基坑监测技术方案
基坑监测技术方案

基坑监测技术方案基坑是建筑施工过程中不可避免的工程险情之一,如何有效地进行监测,发现隐患,及时调整措施,保障工程的安全性?本文将介绍基坑监测技术方案。
一、基坑监测的目的基坑是指在建筑工程中开挖的地面或地下空间,用于建筑施工或其他用途。
基坑开挖过程中,常常会涉及到地下水、岩土结构等问题,可能引发其它安全问题。
因此,进行基坑监测可以明确工程的变化及时调整建设措施,并确保工程的质量和安全。
二、常见的基坑监测技术方案1.测量法测量法采用传统的测量方法,利用仪器对基坑的各种数据进行测量。
通过对基坑周边的某些关键点(如墙体上相对位移、水平位移、沉降量等)的观测,得到基坑的变形量,及时掌握基坑的变化情况。
2.遥感技术遥感技术是通过卫星图像等技术,对建筑工程的状况进行监测。
它可以依靠大数据和软件分析技术,使用多层次、多角度监测手段,综合分析监测对象,实现全方位的建筑工程监测。
3.无人机监测技术无人机技术的应用可以在工程施工过程中实现对基坑的实时监测。
通过高清摄像头拍摄和即时传输,实现对基坑地形及其周边环境的监测,及时掌握基坑的变化,并调整施工措施。
4.传感器监测技术传感器监测技术是一种新型的监测方法,需要安装传感器模块在监测对象,例如挖掘机、混凝土泵车等,可以动态的监测设备的状态变化,通过收集基坑周边各种数据,实现基坑变化的高精度、高效率监测。
三、基坑监测技术方案的实现实现基坑监测技术方案需要从以下几个方面入手:1.规划设计方案,提前设计好基坑监测方案,明确监测的目标与方法。
2.确定监测方法与工具。
根据基坑的不同情况(地质条件、基坑的大小、开挖深度及周边环境等因素)选择合适的监测方法和工具。
3.安装好相应的仪器设备。
无论是传感器、测量设备、还是遥感技术,都需要进行相应的设备安装工作,将其定位到合适的位置。
4.监测数据的采集和处理。
通过设备采集到的数据,进行分类、整理、分析和处理,并将处理后的数据反馈给项目监理方、工程负责人和建设方等相关人员,以调整工程进展和方案。
基坑监测方案

基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。
为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。
本文将就基坑监测方案进行详细介绍。
二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。
监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。
2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。
3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。
4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。
三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。
本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。
(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。
(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。
(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。
2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。
(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。
四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。
基坑工程现场监测方案

基坑工程现场监测方案一、前言基坑工程是指在承载土体的工程基础体系周围凿挖一定的深度和宽度,以满足地下空间利用要求的一种工程。
其施工过程中可能存在土体塑性变形、地下水位变化、地下管线和建筑物变形等多种风险,因此需要对其现场进行全面的监测,及时掌握施工情况,保障工程顺利进行。
二、监测目标基坑工程的监测目标主要包括以下几个方面:1、土体变形监测:监测基坑周边土体的沉降变形情况,及时发现并控制土体的变形,防止地质灾害发生。
2、地下水位监测:监测基坑周边地下水位的变化情况,控制基坑内的地下水位在合理范围内,避免基坑水灾发生。
3、地下管线监测:监测基坑周边地下管线的变形情况,控制地下管线的变形,防止对施工安全造成影响。
4、建筑物变形监测:监测基坑周边建筑物的倾斜、裂缝等变形情况,确保周边建筑物的安全。
5、施工工艺参数监测:监测基坑支护结构的变形、应力、变形等参数,保障支护结构的稳定性。
三、监测方案1、土体变形监测:采用全站仪、GPS、精度水准仪等仪器对基坑周边土体进行定点观测,记录土体的沉降、水平位移、倾斜等信息,检测变形情况。
对于变形较大的地点,可采用测量点云技术,实时监测土体的三维形变情况。
2、地下水位监测:利用水位计、压力计对基坑周边的不同深度和位置进行地下水位的监测,并且建立水位监测井,实时监测地下水位的变化情况。
同时,采用地下水位自动监测系统,可以实时监测并记录地下水位的变化。
3、地下管线监测:采用地下管线监测仪器对基坑周边的地下管线进行监测,记录管线的变形、位移等信息,及时发现问题并采取相应的措施。
4、建筑物变形监测:采用倾斜仪、位移监测仪等仪器对基坑周边的建筑物进行倾斜、位移等变形情况的监测,确保建筑物的安全。
5、施工工艺参数监测:采用应力应变计、变形仪器、位移传感器等仪器对基坑支护结构进行监测,记录支护结构的变形、位移、应力等参数,及时掌握支护结构的稳定性。
四、监测频次1、土体变形监测:根据基坑的深度和地质条件,制定不同监测频次,一般情况下,每日至少监测一次,夜间施工时,应加强监测频次。
施工单位基坑监测方案

施工单位基坑监测方案一、背景介绍基坑是施工过程中不可或缺的一部分,而基坑的稳定性与安全性对整个施工工程起着至关重要的作用。
为了确保基坑的安全稳定,施工单位需要制定一套科学合理的基坑监测方案,在施工过程中及时监测基坑的变形与沉降情况,以便及时采取相应措施保障工程的顺利进行。
二、监测目标与意义1.监测目标:a) 基坑开挖过程中的变形情况:通过监测基坑边坡的位移、裂缝等变化,及时判断边坡的稳定性,确保施工过程中的安全。
b) 基坑挖掘后的沉降情况:监测基坑沉降情况,及时发现沉降异常,保障建筑物的纵向平稳度。
c) 基坑周围地下水位的变化:监测地下水位的波动情况,及时发现并处理基坑工程中的渗水问题。
2.意义:a) 预防事故:通过监测基坑变形情况,可以及时预警潜在的坍塌、滑坡等危险,避免安全事故的发生。
b) 控制沉降:监测基坑沉降情况,可以控制建筑物的垂直变形,避免结构破坏,确保建筑物工程的质量。
c) 处理渗水问题:监测地下水位的变化,可以发现并及时处理基坑工程中的渗水问题,确保基坑的干燥与安全。
三、监测方法与仪器选用1.监测方法:a) 基坑变形监测:采用全站仪、GNSS测量系统等现代测量技术,对基坑边坡进行多次测量,得到相应的位移数据。
b) 基坑沉降监测:采用水准仪等测量仪器,对基坑及周边地点进行多次测量,得到沉降量的数据。
c) 地下水位监测:采用水位计等仪器,对示范点进行定期观测,确保监测数据的准确性。
2.仪器选用:a) 全站仪:通过测量基坑边坡的坐标变化,得到边坡的位移情况,选择精度和稳定性较高的全站仪进行测量。
b) GNSS测量系统:通过监测基坑周边地点的坐标变化,得到基坑的位移情况,选择精度高的GNSS测量系统进行监测。
c) 水准仪:通过测量基坑及周边地点的高程变化,得到沉降量的数据,选择稳定性较高的水准仪进行测量。
d) 水位计:通过监测示范点的地下水位波动情况,选择准确度较高的水位计进行监测。
四、监测频次与方案调整a) 基坑变形监测:在基坑开挖的关键阶段,每天进行一次测量;在其他施工情况下,每周进行一次测量。
基坑工程监测检测方案

基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。
在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。
本文将针对基坑工程的监测检测方案进行详细的介绍。
二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。
三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。
可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。
2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。
可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。
3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。
可以采用应变计、位移计等仪器进行实时监测。
4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。
可以通过长期监测和数据分析,掌握地下水位的变化规律。
5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。
可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。
四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。
这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。
2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。
可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。
3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。
可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。
基坑工程监测技术方案

基坑工程监测技术方案一、前言基坑工程是指为了建设地下结构或地下工程而在地面上开挖出的深坑,如地下车库、地下商场、地下室等。
在基坑工程施工过程中,要保证施工过程稳定安全,必须对基坑周边的地下水位、基坑变形、邻近建筑物或地下管线等进行严密监测。
基坑工程中的监测技术在施工和使用阶段起到至关重要的作用。
本文就基坑工程监测技术方案进行讨论。
二、基坑工程监测内容基坑工程监测内容主要包括以下几个方面:1. 地下水位监测:考虑到基坑周围地下水的波动对基坑稳定性的影响,需对周边地下水位进行监测,掌握地下水位的变化范围和趋势。
2. 基坑变形监测:基坑挖掘深度增加时,土体受到变形应力的影响,从而引起土体变形。
因此,需要监测基坑边坡的位移和变形情况。
3. 周边建筑物和地下管线监测:基坑开挖对周边建筑物和地下管线会产生影响,需监测周边建筑物和地下管线变化情况。
以上监测内容对基坑工程的施工和使用阶段都至关重要。
三、基坑工程监测技术方案1. 地下水位监测技术方案地下水位监测一般采用水位计或压力传感器进行监测。
监测点分布需覆盖基坑周边,监测频率一般为每日至每周。
监测数据通过无线传输至监测中心,并及时进行分析与处理。
在发现异常情况时,及时采取相应措施。
2. 基坑变形监测技术方案基坑变形监测可采用全站仪、测斜仪等设备进行监测。
设立监测点布设需均匀,以获取较为准确的数据。
监测频率根据施工情况和地质条件而定,一般监测频率为每日至每周。
监测数据传输至监测中心,并进行实时监测和分析。
3. 周边建筑物和地下管线监测技术方案周边建筑物和地下管线监测可采用全站仪、测斜仪等设备进行监测。
设立监测点分布需合理,监测频率一般为每周至每月。
监测数据传输至监测中心,并进行分析和处理。
四、基坑工程监测数据分析与应用监测数据的分析和应用是基坑工程的关键环节。
监测数据的实时分析可以预警和预防基坑工程中可能出现的安全隐患,从而采取相应的控制措施。
1. 地下水位监测数据分析与应用地下水位监测数据的分析可以帮助预测地下水位的变化趋势,及时发现地下水位异常变动的可能性。
基坑变形监测技术方案

基坑变形监测技术方案基坑变形监测是指对地下基坑在施工过程中或者使用过程中由于不均匀沉降、滑移、侧倾、地下水位变动等因素引起的变形进行实时、连续的监测和预警的技术手段。
基坑变形监测的目的是为了及时发现和评估基坑变形情况,为基坑的施工和使用提供科学依据。
1.监测点布置方案:根据基坑的形状、尺寸和地下结构的具体情况确定监测点的位置和数量。
一般来说,监测点应该均匀分布在基坑的不同位置以及周围的地表上,以保证监测结果的准确性和可靠性。
2.监测仪器选择方案:根据监测需求和具体情况选择合适的监测仪器设备。
常用的监测仪器包括测量仪器、位移传感器、应变传感器、倾斜传感器等。
这些仪器可以实时测量和记录基坑变形的各个参数,并将数据传输给监测系统进行分析和处理。
3.数据传输与处理方案:选择合适的数据传输方式和监测系统。
常见的数据传输方式包括有线传输和无线传输,可以根据具体情况选择合适的传输方式。
监测系统可以对传输过来的数据进行实时分析和处理,生成监测报告并进行预警处理。
4.监测报告与预警方案:根据监测结果生成监测报告,并根据预设的预警标准进行预警处理。
监测报告应包括基坑变形的具体情况、变形的趋势和可能的风险评估等内容,以便施工单位或者相关部门及时采取措施避免事故发生。
5.健全的管理与应急预案:建立健全的管理制度和应急预案,并进行培训和演练。
这样可以确保监测系统的正常运行和数据的准确性,同时也能够提高对基坑变形事故的应对能力和处理效率。
总之,基坑变形监测技术方案需要根据实际情况进行合理的选择和设计,并且要注重对监测结果进行分析和预警处理,以保证基坑的施工和使用的安全性和稳定性。
同时,还需要加强对相关技术人员的培训和管理,提高监测系统的使用效率和数据的可靠性。
基坑监测方案

基坑监测方案一、基准网的建立为了科学地预测基坑支护的稳定和周边环境的变化,及时预报和提供准确可靠的变形数据,因此建立基坑支护施工变形与沉降观测网,定期进行变形沉降观测。
二、基坑支护变形观测(1)基坑支护水平位移观测在基坑边坡顶上布置基线(每基坑边一条),每条基线上设4个变形观测点,同时又作为沉降观测点。
(2)基坑支护沉降观测利用远离场区的城市高程系水准控制点或独立水准点作为沉降观测的起算点,与以上点联测,构成基坑支护沉降观测网。
四面围墙周边附近各布置四个沉降观测点,与基坑周边浅埋基础建(构)筑物、重要管线监测点一起构成监测周边环境的沉降观测网。
三、观测方法(1)水平位移观测分别在基线点四个角上设站,用J2型经纬仪观测四边网的水平角度(四边形内角),并与城市的大地控制网三角点联测水平夹角,检查基线点是否发生位移,在基线点正确无误的情况下,同时在四角测端上分别以对应的相邻角点定向,并观测定向基线上各预埋点的水平位移量初始读数。
(2)沉降观测对基坑边上的各点及周边点建立的沉降观测网的测量方法为:首先自远离基坑的城市水准控制点开始观测,引测至基坑周围后,按编定的各点观测次序依次观测,最后测至另一水准控制点符合,观测仪器采用S3型精密水准仪。
四、基坑周围建(构)筑物等的监测措施工程对基坑周边50米范围内的所有建(构)筑物进行监测,并特别对临近坑边1.5H~2.0H范围内建(构)筑物,包括道路、市政管道、电力电缆、电信管网等加强监测力度。
具体监测措施是:(1)对建(构)筑物,定期进行沉降变形观测。
(2)施工前,了解地下管线的分布情况,对整个场地的地下管线进行摸底,并在地面投影其轴线走向,布置变形观测点进行监测;对某些变形要求较高及紧邻基坑开挖边缘的重要管线,预先做好加固处理措施。
五、质量保证技术措施在施工中不仅要严格执行质量管理程序,保持质量体系的有效运行,同时必须采取切实可行的质量保证技术措施,从原材料的采购到施工全过程进行全方位控制,强化施工质量一次合格率,杜绝不合格和返工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州中原万达广场
基坑工程变形监测方案
一、概述
1.1前言
基坑开挖和地下室施工将会对周边道路及建筑物产生较大影响。
因此对深基坑开挖过程进行安全监测,事关社会影响、人身安全及经济损失、环境保护。
为切实保证基坑及周围道路不受影响,及时掌握基坑开挖及施工过程中可能出现的各种因素的改变及其不利影响,为施工建设单位合理安排挖方进度,确保基坑开挖及周围道路的安全,实现信息化施工,进行工程施工期安全监测至关重要。
1.2 工程概况
郑州中原万达广场基坑工程位于郑州市北至中原路、东至秦岭路、南至伊河路北约100米、西至华山路。
本工程建筑面积为531168M3;地下室开挖深度约为-6.75~-11.9 米,一道支撑顶标高为-7.00米。
二、监测的内容及目的
根据本工程的支护形式和地质条件,依据建筑基坑工程监测技术规范GB50497-2009确定基坑监测项目中的应测项目如下:
2.1围护墙(边坡)水平位移观测
即时监测基坑开挖及地下室施工过程中围护墙的水平位移量及其变化趋势。
2.2围护墙(边坡)竖向位移观测
即时监测基坑开挖及地下室施工过程中围护墙的沉降或隆起量及其变
化趋势。
2.3深层水平位移观测
预先在支护桩或外侧土体中埋设专用测斜导管,用测斜仪沿导管轴线方向在不同设计深度层上测量导管随桩体挠曲倾斜度,以监测基坑开挖过程中支护结构深层的水平位移量及其变化趋势。
2.4周边道路与管线竖向位移观测
即时监测基坑开挖及地下室施工过程中基坑周围道路与管线的垂直位移(沉降)量及其变化趋势。
2.5甲方认为必要的紧急状态的连续监测和及时通报,并按照甲方的要求协助甲方制定应急方案。
三、监测的方法技术
3.1监测的技术标准
1.《建筑变形测量规范》(JGJ8-2007)
2.《城市测量规范》(JGJ8-99)
3.《建筑基坑支护技术规程》(河南省标准DB33/T1008-2000)
4.《建筑基坑支护技术规范》(国家行业标准JGJ120-99)
5.《工程测量规范》(GB50026-2007)
6. 有关设计施工图纸
7. 其他技术要求
3.2 监测仪器及监测点布置
监测点的数量和位置可根据现场实际情况作适当增减;另在周围适宜处选埋3~4个测量基准点,用于垂直沉降和水平位移的基准参照点。
3.3监测精度
3.3.1 位移、沉降监测精度
依据现行规范有关内容及技术指标,确定本工程沉降、位移监测按二级变形观测要求施工,其精度为:
a. 观测点测站高差中误差为±0.5mm;
b. 观测点坐标中误差为±3.0mm;
c. 水准路线附合或环线闭合差≤1.0n1/2mm(n为测站数);
3.3.2 测斜
测斜观测灵敏度为±0.02mm/500mm,限差0.2mm。
3.4 技术措施
(1) 根据基坑施工进程,在基坑开挖前7天内对各监测项目进行2~3次初始数据的采集,并确保初始数据的准确、可靠。
(2)为确保各监测项目的精度,投入使用的仪器必须按规定内容检查、标定其技术指标,合格后方能使用。
定期检查标定仪器的主要技术指标,一般要求3个月检查1次,遇特殊情况(受损、振动等)随时检查标定,不合格的不能使用。
(3) 定期对使用的基准点或工作基点进行稳定性检测,点位稳定后,检
测周期可适当延长,当对变形成果发生怀疑时,应随时进行检核。
(4)竖向位移观测可采用闭合环或往返观测法。
(5) 观测时使用同一仪器和设备,固定监测人员,采用相同的观测路线和观测方法。
(6)测点保护在各观测点制作明显记号标记,提示施工人员谨防破坏。
并派专人看护保管观测点。
3.5监测警戒值
四、观测周期
与基坑施工同步进行各项目的监测:
(1) 基坑开挖初期,每隔3~5天监测1次。
(2) 基坑开挖到底部及基础底板施工期间,每隔1~2天监测1次,如出现异常或险情,则每天监测1次,甚至24小时连续监测,以确保基坑开挖和地下室施工的安全。
(3) 基础底板浇筑完毕,每隔2~3天监测1次,如发现异常,每天监测1次,变形稳定后恢复每隔3~5天监测1次。
五、监测成果资料及提交
对各项监测数据用微机进行计算分析。
及时将测试结果打印成表格送交有关各方(业主、监理、施工单位)分析使用。
5.1监测成果资料内容
a.围护墙(边坡)水平位移观测成果表;
b.围护墙(边坡)竖向位移观测成果表;
c.深层水平位移观测成果表;
d.周边道路与管线竖向位移观测成果表。
5.2监测成果资料的提交
a.基坑开挖初期,监测的打印资料在下次监测时送至工地;
b.基坑开挖到底部及基础底板施工期间,监测当天在现场将有关监测成果算出提交给有关各方,正式的打印报表第二天送达工地。
c.基础底板浇筑完毕,监测的打印资料在第二天送至工地;
5.3监测报告
地下室工程结束,基坑土体回填后,即可终止安全监测。
对所测资料进行全面的综合计算分析,提交最终分析成果报告。
监测总报告内容包括:
a.工程概况;
b.监测项目,测点布置;
c.仪器型号,规格和鉴定资料;
d.监测方法;
e.监测数据处理方法和监测结果过程曲线;
f.监测结果评价。
六、信息反馈
图1 监测信息反馈管理程序图
七、项目管理
本工程项目实行项目经理负责制。
项目经理负责该项目全面管理,抽、协调各方关系,组织实地监测,培训提高职工安全意识,负责向业主、监理单位、施工单位提交各阶段监测成果。
技术总负责人:对本施工方案的编写、实地操作、数据处理、成果上报的真实性,准确性,负全面技术责任。
仪器操作员:对仪器的日常保养,安全,周期检验负责。
在实地测量中要做到真实、准确、严谨的科学观。
数据管理、现场记录员:按测绘要求做到真实、不涂改、擦改。
发现数据(记录)有误,应及时提醒测量员实地重测。
资料保管员:负责监测资料的整理、保存和归档。
其他人员:服从工作安排,提高安全防范意识。
八、监测人员情况汇总表
中国地震局地球物理勘探中心
郑州基础工程勘察研究院
2010年7月22日。