第一节 映射与函数
高数高等数学1.1映射与函数

说明 (1) 分段函数对应不同的区间,函数有不同的表达式. (2) 分段函数表示一个函数,不是几个函数. (3) 分段函数的定义域是各分区间的定义域的并集.
1 例6 设 f ( x ) 2 1 解 f ( x) 2
0 x1
求 f ( x 2) .
解
2( x 2) 1, 0 x 2 1 f ( x 2) 4 ( x 2), 1 x 2 2
2 x 5, 2 x,
2 x 1 1 x 0
.
几个特殊的函数举例 (1)常函数
开区间
( a , b ) { x a x b}
o
闭区间
a
b
x
[a , b ] { x a x b }
o
a
b
x
半开区间
[a , b ) { x a x b}
( a , b] { x a x b }
无限区间
有限区间
称a, b为区间的端点, 称b-a为这些区间的长度.
1, 当 x > 0 0, 当x = 0
1 ,
1
当x<0
y4
3 2 1
o
-1
x
x sgn x x
(4)取整函数 y x
[x]表示不超过x 的最大整数
-4 -3 -2 -1 o -1 1 -2 -3 -4
2 3 4
x
(5)狄利克雷函数
y
1 1 当x是有理数时 • y D( x ) o• 0 当x是无理数时 无理数点
f (sin x ) (sin x )3 1
1.1映射与函数

y y M
M
y=f(x) o -M x 有界 I
x0
o -M I 无界
x
(2) 单调性
x1 , x2 I , 当 x1 x2 时,
若 f ( x1 ) f ( x2 ) , 称 f (x) 为 I 上的
y
x o
xx
f (x ) 为奇函数时, 必有 f (0) 0.
(4) 周期性
x D, l 0 , 且 x l D , 若 f ( x l ) f ( x)
则称 f (x )为周期函数 ,称 l 为周期 ( 一般指最小正周期 ). f (t ) y
2
y f (x)
因变量
或
f :x
y, x X
定义域
自变量
f(x)是f在x处的函数值,函数值的全体(是Y的一 个子集)称做函数f的值域.
说明: 1.与初等数学中称因变量y是函数的说法不同,
定义中称对应法则f 是函数, 这一方式表明, 函数本质是变量之间的对应关系. 2. 定义中,并未规定对应法则f 必须用数学公式 来表现, 尽管这是最常用的形式. 依据定义, 还可以采用曲线、表格,甚至文字等各种方 式表示对应法则.
19世纪,人们对函数概念的认识飞跃到一个新 的阶段,这就是建立了变量与函数之间的对应关系, 因为“对应”是函数概念的一种本质属性与核心部 分。 上世纪20年代,又产生了新的现代函数定义: “若对集合M的任意元素 x ,总有集合N上确定的元 素 y 与之对应,则称在集合M上定义了一个函数, 记为y f (x ) ,元素 x 称为自变元,元素y 称 为因变元。”
1-1 映射与函数

例: f ( x ) x 2 在[0, )上单调增加
在 ( , 0]上单调减少 在 ( , )上不是单调的
函数的几种特性
3.函数的奇偶性
设函数f (x) 的定义域D关于原点对称
如果对于任一 x D, f ( x ) f ( x )恒成立
那么称函数f (x)为偶函数
四则运算
函 数
构造 复合映射
构造
基本初等函数
基本初等函数与初等函数
基本初等函数 幂函数、 指数函数、 对数函数、 三角函数、 反三角函数 初等函数 由常数和基本初等函数经过有限次四则运算和有限次
的函数复合步骤所构成并可用一个式子表示的函数
否则称为非初等函数
概念
概念 初等函数
逆映射
集 合 区 邻 间 域
即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射 若对X中任意两个不同的元素
则称f为X到Y的单射 若映射 f 既是满射又是单射, 则称 f 为一一映射或双射. X f
它们的像
逆映射 若f 是从X到Y的单射,可定义一个从 对每个 规定
到X的新映射g
这x满足
这个映射g称为f的逆映射,记作 注 (1) 只有单射才存在逆映射 (2) 逆映射
1 y f ( x ), x f ( D) y f ( x ), x D 的反函数记成 一般地,
注 (1) f 在D上单调增加(减少),f 1 必定存在
1 且 f 在f (D)上也单调增加(减少)
(2) 函数y=f (x)与其反函数 y f 1 ( x ) 的图形 关于直线y=x对称
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
《高等数学》第一节:映射与函数

[
, ] 2 2
y
y tan x 定义域 (,) y x 值域 ( 2 , 2 ) 2 y arctan x
2
2
0
2
x
| arctanx |
定义域 (,)
2
2
y
y x
0
2
y arc cot x x
x
shx e e 双曲正切 thx x chx e e x 反双曲正切
1 1 x y arthx ln . 2 1 x
(3)非初等函数 狄利克雷函数、 取整函数、 分段函数等
练习
[ x] (1) f ( x )定义域为 (0,1),求 g( x ) f ( )的定义域 . x D { x R | x 1且x 2,3,}.
cos
,
(2)初等函数
由常数和基本初等函数经过有限次四则运算和 有限次的函数复合步骤所构成并可用一个式子表示 的函数,称为初等函数.
例3:双曲函数与反双曲函数 双曲函数 反双曲函数
e x e x 双曲正弦 shx 2 e x e x 双曲余弦 chx 2
x
反双曲正弦 y arshx ln( x x 2 1) 反双曲余弦 y archx ln( x x 2 1)
高 等 数 学
研究对象 研究内容 研究工具
上册 极限
一元函数 微分学与积分学 函数 微分方程 空间解析几何与向量代数 多元函数 微分学与积分学 下册 无穷级数
高 等 数 学
应用
用哪个? 条件?
不合条件, 改造!
青岛理工大学高等数学练习教程答案

第一章 函数与极限 第一节 映射与函数选择题1.已知函数)(x f 的定义域是()+∞∞-,,满足)()()(y f x f y x f +=+则)(x f 是( ) A.奇函数 B.偶函数 C.非奇非偶 D.不能确定2.已知2x e x f =)(()[]x x φf -=1,且()0x ≥φ,()=x φ( )A.()x -1ln 1<xB.()x -1ln 0≤xC.()x -1ln 1-<xD.()x -1ln 0x <3.设2211x x x x f +=⎪⎭⎫ ⎝⎛+,则()=x f ( )A.22-xB.22+xC.2-xD.x xx 1122-+4.已知21x y --=直接函数的反函数是21x y --=,则直接函数的定义域是( )A.()01,-B.[]11,-C.[]01,-D.[]10, 5.()x e x x x f cos sin = ()+∞<<∞-x 是( )A.有界函数B.单调函数C.周期函数D.偶函数6.设()x f 与()x g 分别为定义在()+∞∞-,上的偶函数与奇函数,则()()x g f 与()()x f g 分别( )A.都是偶函数B.都是奇函数C.是奇函数与偶函数D.是偶函数与奇函数7.设()⎩⎨⎧>+≤=0022x x x x x x f ,则( )A.()()⎩⎨⎧>+-≤-=-0022x xx x x x f B.()()⎩⎨⎧>-≤+-=-022x xx x x x f C.()⎩⎨⎧>-≤=-0022x x x x x x f D.()⎩⎨⎧>≤-=-0022x xx x x x f8.()x f y =的定义域是[]11,-,则()()a x f a x f y -++=的定义域是( ) 其中10≤≤aA.[]11+-,a aB.[]11+---a ,aC.[]11-+-,a aD.[]11+--a ,a9.函数()x f y =与其反函数()x f y 1-=的图形对称于直线( ) A.0=y B.0=x C.x y = D.x y -= 答案ABACD ADDC 练习题1.设()x x f y +==11,求()[]x f f解:()[]x f f xxx++=++=21111121-≠-≠,x x 2.指出下列两个函数是否相同,并说明理由 (1)()1+=x x f ()()21x x g += (2)()x x f =,()()x x g arcsin sin =(3)()xx x f =,()xx x g 2=解:(1)不同,对应法则不同(2)不同,定义域不同()x f 的是()+∞<<∞-x ,()x g 的是[]11,- (3)相同,定义域和对应法则都相同3.若()⎩⎨⎧≥<=02x xx xx f ,求()[]x f f 解:()[]()()()[]()()()[]⎩⎨⎧≥<=⎩⎨⎧≥<=00022x x f x x f x f x f x f x f x f f 4.(2001数学二考研题)()⎩⎨⎧>≤=1011x x x f ,则()[]x f f 解()[]()()()()∞+∞-∈≤⎩⎨⎧>≤=,x x f x f x f x f f 1111而5.()⎩⎨⎧<<-≤≤==012102x x x x x f y 求()1+x f解()()()()()⎩⎨⎧-<<-+≤≤-+=⎩⎨⎧<+<-+≤+≤+=+1212011011121101122x x x x x x x x x f6.设()x F 是定义在关于原点对称的某数集X 上的函数,证明()x F 必可表示成一个偶函数与一奇函数之和。
高数A1第一讲映射与函数

一、映射 二、函数
一、映射
1、映射概念
例 某校学生的集合 学号的集合 按一定规则查号
某班学生的集合
按一定规则入座
某教室座位 的集合
定义
f 使得
设 X , Y 是两个非空集合, 若存在一个对应规则
有唯一确定的 与之对应 , 则
称 f 为从 X 到 Y 的映射, 记作 f : X Y .
o
x
x
奇函数
奇函数的图形关于原点对称. 函数 y=sinx是奇函数. 函数 y=sinx+cosx既非奇函数,又非偶函数.
(4) 函数的周期性: 设函数f (x)的定义域为D,如果存在一个正数l ,使得 对于任一x D 有 ( x l ) D, 且 f ( x l ) f ( x ) 恒成立,
Q ( b, a )
o
直接函数y f ( x ) P (a , b)
x
直接函数与反函数的图形关于直线 y=x 对称.
复合函数
------“代入”
定义:设函数 y=f(u)的定义域为D1,函数u=g(x)在D上有 定义,且 g( D) D1 , 则由下式确定的函数
y f g( x ), x D
2. 逆映射与复合映射
设 f 是X到Y的单射,定义一个从Rf到X的新映射g 即
g : Rf X ,
1
对每个 y R f , 规定g(y)=x,这x满足f(x)=y. 1 f 这个映射g称为f 的逆映射,记作 , 其定义域 D f R f , 值域 R f X .
1
f
注意:只有单射才存在逆映射.
x, x 0, 例6 函数 y | x | x , x 0
映射与函数

x
闭区间
{x a x b} 记作[a,b]
oa
b
x
玉不琢,不成器;人不学,不知道
2020/1/30
(持续更新,敬请收藏)
4
左闭右开区间 左开右闭区间
{x a x b} 记作 [a,b) {x a x b} 记作 (a,b]
无穷区间 [a,) {x a x} (,b) {x x b}
(x,0) Y与之对应。
f是一个映射,D f X , R f Y
例3
设f
: [
,
]
[1,1],
22
对 每 个x [ , ], f ( x) sin x.
22
f是 一 个 映 射 ,D f
[ 2 , 2 ], Rf
[1,1].
玉不琢,不成器;人不学,不知道
则称函数f ( x)在X上有界.否则称无界.
y M
y M
y=f(x)
o
x
有界 X
x0
o
X
x 无界
-M
-M
玉不琢,不成器;人不学,不知道
2020/1/30
(持续更新,敬请收藏)
20
2)单调性(Monotonicity):
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
(通常说周期函数的周期是指其最小正周期).
思考:是否存在无周期的周期函数?
玉不琢,不成器;人不学,不知道
2020/1/30
(持续更新,敬请收藏)
25
3、复合函数(Composite Functions)
高数课件-映射与函数

义的一切实数组成的合集,这种定义域称为函数的自然定义域。在这种约定之下,一
般的用算是表达的函数可用“y=∱(x)”表达,而不必再出Df。
例如,函数y=
1- x 2 的定义域是封闭间 -1,1 ,函数y=
1 的定义域是开区间 1- x2
(-1,1)。
表示函数的主要方法有三种:表格法、图形法、解析法(公 式法)。其中,用图形法表下)的像,并记作∱(χ),即
y=∱(χ), 而元素χ称为元素y(在映射∱下)的一个原像;集合X称为映射∱的定义域,记作Df, 即Df=X;X中所有元素的像所组成的集合称为映射∱的值域,记作Rf或者∱(χ),即
Rf=∱(X)= f(x) I χ∈X
在上述映射的定义中,需要注意的是:
映 射
与
主讲人: 日期 :
函 数
第一节 映射与函数
映射是现代数学中的一个基本概念,而函数是微积分的研究对象,也是映射的一 种。本节主要介绍映射、函数及有关概念,函数的性质与运算等。
一.映射
1.映射概念 定义 设X、Y是两个非空集合,如果存在一个法则∱,使得对X中的每个元素χ,按法则∱, 在Y中有唯一确定的元素y与之对应,那么称∱为从X到Y的映射,记作
由复合映射的定义可知,映射ℊ和∱构成复合映射的条件是:ℊ的值域Rg必须包含 在∱的定义域内,即Rg⊂Df,否则,不能构成复合映射。由此可以知道,映射ℊ和∱的复 合是有顺序的,∱∘ℊ有意义并不表示ℊ∘∱也有意义。即使∱∘ℊ与ℊ∘∱都有意义,复合映 射∱∘ℊ与ℊ∘∱也未必相同。
例4
设有映射ℊ:R→ -1,1 ,对每个x∈R,ℊ(x)=sinx;映射∱: -1,1 → 0,1 , 对每个 u∈ -1,1 ,∱(u)= 1- u2,则映射ℊ和∱构成的复合映射∱∘ℊ:R→ 0,1