+⎧⎪=-⎨⎪=⎩原二次型化成22212132313232()6622f y y y y y y y y y y =--+++221213232248y y y y y y =--+2221322332()282y y y y y y =--+-222132332()2(2)6y y y y y =---+令113223332z y y z y y z y =-⎧⎪=-⎨⎪=⎩,即113223332y z z y z z y z =+⎧⎪=+⎨⎪=⎩. 令1110110001⎛⎫ ⎪=- ⎪ ⎪⎝⎭P ,2101012001⎛⎫ ⎪= ⎪⎪⎝⎭P则原二次型2f 经可逆线性变换12=x P P z 化成标准形2222123226f z z z =-+若再令112233w w w ⎧=⎪⎪=⎨⎪=⎪⎩ 即11223322z w z w z w ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩令22⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎝⎭Q则原二次型2f 经可逆线性变换12=x P P Qw 化成规范形2222123f w w w =-+.用初等变换法求解(1)设1202230100002102--⎛⎫⎪- ⎪=⎪⎪ ⎪-⎝⎭A41202100023010100()0000001021020001--⎛⎫⎪- ⎪=⎪ ⎪ ⎪-⎝⎭A E 2121221021000010321000000001023020001r r c c +⨯+⨯--⎛⎫⎪- ⎪−−−→⎪⎪⎪--⎝⎭4141(2)(2)10001000010321000000001003062001r r c c +-⨯+-⨯-⎛⎫⎪- ⎪−−−−→ ⎪ ⎪ ⎪--⎝⎭42423310001000010021000000001000034301r r c c +⨯+⨯-⎛⎫ ⎪⎪−−−→ ⎪ ⎪ ⎪-⎝⎭331000100001002100000000100001033r c -⎛⎫⎪⎪ ⎪→- ⎝⎭令 T11000210000104301⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P ,T21000210000100⎛⎫ ⎪⎪ ⎪=P则原二次型1f 经过可逆线性变换1=x P y 化成标准形22211233f y y y =-+-. 二次型经过可逆线性变换2=x P z 化成规范形2221124f z z z =-+-.(2)设011103130⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A3011100()103010130001⎛⎫⎪=-⎪ ⎪-⎝⎭A E 3232(1)(1)010100103010036011r r c c +-⨯+-⨯⎛⎫⎪−−−−→- ⎪ ⎪--⎝⎭ 313133010100100010006311r r c c +⨯+⨯⎛⎫ ⎪−−−→ ⎪ ⎪-⎝⎭1212210100100010006311r r c c ++⎛⎫⎪−−−→ ⎪ ⎪-⎝⎭21211()21()2200110111000222006311r r c c +-⨯+-⨯⎛⎫ ⎪ ⎪−−−−→-- ⎪ ⎪-⎝⎭112233,,,10000100001266r c r c r c ⎛⎫⎪ ⎪ ⎪→- ⎪ - ⎝⎭令 T111011022311⎛⎫ ⎪ ⎪=-⎪ ⎪-⎝⎭P ,T200⎛⎫ ⎪ ⎪ ⎪= ⎪⎝P 则原二次型2f 经过可逆线性变换1=x P y 化成标准形22221231262f y y y =-+ 二次型经过可逆线性变换2=x P z 化成规范形2222123f z z z =-+28.用三种不同方法化下列二次型为标准形和规范形.(1)2221122332343f x x x x x =+++(2)222221234121423342222f x x x x x x x x x x x x =++++--+解:先用配方法求解(1)222112233423()33f x x x x x =+++22212332523()33x x x x =+++ 令 112233323y x y x x y x =⎧⎪⎪=+⎨⎪=⎪⎩ 即 112233323x y x y y x y =⎧⎪⎪=-⎨⎪=⎪⎩令 1002013001⎛⎫⎪⎪=- ⎪ ⎪⎝⎭P则二次型1f 经可逆线性变换=x Py 化成标准形 22211235233f y y y =++ 若再令1122333z z z y ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩ 即1122335y z y z y z ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩ 令35⎫⎪ ⎪ ⎪= ⎪ ⎝⎭Q原二次型1f 经可逆线性变换=x PQz 化成规范形2221123f z z z =++.(2)22222112142342334(22)22f x x x x x x x x x x x x =+-+++-+ 221243233424()222x x x x x x x x x x =+-+-++ 2222124324244()()(2)3x x x x x x x x x =+-+-+--+令 11242243234442y x x x y x x y x x x y x =+-⎧⎪=-⎪⎨=-++⎪⎪=⎩ 即 11242243234442x y y y x y y x y y y x y =--⎧⎪=+⎪⎨=++⎪⎪=⎩令 110101020*******--⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭P 则二次型2f 经可逆线性变换=x Py 化成标准形2222212343f y y y y =-++若再令11223344z y z y z y z =⎧⎪=⎪⎨=⎪⎪=⎩ 即112233443y z y zy z y z =⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩令111⎛⎫ ⎪⎪⎪=⎝Q 原二次型2f 经可逆线性变换=x PQz 化成规范形222221234f z z z z =-++.用初等变换法求解(1)设200032023⎛⎫ ⎪= ⎪ ⎪⎝⎭A3200100()032010023001⎛⎫ ⎪= ⎪⎪⎝⎭A E 32322()32()320010003001052000133r r c c +-⨯+-⨯⎛⎫ ⎪ ⎪−−−−→ ⎪ ⎪- ⎪⎝⎭112310000010000010155r c r c ⎛⎫ ⎪ ⎪⎪→ ⎪ - ⎝⎭令TT1200100010,0020130⎫⎪⎛⎫ ⎪⎪ ⎪⎪== ⎪⎪ ⎪ - ⎪ ⎝⎭⎝P P 则原二次型1f 经过可逆线性变换1=x P y 化成标准形22211235233f y y y =++. 二次型经过可逆线性变换2=x P z 化成规范形2221123f z z z =++.(2)设1101111001111011-⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭A 41101100011100100()0111001010110001-⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭A E 2121(1)(1)10011000001111000111001011110001r r c c +-⨯+-⨯-⎛⎫ ⎪-- ⎪−−−−→ ⎪- ⎪ ⎪-⎝⎭414110001000001111000111001001101001r r c c ++⎛⎫⎪-- ⎪−−−→ ⎪- ⎪ ⎪⎝⎭ 323210001000001111000112111001201001r r c c ++⎛⎫ ⎪-- ⎪−−−→ ⎪--- ⎪ ⎪⎝⎭343410001000000111000032011101201001r r c c ++⎛⎫ ⎪- ⎪−−−→ ⎪ ⎪ ⎪⎝⎭ 3232(2)(2)10001000000111000030211101001001r r c c +-⨯+-⨯⎛⎫ ⎪- ⎪−−−−→ ⎪- ⎪ ⎪⎝⎭242410001000020101010030211101001001r r c c ++⎛⎫⎪ ⎪−−−→ ⎪- ⎪ ⎪⎝⎭ 42421()21()210001000020001010030211111100010222r r c c +-⨯+-⨯⎛⎫ ⎪ ⎪−−−−→ ⎪- ⎪ ⎪-- ⎪⎝⎭223344100010000100000010333300010r cr cr c⎛⎫⎪→ ⎪-⎪-⎝令T1100001012111111022⎛⎫⎪⎪= ⎪-⎪⎪-⎪⎝⎭PT210000022⎛⎫⎪=-⎝⎭P则原二次型2f可经可逆线性变换1=x P y化成标准形2222212341232f y y y y=++-.2f可经可逆线性变换2=x P z化成规范形222221234f z z z z=++-用正交变换法求解(1)1f的矩阵为200032023⎛⎫⎪= ⎪⎪⎝⎭A,由200||032(1)(2)(5)023λλλλλλλ--=--=-----E A,知A的特征值为1,2,5.对11λ=,解123100002200220xxx-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--=⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,得12311xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,取111⎛⎫⎪= ⎪⎪-⎝⎭T,单位化1⎛⎫⎪⎪⎪= ⎪⎝P,对22λ=,解123000001200210xxx⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--=⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,得1231xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,取21⎛⎫⎪= ⎪⎪⎝⎭P,对35λ=解123300002200220xxx⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,得12311xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭取311⎛⎫⎪= ⎪⎪⎝⎭T,单位化得322⎛⎫⎪⎪⎪= ⎪⎪⎪⎪⎝⎭P,令0102222⎛⎫⎪⎪⎪= ⎪⎪⎪- ⎪⎝⎭P,则P为正交阵,经正交变换=X PY,原二次型f化为T22212325f y y y==++X AX.(2)2f的矩阵为1101111001111011-⎛⎫⎪-⎪=⎪-⎪⎪-⎝⎭A由11011110||01111011λλλλλ-----=----E A2(1)(3)(1)λλλ=+--知A的特征值为1,3,1,1-.对11λ=-,解12342101012100,0121010120xxxx--⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-- ⎪⎪ ⎪=⎪⎪ ⎪--⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭得12341111xxkxx⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪-⎪ ⎪⎪⎪⎝⎭⎝⎭,取11111⎛⎫⎪- ⎪=⎪-⎪⎪⎝⎭T单位化得112121212⎛⎫⎪⎪⎪-⎪= ⎪⎪-⎪⎪⎪⎝⎭P,对23λ=,解12342101012100,0121010120xxxx-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪- ⎪⎪ ⎪=⎪⎪ ⎪-⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭得12341111xxkxx-⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭.取 21111-⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪⎝⎭T 单位化得 212121212⎛⎫- ⎪ ⎪ ⎪- ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭P . 对341λλ==,解12340101010100,010*******x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 得 12123410011001x x k k x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭取 341001,1001⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭T T , 再令340202,002⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎝⎭⎝⎭P P 令11022110222110222110222⎛⎫- ⎪ --⎪= ⎪- ⎪ ⎝⎭P ,则P 为正交阵,经正交变换=X PY , 原二次型f 化为T 222212343f y y y y ==-+++X AX .29.判断下列二次型正定,负定还是不定.(1)2221223121326422f x x x x x x x =---++解:二次型1f 的矩阵为211160104-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭AA 的各阶顺序全子式2112120,110,1603801614---<=>-=-<--. 所以二次型1f 是负定二次型.(2)22222123412131424343919242612f x x x x x x x x x x x x x x =+++-++--解:二次型2f 的矩阵为11211303209613619-⎛⎫ ⎪--⎪= ⎪- ⎪ ⎪--⎝⎭A A 的各阶顺序主子式1110,2013->=>-,1121306029--=>,11211303240209613619---=>--- 所以二次型2f 是正定二次型.(3)222231234131423147644f x x x x x x x x x x =+++++-解:二次型3f 的矩阵为10320120321402007⎛⎫⎪- ⎪=⎪- ⎪ ⎪⎝⎭A A 的各阶顺序主子式1010,1001>=>,103012103214-=>-,1320120330321402007-=-<-. 所以二次型3f 是不定二次型.30.求一可逆线性变换=X CY ,把二次型2221123121325424f x x x x x x x =++--化成规范形2221123f y y y =++,同时也把二次型22221231313233322242f x x x x x x x x x =++--- 化成标准形2222112233f k y k y k y =++.解:记T1f =X AX ,其中212150204--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A31213121121220021290115022040121001112010*********r r r r c c c c ++++⎛⎫ ⎪--⎛⎫ ⎪- ⎪- ⎪ ⎪ ⎪ ⎪--⎛⎫ ⎪=−−−→ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭A E 323229292009002160091101292019001r r c c ++⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123123343410001000156610363004r r r c c c ⨯⨯⎛⎫⎪ ⎪ ⎪ ⎪⎪⎪−−−→⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭取5661036004⎛⎫⎪⎪⎪⎪= ⎪ ⎪3 ⎪ ⎪⎝⎭P ,则T =P AP E 记 T2f =X BX,其中3012032122⎛⎫- ⎪ ⎪=- ⎪ ⎪-- ⎪⎝⎭B则T150036601210032061225133006644⎛⎫⎫⎪⎪⎛⎫-⎪⎪ ⎪ ⎪⎪ ⎪ ⎪==-⎪ ⎪ ⎪ ⎪ ⎪--⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭B P BP5066104636113100234⎛⎫⎫⎪⎪⎪⎪ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭314413444142⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪-⎪⎪⎭2311113442⎛⎫== ⎪⎭B 其中231132⎛⎫ = ⎪⎭B 显然12,B B 都是实对称矩阵,它们的特征值为14倍的关系,特征向量相同.231||13λλλ---=--EB 30(3)14)1(3)04)4λλλλλ---=----2(4)0λλ=-=则2B 的特征值为230,4λλλ===,故1B 的特征值为0,1,1. 以下求2B 的特征向量.对于10λ=,求得11⎛ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭α,单位化后11212⎛⎫- ⎪ ⎪ ⎪= ⎪ ⎪γ 对于234λλ==,求得2311,001⎛⎫⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα由Schmidt 标准正交化后得23121,20⎛⎫ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭γγ令123112211(,,)220⎛⎫- ⎪ ⎪ ⎪==-⎪ ⎪Q γγγ. 则Q 为正交矩阵,且有T T T 10()11⎛⎫ ⎪== ⎪ ⎪⎝⎭Q B Q Q P BP Q令511662*********304⎛⎫⎛⎫⎪- ⎪⎪ ⎪⎪ ⎪⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭CPQ 23130⎫⎪⎪=⎪⎪⎭于是 TTT==Q P APQ Q EQ E即 T=C AC ET 011⎛⎫ ⎪= ⎪ ⎪⎝⎭C BC在可逆线性变换=X CY 下2221123f y y y =++22223f y y =+.(注:经验算本题所得C 是正确的,需要注意的是C 并不惟一)31.求一可逆线性变换=X PY ,将二次型f 化成二次型g .2221231213232938410f x x x x x x x x x =+++--222123121323236448g y y y y y y y y y =++--+解:Tf =X AX ,242495253-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭A , T g =Y BY ,222234246--⎛⎫⎪=- ⎪ ⎪-⎝⎭B 将,A B 分别作合同变换如下:21313221323122242200200495011010253011000100121121010010011001001001r r r r r r c c c c c c -++-++-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎛⎫=−−−→−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E 在可逆线性变换1=X C Z 下22122f z z =+ 其中 1121011001--⎛⎫ ⎪= ⎪ ⎪⎝⎭C 21313221323122220020023401201024602400100111111010010012001001001r r r r r r c c c c c c ++++++--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎛⎫=−−−→−−−→ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B E 在可逆线性变换2=YC Z 下22122g z z =+.其中 2111012001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭C由 12-=Z C Y 得1112-==X C Z C C Y令 1112121111136011012003001001001-------⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭P C C 在可逆线性变换=X PY 下22122f g z z ==+.32.A 是正定矩阵,AB 是实对称矩阵,则AB 是正定矩阵的充分必要条件是B 的特征值全大于零.证:先证必要性.设λ 为B 的任一特征值,对应的特征向量为,,0≠X X 则 且有X BX λ=用A X T 左乘上式有AX X X AB X T T )(λ=因为AB ,A 都是正定矩阵,故0,0)(T T >>AX X X AB X于是0>λ,即B 的特征值全大于零.再证充分性.因为A 是正定矩阵,所以A 合同于单位矩阵,故存在可逆矩阵P ,使E AP P =T (1)由AB 是对称矩阵,知P AB P )(T也是实对称矩阵,因此存在正交矩阵Q ,使),,,,diag(])([1T T n i μμμ ==D Q P AB P Q (2)即有),,,,diag()()(1TT n i μμμ ==D PQ B A P Q (3)其中n i μμμ,,,,1 是P AB P )(T的特征值. 在(1)的两端左乘TQ ,右乘Q 有E PQ A P Q E Q AP P Q ==))(()(T T T T 即这说明)()(TTPQ A P Q 与互逆,也就是说1T T )()(-=PQ A P Q将上式代入(3),说明矩阵B 与对角阵D 相似,故它们的特征值相等;由条件知B 的特征值全大于零,因此对角阵D 的特征值也全大于零. 由(2)知AB 与D 合同,因此AB 的特征值全大于零.33.设,A B 为n 阶实正定阵,证明:存在可逆阵P ,使T =P AP E 且T 12diag(,,,)n λλλ=P BP ,其中120n λλλ≥≥≥>为||0λ-=A B 的n 个实根.证:因A 正定,故存在可逆矩阵1P ,使T 11=P AP E因B 正定,故存在可逆矩阵2P ,使T 22=B P P于是T T T T 1112212121()()==P BP P P P P P P P P易见T11P BP 为正定矩阵,不妨设它的特征值为120n λλλ≥≥≥>.则 TTT11111||||λλ-=-E P BP P AP P BP T11||||||λ=-P A B P 故 T11||0||0λλ-=⇔-=E P BP A B 即 120n λλλ≥≥≥>为||0λ-=A B 的几个实根.由 T11P BP 为正定阵,知其为实对称矩阵,所以存在正交矩阵Q ,使 T T 1112()diag(,,,)n λλλ=Q P BP Q 令 1=P PQ ,则 TT 12,diag(,,,)n λλλ==P AP E P BP34.设A 为n 阶实正定阵,B 为n 阶实半正定阵,则||||+≥A B A . 证:因为A 是n 阶正定矩阵,所以存在n 阶可逆矩阵C ,使得T =C AC E . 因为B 是n 阶半正定阵,则TC BC 仍是实对称半正定阵,故存在正交阵Q ,使得1T T T 1()()diag(,,,,)i n D -===Q C BC Q Q C BC Q λλλ其中 0,1,,i i n λ≥=为T C BC 的特征值,且有T T ()=Q C AC Q E令=P CQ ,则P 为可逆矩阵,于是T T ,==P AP E P BP DT T T ()+=+=+P A B P P AP P BP E D上式两端取行列式,得T1||||||||(1)1ni i λ=+=+=+≥∏P A B P E D ||||||T =P A P因 T||||0=>P P , 故 ||||+≥A B A .35.设,A B 均为实正定阵,证明:方程||0λ-=A B 的根全大于0.证:由33题知T11||0||0λλ-=⇔-=E P BP A B . 其中T11P BP 为正交矩阵,它的特征值0i λ>,1,,i n =,故||0λ-=A B 的根全大于0.36.设A 为n 阶正定矩阵,试证:存在正定矩阵B ,使2B A =. 证:因为A 是正定矩阵,所以是实对称矩阵,于是存在正交矩阵P ,使12-1T n λλλ⎛⎫ ⎪===⎪ ⎪ ⎪⎝⎭P AP P AP D 其中n λλλ,,,21 为A 的n 个特征值,它们全大于零.令),,,2,1(n i i i ==λδ 则21111222222n n n n δλδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪===⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭D而 1122T T n n δδδδδδ⎛⎫⎛⎫ ⎪⎪⎪⎪== ⎪⎪ ⎪⎪⎝⎭⎝⎭A PDP P P 1122T T n n δδδδδδ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P P P 令 B =12Tn δδδ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭P P显然B 为正定矩阵,且2B A =.37.设A 为n 阶可逆实方阵,证明:A 可表示为一个正定阵与一正交阵的乘积.证:因为A 是n 阶可逆实方阵,故TA A 是正定矩阵,所以存在n 阶正定矩阵B ,使T 2=A A B .于是有1T 11T T 11T 21()()()()------===AB AB B A AB B B B E这说明1-AB 是正交阵. 令 1-=ABQ则 =A QB ,其中Q 是正交矩阵,B 是正定矩阵.38.A 、B 为n 阶正定矩阵,则AB 也为n 阶正定矩阵的充分必要条件是:AB =BA ,即A 与B 可交换.证:方法一 先证必要性.由于A 、B 、AB 都是正定矩阵,所以知它们都是对称矩阵,因此有AB AB B B A A ===T T T )(,,于是BA A B AB AB ===T T T )(即A 与B 可交换.再证充分性. 由条件AB=BA 得AB B A BA AB ===T T T T )()(因此AB 是对称矩阵.因为,A B 是正定矩阵,故它们皆为实对称矩阵,且有可逆矩阵P 、Q ,使Q Q B P P A T T ,==于是Q PQ P AB T T =上式左乘Q ,右乘1-Q 得)()()(T T T T T 1PQ PQ PQ QP Q AB Q ==-这说明AB 与对称矩阵)()(TTT PQ PQ 相似;因为P TQ 是可逆矩阵,故矩阵)()(TTT PQ PQ 是正定矩阵,故它的特征值全大于零,所以AB 的特征值也全大于零. 综合上述知AB 正定. 方法二必要性同方法一,以下证明充分性. 由条件AB=BA 得AB B A BA AB ===T T T T )()(因此AB 是对称矩阵.由于A 正定,所以存在可逆矩阵Q ,使A=Q T Q于是T T T T 1()λλλ--=-=-E AB E Q QB E Q QBQ QT T 1T T T 1T T T 1T()()()()λλλ---=-=-=-Q E Q Q QBQ Q Q E QBQ Q E QBQT 00λλ-=⇔-=E AB E QBQ这说明AB 与TQBQ 有相同的特征值.因为B 是正定矩阵,易见TQBQ 也是正定矩阵,故它的特征值全大于零,所以AB 的特征值也全大于零.综合上述知AB 正定.39.设A 、B 为实对称矩阵,且A 为正定矩阵,证明:AB 的特征值全是实数. 证:因为A 是正定矩阵,故存在可逆矩阵Q ,使Q Q A T=, 于是有T T T T 1T T T 1T()()()λλλλλ---=-=-=-=-E AB E Q QB E Q QBQ Q Q E QBQ Q E QBQ即T||0||0λλ-=⇔-=E AB E QBQ .因为B 是实对称矩阵,所以TQBQ 也是实对称矩阵,因此它的特征值都是实数,故AB 的特征值也都是实数.40.设A 是正定矩阵,B 是实反对称矩阵,则AB 的特征值的实部为零. 证:因为A 是正定矩阵,故存在可逆矩阵Q ,使Q Q A T=T T T T 1T T T 1T()()()λλλλλ---=-=-=-=-E AB E Q QB E Q QBQ Q Q E QBQ Q E QBQ因为B 是实反对称矩阵,所以TQBQ 也是实反对称矩阵,因此它的特征值实部为零,故AB 的特征值实部也为零.41.设A 是正定矩阵,B 是半正定的实对称矩阵,则AB 的特征值是非负的实数. 证:由于A 是正定的,所以1-A 也是正定的,于是存在可逆矩阵P ,使得P P A T 1=-,因此1T T T 11T T 111T 11T 111T 1()()()()()λλλλλλλλ-------------=-=-=-=-=-=-=-E AB A A B A P P B A P E P BP PA P P E P BP A A E P BP E P BP E P BP即0)(01T 1=-⇔=---BP P E AB E λλ.由于B 是半正定的实对称矩阵,故1T1)(--BPP 是半正定的实对称矩阵,因此0)(1T 1=---BP P E λ的根是非负实数.于是0=-AB E λ的根也是非负实数,即AB的特征值是非负的实数.42.求证实二次型∑∑==++=n r ns sr n xx s r krs x x f 111)(),,( 的秩和符号差与k 无关.证:二次型的矩阵为22334(1)2344652(2)3465963(3)(1)2(2)3(3)22k k k nk n k k k nk n k k k nk n nk n nk n nk n n k n +++++⎛⎫ ⎪+++++ ⎪+++++= ⎪⎪⎪+++++++⎝⎭A。

第五章 相似矩阵及二次型 线性代数 含答案

第五章 相似矩阵及二次型  线性代数  含答案

第五章 相似矩阵及二次型5.4.1 基础练习 1. (1223),(3151),(,)αβαβ==∠求.2. 若λ=2为可逆阵A的特征值,则1213A -⎛⎫⎪⎝⎭的一个特征值为 .3. 试证n阶方阵A的满足2A A =,则A的特征值为0或者1.4.已知三维向量空间中,12(111),(121)TTαα==-正交,试求3123,,αααα,使得是三维向量空间的一个正交基.5. 已知向量1(111)T α=,求3R 的一个标准正交基.6. 已知122224242A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,问A 能否化为对角阵?若能对角化,则求出可逆矩阵P ,使1P AP -为对角阵.7. 将二次型222123121323171414448f x x x x x x x x x =++---,通过正交变换x Py =化成标准型.8. 判别二次型()222123123121323,,55484f x x x x x x x x x x x x =+++--是否正定?5.4.2 提高练习1. 设n 阶实对称矩阵A 满足2A A =,且A 的秩为r ,试求行列式det(2E -A).2. 设460350361A ⎛⎫⎪=-- ⎪ ⎪--⎝⎭,问A 能否对角化?若能对角化,则求出可逆矩阵P ,使得-1P AP 为对角阵.3. 已知实对称矩阵220212020A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,分别求出正交矩阵P ,使1P AP -为对角阵. 4. 化二次型()123121323,,f x x x x x x x x x =++为标准形,并求所作的可逆线性变换.5. 设A,B分别为m阶,n阶正定矩阵,试判定分块矩阵ACB⎛⎫= ⎪⎝⎭是否为正定矩阵?6. 判别二次型22256444f x y z xy xz=---++的正定性.7. 判断下列两矩阵A,B是否相似11100111100,111100nA B⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭第五章 参考答案5.4.1 基础练习 1.[,]cos ||||||||4αβπθθαβ===∴=2.34. 3.略.4. 设3123()0Tx x x α=≠,则[][]1223,0,,0αααα==,即 12313312321002001x x x x x x x x x α-⎛⎫++==-⎧⎧ ⎪⇒⇒=⎨⎨ ⎪-+==⎩⎩ ⎪⎝⎭5. 设非零向量23,αα都与2α正交,即满足方程11230,0T x x x x α=++=或者,其基础解 系为: 12100,111ξξ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 令 121321101,0,1111ααξαξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭1)正交化令 121122121111[,]1,0,[,]11βαβαβαβαββ⎛⎫⎛⎫⎪⎪===-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1323233312321122221[,][,][,]12[,][,][,]21βαβαβαβαββαβββββββ-⎛⎫⎪=--=-= ⎪ ⎪-⎝⎭2)标准化令1||||i i i ςββ=,则1231111,0,2111ςςς-⎛⎫⎛⎫⎛⎫⎪⎪⎪===⎪⎪⎪⎪⎪⎪--⎭⎭⎭6. 由2122224(2)(7)242A E λλλλλλ---=---=--+--得,1232,7λλλ===-将12λ=λ=2代入()1A-λE x=0,得方程组 12312312322024402440x x x x x x x x x --+=⎧⎪--+=⎨⎪+-=⎩解值得基础解系 12200,111αα⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 同理,对3λ=-7,由()3A-λE x=0,求得基础解系()31,2,2Tα=,由于201120112≠,所以123,,ααα线性无关,即A 有3个线性无关得特征向量,因而A 可对角化,可逆矩阵为:123201(,,)012112P ααα⎛⎫⎪== ⎪ ⎪⎝⎭7. 第一步,写出对应得二次型矩阵,并求其特征值 172221442414A --⎛⎫ ⎪=-- ⎪⎪--⎝⎭, ()()2172221441892414A E λλλλλλ---⎛⎫⎪-=---=-- ⎪⎪---⎝⎭,从而A 的全部特征值为1239,18λλλ===。

线性代数练习题库及答案

线性代数练习题库及答案

线性代数练习册答案第五章 相似矩阵及二次型51ξ- 内积52ξ- 方阵的特征值与特征向量一.填空题:1.A 是正交矩阵,则A1A =± . 2.已知n 阶方阵A 的特征值为12,,,n λλλ⋅⋅⋅, 则E A λ-= ()()()12n λλλλλλ--⋅⋅⋅- .3.已知3阶方阵A 的特征值为1,1,2-,则232B A A =-的特征值为 1,5,8 ;A = 2- ;A 的对角元之和为 2 .4.若0是A 的特征值,则A 不可逆 (可逆,不可逆).5.A 是n 阶方阵,A d =,则AA *的特征值是 ,,,d d d ⋅⋅⋅(共n 个) . 二.用施密特法把下列向量组规范正交化123111(,,)124139ααα⎛⎫⎪= ⎪ ⎪⎝⎭解:()111,1,1Tβα==[]()()()2122121,61,2,31,1,11,0,13TT Tαββαββ=-=-=- [][]313233122212,,αβαββαββββ=--()()()1481211,4,91,1,11,0,1,,32333TTTT⎛⎫=---=- ⎪⎝⎭故)1111,1,1T b ββ==,)2221,0,1T b ββ==-,)3331,2,1Tb ββ==-.三.求下列矩阵的特征值和特征向量1. 1221A ⎛⎫= ⎪⎝⎭2. 100020012B ⎛⎫⎪= ⎪ ⎪⎝⎭解:1. A 的特征多项式为12(3)(1)21A E λλλλλ--==-+-故A 的特征值为123,1λλ==-.当13λ=时,解方程()30A E x -=.由221132200rA E --⎛⎫⎛⎫-= ⎪ ⎪-⎝⎭⎝⎭:得基础解系111P ⎛⎫= ⎪⎝⎭,故1(0)kPk ≠是对应于13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭:得基础解系211P -⎛⎫= ⎪⎝⎭,故2(0)kP k ≠是对应于21λ=-的全部特征向量.2. B 的特征多项式为2100020(1)(2)012B E λλλλλλ--=-=--- 故B 的特征值为1231,2λλλ===.当11λ=时,解方程()0B E x -=.由000011010010011000r B E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系1100P ⎛⎫⎪= ⎪ ⎪⎝⎭,故1(0)kP k ≠是对应于11λ=的全部特征向量. 当232λλ==时,解方程()20B E x -=.由1001002000000010010r B E -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系2001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,故2(0)kP k ≠是对应于232λλ==的全部特征向量.四.证明下列各题1. x 为n 维列向量,且1T x x =,求证:2T H E xx =-是对称的正交阵.2. 设A 、B 为同阶正交阵,证明:AB 也是正交阵. 证明:1. ()()222TTTTT TT T H E xx H E xxE xx H =-⇒=-=-=故H 为对称阵.又()()()224444T T T T T T T T H H E xx E xx E xx x x x x E xx xx E =--=-+=-+=故H 为正交阵.2. 因,A B 为同阶正交阵,故,T T A A E B B E ==. 又()()TT T T T AB AB B A AB B EB B B E ====,故AB 为正交阵.五.A 是n 阶方阵,命题P 为:A 的特征值均不为0.请尽量多的列举与P 等价的命题.(如A 可逆.至少列举3个) 解:等价命题:1P :A 的列(行)向量组线性无关 2P :0A ≠3P :齐次线性方程组0Ax =只有0解 4P :A 的秩为n53ξ- 相似矩阵54ξ- 实对称矩阵的相似矩阵一.填空题:1.若ξ是A 的特征向量,则 1P ξ- 是1P AP -的特征向量.2.若A 与B 相似,则A.3.20000101A x ⎛⎫ ⎪= ⎪ ⎪⎝⎭与20000001B y ⎛⎫ ⎪= ⎪ ⎪-⎝⎭相似,则x = 0 ,y = 1 .4.若λ是A 的k 重特征根,则必有k 个相应于λ的线性无关的特征向量, 不对 (对,不对),若A 是实对称的呢? 对 (对,不对).二.多项选择题(选出全部正确的选项,可能不只一个)1.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个( C ) (A )互不相同的特征值; (B )互不相同的特征向量; (C )线性无关的特征向量; (D )两两正交的特征向量;2.方阵A 与B 相似,则必有( BD )(A )E A E B λλ-=-; (B )A 与B 有相同的特征值; (C )A 与B 有相同的特征向量; (D )A 与B 有相同的秩; 3.A 为n 阶实对称矩阵,则( ACD )(A )属于不同特征值的特征向量必定正交; (B )0A >;(C )A 必定有n 个两两正交的特征向量; (D )A 的特征值均为实数;三.100021012A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试求一个可逆矩阵P 使得1P AP -为对角阵,并求m A .解:先求A 的特征值和特征向量.2100021(1)(3)012E A λλλλλλ--=-=--- 故A 的所有特征值为1233,1λλλ===.当13λ=时,解方程()30A E x -=.2001003011011011000rA E -⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭:令1011P ⎛⎫⎪= ⎪ ⎪⎝⎭,则1P 即为对应于13λ=的特征向量. 当231λλ==时,解方程()0A E x -=.000000011011011000r A E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:令23100,101P P ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则23,P P 即为对应于231λλ==的特征向量.显然,123,,P P P 线性无关.令()123010,,101101P P P P ⎛⎫⎪==- ⎪ ⎪⎝⎭,则11110031313102211313022mm m m mm P AP A P P A P P ---⎛⎫ ⎪⎛⎫ ⎪+-+ ⎪⎪Λ==⇒=Λ⇒=Λ= ⎪⎪⎪ ⎪⎝⎭-++ ⎪⎪⎝⎭四.三阶实对称矩阵A 的特征值为0,2,2,又相应于特征值0的特征向量为1111P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求出相应于2的全部特征向量.解:因为A 为三阶实对称矩阵,故A 有三个线性无关的特征向量,且对应于不同特征值的 特征向量两两正交.已知对应于10λ=的特征向量为1P ,设对应于232λλ==的特征向量为23,P P ,则12130,0T T P P P P ==.即23,P P 为齐次线性方程组10T P x =的两个线性无关的解.由10T P x =得1230x x x ++=.令2310,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则11,1x =--.取23111,001P P --⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则23,P P 即为对应于232λλ==的特征向量.令2233k P k P ξ=+(23,k k 不全为零),则ξ为对应于232λλ==的全部特征向量. 五.设3阶方阵A 的特征值为1231,0,1λλλ===-,对应的特征向量分别依次为1231222,2,1212P P P -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求A .解:因为123λλλ≠≠,故A 可对角化,且123,,λλλ所对应的特征向量123,,P P P 线性无关.显然()()112312323,,,,A P P P P P P λλλ⎛⎫⎪= ⎪ ⎪⎝⎭,令()123,,P PP P =, 故1112311021001231220A P P P P λλλ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.55ξ- 二次型及其标准形56ξ- 用配方法化二次型为标准形57ξ- 正定二次型一.填空题:1. 22(,)22f x y x xy y x =+++是不是二次型?答: 不是 .2. 123121323(,,)422f x x x x x x x x x =-++的秩是 3 ;秩表示标准形中 平方项 的个数.3.21101000A k k ⎛⎫⎪= ⎪ ⎪⎝⎭,A 为正定矩阵,则k 满足 大于1 .二.A 为实对称矩阵,选出全部的A 为正定矩阵的充分必要条件( 12346 ) 1.对任意的列向量0x ≠,0x Ax '> 2.存在可逆方阵C ,使得A C C '= 3.A 的顺序主子式全部大于零 4.A 的主子式全部大于零 5.A 的行列式大于零 6.A 的特征值全部大于零三.212312331001(,,)(,,)300430x f x x x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭1.求二次型123(,,)f x x x 所对应的矩阵A ;2.求正交变换x Py =,将二次型化为标准形.解:1. 2112312331232123001(,,)(,,)300(,,)343043x x f x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭22212233343x x x x x =+++ 故二次型123(,,)f x x x 所对应的矩阵100032023A ⎛⎫⎪= ⎪ ⎪⎝⎭.2. 问题可转化为求正交矩阵P ,将A 化为对角形.21032(1)(5)023A E λλλλλλ--=-=--- 故A 的特征值为1231,5λλλ===.当121λλ==时,解方程()0A E x -=.000011022000022000r A E ⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:.令1310,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得20,1x =-.取12100,101ξξ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则12,ξξ即为对应于121λλ==的特征向量.显然,12,ξξ正交.将12,ξξ单位化得121212010,0P P ξξξξ⎛⎫ ⎪ ⎪⎛⎫⎪==== ⎪ ⎪⎝⎭⎪ ⎪⎝⎭当35λ=时,解方程()50A E x -=.4001005022011022000rA E -⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭:.令31x =,得1201x x =⎧⎨=⎩.取3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则3ξ即为对应于35λ=的特征向量.将3ξ单位化得3330P ξξ⎛⎫⎪ ⎪==. 令()123P P P P =,则1115P AP -⎛⎫⎪= ⎪ ⎪⎝⎭.故123(,,)f x x x 的标准形为2221235y y y ++.四.已知A 和B 都为n 阶正定矩阵,求证A B +的特征值全部大于零. 证明:因为,A B 都为n 阶正定矩阵,则对任意n 维列向量0x ≠, 有()0,00T T T x Ax x Bx x A B x >>⇒+>.即A B +是正定矩阵. 故A B +的特征值全部大于零. 五.已知A 为n 阶正定矩阵,求证1A E +>.证明:因为A 为n 阶正定矩阵,则A 的n 个特征值12,,,n λλλ⋅⋅⋅全大于零且存在正交矩阵P ,使得112211n n P AP A P P λλλλλλ--⎛⎫⎛⎫⎪⎪⎪ ⎪=⇒= ⎪ ⎪⋅⋅⋅⋅⋅⋅⎪ ⎪⎝⎭⎝⎭. 由1122111n n A E P P PP P E P λλλλλλ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪+=+=+ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121111n P P λλλ-+⎛⎫⎪+⎪= ⎪⋅⋅⋅ ⎪+⎝⎭,得()()()121121111111n n A E PP λλλλλλ-+++==++⋅⋅⋅+>⋅⋅⋅+六.求22:1L x xy y ++=围成的面积.解:设二次型()22112(,),112x f x y x xy y x y y ⎛⎫ ⎪⎛⎫=++=⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭. 令112112A ⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭,则A 是对称矩阵且正定.设12,λλ为A 的特征值,可知存在正交矩阵P ,使得11200T P AP P AP λλ-⎛⎫== ⎪⎝⎭.由0E A λ-=,得1213,22λλ==. 因为正交变换不改变向量的长度,故可用正交变换12z x P z y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,使得1221122T T T T X AX Z P APZ Z P APZ z z λλ-===+,其中12,z x X Z z y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 综上可知,经过正交变换后,221213(,)22f x y z z =+.故L 的面积即为椭圆: 221213122z z +=的面积.面积S =.第五章 复习题三、计算题1、设3阶对称阵A 的特征值为6,3,3,与特征值6对应的特征向量为()11,1,1Tp =,求A解:因为对称矩阵对应于不同特征值的特征向量是两两正交的,所以求对应于3的特征向量即为求与()1,1,1T正交的特征向量。

线性代数习题册(答案)2022

线性代数习题册(答案)2022

线性代数习题册答案第一章行列式练习一班级学号姓名1.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)τ(3421)= 5 ;(2)τ(135642)= 6 ;(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n(n-1).2.由数字1到9组成的排列1274i56j9为偶排列,则i=8 、j= 3 .3.在四阶行列式中,项12233441a a a a的符号为负.4.003042215=-24 .5.计算下列行列式:(1)122212221-----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5或(2)111111λλλ---= -3λ+1+1-(-λ)-(-λ)―(-λ)= -3λ+3λ+2=2(2)(1)λλ-+练习 二班级 学号 姓名 1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3(1)11-⋅=-2. 1112344916= 2 .3.已知D=1012110311101254--,则41424344A A A A +++= —1 .用1,1,1,1替换第4行4. 计算下列行列式:(1)111ab c a b c abc +++ = 13233110110011,0110111111r r r r c c a b c b ca b ca b c-----+-==++++++(2)xy x y y x y x x yxy+++(3) 1306 0212 1476----(4) 1214 0121 1013 0131-5.计算下列n阶行列式:(1)n x a a a x aDa a x=(每行都加到第一行,并提公因式。

)(2)131111n +(3)123123123nn n a b a a a a a b a a a a a a b+++练习 三班级 学号 姓名1.设线性方程组123123123111x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩有惟一解,则λ满足的条件是什么?1,0,1λλλ≠-≠≠2. 求解线性方程组12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩3.已知齐次线性方程组123123123000x x x x x x x x x λλλ--=⎧⎪-++=⎨⎪--+=⎩有非零解,求λ的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数习题标准答案(IMUST 版)__相似矩阵及二次型[]————————————————————————————————作者:————————————————————————————————日期:第五章 相似矩阵及二次型一、计算题1.解:[1a ,2a ]=1⨯2+2⨯3+3⨯(-1)+(-4)⨯4=-11 单位化如下:1a 单位化:()111111121,2,3,4(,,,)3030151015TT a b a ==-=- 2a 单位化:()222111122,3,1,4(,,,)3015103015TT a b a ==-=-2、解:先正交化:取11b a =,2122111020[,]0101[,]4101a b b a b b b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,1323331211225200[,][,]1066013[,][,]220013b a b a b a b b b b b b ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=--=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭单位化:取111100b e b ⎛⎫ ⎪== ⎪ ⎪⎝⎭,22201121b e b ⎛⎫ ⎪== ⎪ ⎪-⎝⎭,33300113118231b e b ⎛⎫⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3.解:先正交化:取11b a =,2122111423[,]1825343[,]2525a b b a b b b ⎛⎫-⎪⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭ ⎪⎝⎭再单位化:111b e b ==3545⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,2224535b e b ⎛⎫-⎪== ⎪ ⎪⎪⎝⎭4.解:不是。

因为该矩阵的列向量不都是单位向量,且不两两正交。

5.解:是.因为该矩阵的每个列向量都是单位向量,且两两正交。

6.解:所求向量23,a a 应满足方程10T a X =,即1232240x x x +-=该方程组的基础解系是:11(1,0,)2T ξ=,21(0,1,)2T ξ=,把基础解系正交化即得所求向量有211(1,0,)2T a ξ==,312(,1,)55T a =-7.解:A 特征多项式为:2(1)(2)A E λλλ-=---,所以A 特征值为:1231,2λλλ===,当11λ=时,解方程()0A E x -=,的基础解系:1(0,0,1)T p =,所以1kp (0k ≠)是对应于11λ=的全部特征向量;当232λλ==时,解方程(2)0A E x -=,的基础解系:1(1,1,0)T p =,所以2kp (0k ≠)是对应于232λλ==的全部特征向量8.解:A 特征多项式为:3200111(2)113A E λλλλλ--=-=----,所以A 特征值为:1232λλλ===,当1232λλλ===时,解方程(2)0A E x -=,基础解系:1(1,1,0)T p =,2(1,0,1)T p =-故对应于特征值1232λλλ===的所有特征向量为:1122k p k p +(12,k k 不同时为0) 9.解:令2331A -⎛⎫= ⎪-⎝⎭,A 特征多项式为:237A E λλλ-=--,所以A 特征值为:12337337,22λλ+-== 10.解:A 可逆,48A =,*13216248()A A A A A A A A ϕ--=-++=,有321()6248ϕλλλλλ=-++,故()A ϕ的特征值为:(2)12,(4)12,(6)20ϕϕϕ==-=,所以32*622880A A A A -++=- 11、解:A 的特征值分别为:1231,2,3λλλ===,特征值互不相等,故可以对角化。

对应11λ=,解方程组()0A E x -=,得基础解系1110ξ⎛⎫⎪= ⎪ ⎪⎝⎭,单位化得122220p ⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪⎪ ⎪ ⎪⎝⎭对应22λ=,解方程组(2)0A E x -=,得基础解系2110ξ⎛⎫⎪=- ⎪ ⎪⎝⎭,单位化得222220p ⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪⎪ ⎪⎝⎭对应33λ=,解方程组(3)0A E x -=,得基础解系3001ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,单位化得3001p ⎛⎫⎪= ⎪ ⎪⎝⎭将1,2,3p p p 构成正交阵1,2,32202222()022001P p p p ⎛⎫ ⎪ ⎪⎪==-⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 有1100020003T P AP P AP -⎛⎫ ⎪== ⎪ ⎪⎝⎭12.解:A 的特征值分别为:1232,4λλλ===对应1λ=2,解方程组(2)0A E x -=,得基础解系1011ξ⎛⎫⎪=- ⎪ ⎪⎝⎭,单位化得102222p ⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭ 对应234λλ==,解方程组(4)0A E x -=,得基础解系2011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,3100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,单位化得:202222p ⎛⎫ ⎪ ⎪⎪=⎪ ⎪ ⎪ ⎪⎝⎭,3100p ⎛⎫ ⎪= ⎪ ⎪⎝⎭,1,2,3ξξξ线性无关,故可对角化。

将1,2,3p p p 构成正交阵1,2,300122()02222022P p p p ⎛⎫ ⎪⎪⎪==-⎪ ⎪ ⎪ ⎪⎝⎭, 有1200040004T P AP P AP -⎛⎫ ⎪== ⎪ ⎪⎝⎭13.解:A 的特征值分别为:1231,4,1λλλ===-,特征值互不相等,故可以对角化。

对应11λ=,解方程组()0A E x -=,得基础解系114321ξ⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭,对应24λ=,解方程组(4)0A E x -=,得基础解系2101ξ-⎛⎫ ⎪= ⎪ ⎪⎝⎭,对应31λ=-,解方程组()0A E x +=,得基础解系33201ξ⎛⎫- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,用施密特法把123,,ξξξ正交化,即得到所求正交阵14.解:22222A ⎛⎫= ⎪⎝⎭,223222222A ⎛⎫= ⎪⎝⎭,334332222A ⎛⎫= ⎪⎝⎭999910099992222A ⎛⎫= ⎪⎝⎭L L15.解:B 为对角阵,A 与B 相似,即-1,x ,y 就是A 的特征根, A 的特征根为:1231,2,2λλλ=-==-故x=2,y=-216.解:A 为对称阵,故不同特征值所对应的特征向量正交,故与38λ=对应的特征向量应满足下列方程:1213200x x x x -+=⎧⎨-=⎩,解方程组有基础解系为:31(1,,1)2T p =,将其单位化有:31212(1,,1)(,,)2333T T ξ==。

将1(1,2,0)T p =-,2(1,0,1)T p =-正交化,有11p η=,2122111[,]42(,,1)[,]55T p p ξηξξξ=-=- 再单位化:1525(,,0)55T ξ=-,212(,,0)33T ξ=-。

将1,2,3ξξξ构成正交阵1,2,32513531252()3532003P ξξξ⎛⎫- ⎪ ⎪⎪==⎪ ⎪ ⎪⎪ ⎪⎝⎭,1800010001TP AP P AP -⎛⎫⎪==- ⎪ ⎪-⎝⎭即25125114683235335345598001252125281616010353353545900122321632000033999TTA PAP ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==-=-⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭17.解:该二次型的矩阵为:4682⎛⎫⎪⎝⎭18.解:10221(,,)122122x f x y z yz⎛⎫-⎪⎛⎫⎪⎪⎪= ⎪⎪ ⎪⎪⎝⎭-⎪⎪⎝⎭19、解:f所对应的矩阵200032002aAa⎛⎫⎪⎪⎪=⎪⎪⎪⎝⎭,由题意A的特征值为:1231,2,5λλλ===,其特征多项式为:2954a-=得4a=±,由于0a>,故4a=对应11λ=,解方程组()0A E x-=,得基础解系10 1 1ξ⎛⎫⎪= ⎪⎪-⎝⎭,单位化得12222p⎛⎫⎪⎪⎪= ⎪⎪⎪- ⎪⎝⎭对应22λ=,解方程组(2)0A E x-=,得基础解系21 0 0ξ⎛⎫⎪= ⎪⎪⎝⎭,单位化得21p⎛⎫⎪= ⎪⎪⎝⎭对应35λ=,解方程组()0A E x+=,得基础解系30 1 1ξ⎛⎫⎪= ⎪⎪⎝⎭,单位化得32222p⎛⎫⎪⎪⎪= ⎪⎪⎪⎪⎝⎭将1,2,3p p p 构成正交阵1,2,301022()02222022P p p p ⎛⎫⎪ ⎪ ⎪==⎪⎪ ⎪- ⎪⎝⎭, 有1100020005T P AP P AP -⎛⎫ ⎪== ⎪ ⎪⎝⎭20.解:f 所对应的矩阵200032020A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,A 的特征向量为:1231,2,5λλλ===故标准型为22212325f y y y =++所用正交阵由19题知1,2,301022()02222022P p p p ⎛⎫⎪ ⎪ ⎪==⎪⎪ ⎪- ⎪⎝⎭, 即1100020005TP AP P AP -⎛⎫ ⎪== ⎪ ⎪⎝⎭21.解:f =[)2(232121x x x x ++]322323x x x ++ =3223232232123)2()2(x x x x x x x x +++-++=2322321)()2(x x x x x +-++令⎪⎩⎪⎨⎧=+=++=3332232112x y x x y x x x y ,即可逆线性变换⎪⎩⎪⎨⎧=-=--=333223211y x y y x y y y x 22.解:f 所对应的矩阵52121111A t -⎛⎫⎪=- ⎪ ⎪--⎝⎭,若f 正定,即A 正定,A 的各阶主子式应都为正,521211011t-->--有100t +>即10t >23.解:设p 对应的特征值为λ,有Ap p λ=即21215311211a b λλ-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭解得a=3,b=4,5λ=24.解:A 为对称阵,故231λλ==所对应的特征向量与14λ=所对应的特征向量1p 正交,故满足下列方程:1230x x x -+=,解方程组有基础解系为:2(1,0,1)T p =-,3(1,0,1)T p =将2(1,0,1)T p =-,3(1,0,1)T p =正交化,有22p ξ=,311(,1,)22T ξ==再单位化:222(,0,)22T η=-,3666(,,)636T η=。

将()11,1,1Tp =-单位化得:1333(,,)333Tη=-将1,2,3ηηη构成正交阵1,2,332632636()033326326P ηηη⎛⎫-- ⎪ ⎪ ⎪==-⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,1400010001T P AP P AP -⎛⎫⎪== ⎪⎪⎝⎭3263263263264002113636001001213333001112326326326326TTA PAP ⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭25.解:(1)由题意:111A αλα=5353111111(4)42B A A E A A E αααααα=-+=-+=-,故1α是矩阵B 的特征向量。

相关文档
最新文档