1-1测量的基本概念、测量误差1-2传感器及其基本特性
自动检测技术第一章 知识点

第一章 检测技术的基本概念 考核知识点和考核要求:1、领会:测量的基本概念及测量方法,测量结果的数据统计及处理2、掌握:测量误差及分类,传感器及其基本特性3、熟练掌握:绝对误差和相对误差的计算,仪表的精度等级 第一节 测量的基本概念与方法 1)根据测量是否随时间变化:静态测量。
例如:激光干涉仪对建筑物的缓慢沉降做长期监测是静态测量 动态测量。
例如:光导纤维陀螺仪测量火箭飞行速度、方向是动态测量 2)根据测量的手段不同:直接测量:直接读取被测量的测量结果。
例如:磁电式仪表测量电流电压、离子敏MOS 场效应管晶体测量PH 值和甜度间接测量:对与被测量有确定函数关系的量进行直接测量,再代入函数关系式计算测量量。
例如:测量物体密度3)根据测量结果的显示方式:模拟式测量和数字式测量(其中:数字式测量比模拟式测量精度要高) 4)根据是否是在生产过程中或流水线上测量:在线测量。
例如:自动化机床边加工边测量,在实际中大多采用在线测量方式 离线测量5)根据测量的具体手段:偏位式测量:被测量作用于仪表内部的比较装置,使该比较装置产生偏移量,直接以仪表的偏移量表示被测量的测量方式(直接用偏移量的大小表示测量量)。
例如:弹簧秤测量物体质量,高斯计测量磁场强度。
特点:简单迅速但精度低。
易产生灵敏度漂移和零点漂移零位式测量:被测量与仪表内部的标准量比较,当系统达到平衡时,用已知标准量的值决定被测量的值(标准量的值为测量量的值)。
例如:天平测量物体质量,平衡式电桥测量电阻值。
特点:精度高但平衡复杂。
微差式测量:预先使被测量与测量装置内部的标准量取得平衡,当被测量有微小变化时,测量装置失去平衡,偏位式仪表指示出变化部分的数值(先平衡再有微量变化时)。
例如:天平测量化学药品,钢板厚度测量。
特点:上述两者的综合 第二节 测量误差及分类1.真值:是指在一定条件下被测量客观存在的实际值。
分类:1)理论真值(例:三角形的内角之和为180°)2)约定真值(例:标准条件下,水的三相点为273.16K ,金的凝固点为1064.18℃)3)相对真值(例:凡精度高一级或几级的仪表的误差是精度低的仪表误差的1/3以下时,则精度高的仪表的测量值可认为是相对真值)2.测量误差:测量值与真值之间的差值 根据其特征不同:1)绝对误差:是指测量值A x 与真实值A 0之间的差值,即Δ=A x -A0 2)相对误差:反应测量值偏离真值程度的大小实际相对误差A γ:绝对误差Δ与被测量的真值A0的百分比, %1000⨯∆=A Aγ示值(标称)相对误差x γ:绝对误差∆与被测量A x 的百分比,%100⨯∆=xxA γ满度(引用)相对误差m γ:绝对误差∆与仪器满度值A m 的百分比,%100m⨯∆=A mγ3. 准确度等级S :当∆ 取仪表的最大绝对误差值∆m 时,满度相对误差常被用来确定仪表的准确度等级,100mm⨯=A ΔS 注意:仪表的准确度在工程中也常称为“精度”,准确度等级习惯上称为精度等级。
《自动检测技术》习题集及部分参考答案

《自动检测技术》习题集及部分参考答案第一章传感器和测量的基本知识§1-1测量的基本概念复习思考题1.测量的定义及其内容是什么?2.直接测量和间接测量的定义是什么?3.直接测量的方法有几种方法?它们各自的定义是什么?4.仪表精度有几个指标?它们各自的定义是什么?(学习指导p1)5.仪表分辨力的定义是什么?作业题1.测量是借助和和,取得被测对象的某个量的大小或符号;或者取得与之间的关系。
(专用技术;设备;实验;计算;一个变量;另一变量)2.测量是将被测量与通过专用的技术和设备进行比表示测量结果时,必须注明(同性质的标准量;比较;标准量倍数;标准量某0的单位)3.直接测量是从事先间的函数关系,先测出,再通过相应的函数关系,被测量的数值。
(分度好的表盘;被测量;某种中间量;中间量;计算出)4.直接测量方法中,又分,和。
(零位法;偏差法;微差法)5.零位法是指在比较仪器中进行,让仪器指零机构,从而确定被测量等于该方法精度(被测量;已知标准量;比较;达到平衡(指零);已知标准量;较高)6.偏差法是指测量仪表用,直接指出被测量的大小。
该法测量精度一般不高。
(指针、表盘上刻度线位移)7.微差法是和的组合。
先将被测量与一个进行用测出。
(零位法;偏差法;已知标准量;比较;偏差法)8.测量仪表指示值程度的量称为精密度。
测量仪表指示值有规律地称为准确度。
(不一致;偏离真值)9.测量仪表的精确度简称,是和以测量误差的来表示。
(精度;精密度;准确度;相对值)10.显示仪表能够监测到被测量(最小变化)§1-2传感器的一般特性复习思考题1.试述传感器的定义及其在检测中的位置。
2.传感器静态特性和动态特性的定义是什么?3.传感器静态特性的技术指标及其各自的定义是什么?作业题1.传感器是与被测对象接触的环节,它将被测量转换成与机构。
它是检测和控制中最关键的部分。
(最初;被测量有确定对应关系;电量)2.通常用传感器的和来描述传感器输出-输入特性。
自动检测技术的基本知识

上一页 下一页 返回
1.1 测量的基本概念及方法
零位法是指被测量与已知标准量进行比较,使这两种量对仪 器的作用抵消为零(指机构达到平衡),从而可以肯定被测量 就等于已知标准量。如天平测量质量就是零位法的典型例子。 天平的祛码就是已知标准量。零位法的测量误差显然主要来 自标准量的误差和比较仪器的误差。此法的误差很小,因此 零位法的测量精度较高,但平衡复杂。多用于静态信号或缓 慢信号的测量。
测量误差可用绝对误差表示,也可用相对和引用误差表示。
下一页 返回
1.2 测量误差及其分类
1.2.1误差的表达方式
(1)绝对误差某量值的测量值Ax与真值A0,之间(2)相对误差绝对误差△与被测量的真值A0,之比称为相对
误差γ,用百分比形式表示。即
在测量中,即使测得的差值△L精度不高,但因其值较小, 其误差对总的误差影响较小。另外微差法不必进行反复的平 衡操作。因而微差法是综合了偏差法速度快和零位法测量精 度高的优点而提出的测量方法,在工程测量中广泛使用。
上一页 返回
1.2 测量误差及其分类
测量的目的是对被测量求取真值。所谓真值是指某被测量在 一定条件下其本身客观存在的真实的实际值。但由于实验方 法和实验设备的不完善、周围环境的影响及人们认识能力所 限等,测量和实验所得的数据和被测量的真值间不可避免地 存在着差异,在数值上即表现为误差。这种测量值与真值之 间的差值称为测量误差。
可见,比值A的大小取决于标准量X0 ,的单位大小。因此在 表示测量结果时必须包含两个要素:一个是比值大小及符号 (正或负);另一个是说明比值A所采用的单位,不注明单位, 测量结果失去实际意义。
第2章 传感器的基本特性

( x1 x) ( x 2 x) ( x m x) x m -1
2 2
2
可以证明,σ和
x 之间存在关系
x n
【例】对某一重物进行了十次等精度测量,测值为 20.62 20.82 20.78 20.82 20.70 20.78 20.84 20.78 20.85 20.85 (单位:g) 求:(1)测量值的算术平均值 (2)测量值的标准差 (3)测量结果的表达 解:(1)算术平均值为:
(2) 标准差
① 测量列的标准偏差 算术平均值反映了随机误差的分布中心,为更好的表征随 机变量相对于中心位置的离散程度,可引入标准偏差。 标准偏差是指随机误差的方均根值。
若测量列为一组测量值x1,x2,…,xn,其标准差σ为
2 1
( x1 A0 ) 2 ( x2 A0 ) 2 ( xn A0 ) 2 n
x1 x2 x16 x 39.50 16
(2)求标准差:
(3)根据
( x1 x) ( x2 x) ( x16 x)
2 2
2
16 - 1
0.38
Vi | xi x | 3 1.14
结论:无粗差
2.2 传感器的静态特性
传感器的静态特性是指在输入量为静态或缓慢变化时的 输入输出关系
返 回 上一页 下一页
(3)实际值 用精度更高一级的标准器具所测得的值称为实际值, 实际应用中可代替真值。 (4)标称值 一般由制造厂家为元件、器件或设备在特定运行条件 下所规定的量值。 (5)示值
由测量器具读数装置直接读出来的被测量的数值。
返
回
上一页
下一页
传感器的基本特性

a2,a3,…,an为非线性项待定常数。
传感器的静态特性
若a0 = 0,表示静态特性通过原点。此时静态特性是由线性项(X)和非线性项
(
)叠加而成,一般可分为以下四种典型情况:
a2X2,..a .,nXn
1)理想线性(图1-1a) :
Y a1X
(1-2)
2)具有X奇次项的非线性(图1-1b)
Ya1Xa3X3a5X5...
传感器的静态特性
1.1.2 灵敏度
热电偶温度传感器,在某一时刻温度变化了1℃时,其输出电压变化了5mV,那么其灵敏度应表 示为5mV/℃。
提高传感器的灵敏度,可得到较高的测量精度,但灵敏度愈高,测量范围愈窄,稳定性也往往愈 差。
传感器的静态特性
1.1.3 精度
传感器的精度表示传感器在规定条件下允许的最大引用误差相对于传感器满量程输出的百分比, 可表示为
传感器的静态特性
重复性 是指在同一工作条件下,输入量按同一方向在全测量范围内连续变动多次所得特性 曲线的不一致性。
1.1.6 重复性
传感器的静态特性
重复性:在数值上用正反行程中最大重复差值 计算。即
Lmax
(2~3)Lmax100%(1-11)
k
YFS
为k 重复性为最大 L 正m a 、x反行程重复性偏差。
a a a b b b , 0
,...,
1
n
及
, 均,.为.常.数, 。
01
m
只要对式(1-14)的微分方程求解,便可得到动态响应及动态性能指标。
绝大多数传感器输出与输入的关系均可用零阶、一阶或二阶微分方程来描述。
1.2.1 动态特性的一般数学模型
1.零阶传感器的数学模型
古天祥电子测量原理课后答案

古天祥电子测量原理课后答案【篇一:电子测量原理(古天祥)知识点总结】《电子测量原理》知识点总结0902202班第一章、测量总述1.1 测量的基本概念 1.1.1 测量的基本概念狭义:为确定被测对象量值进行的实验,借助专门设备,直接或间接与同类已知单位量比较,用数值+单位表示结果广义:为获取被测对象信息进行的实践,借助专门设备,通过感知和识别取得被测对象的属性和量值信息,以便于利用的形式表示结果测量的基本要素五大基本要素:测量对象、测量仪器、测量人员、测量技术、测量环境。
测量五大基本要素之间的关系测量的分类测量可以分为三类:定量测量、定性测量和定级测量。
定量测量:追求的是精准,通常要对测量结果进行误差分析,并给出不确定度。
定性测量:是判断被测对象属性的一种定性测量,对量值的精确度要求不高,是一种粗略的测量,一般不要求进行误差分析,即不要求给出误差数值。
定级测量:是以技术标准,规范或者检定规程为依据,分辨出被测量所属某一范围带,以此来判断被测量是否合格(符合某种级别)的一种定级测量。
测试和检验测试:是测量和试验的总称。
试验---为了察看某事结果或某物性能所从事的实践活动。
检测:是检验和测量的总称。
检验---检查被测量量值是否处于某范围内,验证被测量是否合格或某现象是否存在。
1.1.2 电子测量的基本概念电子测量:以电子技术理论为依据,以电子测量仪器设备为手段,以电量和非电量为测量对象。
电子测量的特点:(1)测量频率范围宽(2)量程范围宽(3)测量准确度高(4)测量速度快(5)易于实现遥测(6)易于实现测量自动化和智能化1.2 计量的基本概念1.2.1 计量的定义、特征、分类计量:是实现单位统一、量值准确可靠的活动。
是利用技术和法制手段实施的一种特殊形式的测量。
计量的三个主要特征是:法制性、统一性和准确性。
测量与计量的比较联系:①计量是一种特殊的测量②计量是测量的基础和依据区别:①比较对象不同,②测量误差不同,③误差来源不同,④目的不同,⑤内容不同,⑥对象不同,⑦存在范围不同1.2.2 比对、检定和校准对比: 在规定条件下,对相同准确度等级的同种测量标准或者测量器具之间的量值进行比较,其目的是考核量值的一致性。
1 测量的基本知识

约瑟夫森效应
约瑟夫森隧道结:在两块相互隔开(约10-9米的绝 缘层)的超导体之间,由于量子隧道效应,超导 电流(约mA量级)可以穿透该绝缘层,使两块超 导体之间存在微弱耦合,这种超导体-绝缘体-超 导体(SIS)结构称为约瑟夫森隧道结。 约瑟夫森效应:当在约瑟夫森结两边加上电压V时, 将得到穿透绝缘层的超导电流,这是一种交变电 流,这种现象称为交流约瑟夫森效应。
1.3 测量单位
1.3.1 单位 用来标志量或数的大小的指标统称为单位。 1.3.2单位制 基本单位与导出单位组成的一个完整 的单位体制称为单位制。
1.3.3国际单位制(SI)
1)国际单位制的构成 国际单位制包括SI单位、SI单位的十进 倍数单位、SI的基本单位和导出单位。 2)SI基本单位 国际单位制中的基本单位是通过计量标 准来定义、实现、保持或复现的。
实物基准 自然基准。
(1) 长度单位——米(m) 米是光在真空中于1/ 299 792 458 s时间间隔内 所经过的距离。 (2) 质量单位——千克(kg) 千克是质量单位,等于 国际千克原器的质量
(3) 时间单位——秒(s) 秒是铯-133(Cs133)原子基态的两个超精细能级之间跃迁所对应 的辐射的9 192 631 770个周期的持续时间。 (4) 电流强度单位——安[培](A) 安[培]是一恒定电流,若保持在处于真空中相距1 m的两无限长而 圆截面可以忽略的平行直导线内,则此两导线之间产生的力在每 米长度上等于2×10-7N 。 (5) 热力学温度单位——开[尔文](K) 开[尔文]是水的三相点(水的固、液、汽三相平衡共存时的温度, 其值为273.16K (0.01℃))热力学温度的1/273.16。 (6) 物质的量的单位——摩[尔](mo1) 摩[尔]是一系统的物质的量,该系统中所包含的基本单元数与 0.012 kg碳-12(C12)的原子数目相等。 (7) 发光强度单位——坎[德拉](cd) 坎[德拉]是发出频率为540×1012Hz单色辐射的光源在给定方向 上的发光强度,而且在此方向上的辐射强度为1/683W/sr。
传感器与检测技术基础

转换元件 它是将敏感元件输出的非电信号直接转换为电信号,或直接将被测非电信号转换为电信号(如应变式压力传感器的电阻应变片,它作为转换元件将弹性敏感元件的输出转换为电阻)。 转换电路 它能把转换元件输出的电信号转换为便于显示、处理和传输的有用信号。
传感器的分类 传感器技术是一门知识密集型技术。
1.2 测量误差与准确度
3)恰为第n位单位数字的0.5,则第n位为偶数或零时就舍去,为奇数时则进1。 (2)参加中间运算的有效数字的处理 1)加法运算:运算结果的有效数字位数应与参与运算的各数中小数点后面的有效位数相同。 2)乘除运算:运算结果的有效数字位数,应与参与运算的各数中有效位数最小的相同。 3)乘方及开方运算:运算结果的有效数字位数比原数据多保留一位。 4)对数运算:取对数前后有效数字位数应相同。 2.测量数据的处理 常用的数据处理方法有列表法、图示法、最小二乘法线性拟合。
列表法 列表法是把被测量的数据列成表格,可以简明地表示有关物理量之间的对应关系,便于随时检查测量结果是否合理,及时发现和分析问题。
01
图示法 图示法是用图形或曲线表示物理量之间的关系,它能更直观地表示物理量之间的变化规律,如递增或递减。
02
最小二乘法线性拟合 图示法虽然能很直观方便地将测量中的各种物理量之间的关系、变化规律用图像表示出来,但是,在图像的绘制上往往会引起一些附加的误差。
1.1 传感器简述
1.1 传感器简述
1)超调量σ:传感器输出超出稳定值而出现的最大偏差,常用相对于最终稳定值的百分比来表示。 2)延滞时间td:阶跃响应达到稳态值的50%所需要的时间。 3)上升时间tr:传感器的输出由稳态值的10%变化到稳态值的90%所需的时间。 4)峰值时间tp:传感器从阶跃输入开始到输出值达到第一个峰值所需的时间。 5)响应时间ts:传感器从阶跃输入开始到输出值进入稳态值所规定的范围内所需的时间。 (2)频率响应法 频率响应法是从传感器的频率特性出发研究传感器的动态特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作图法求灵敏度过程 切点 y Δy
传感器 特性曲线
x1
y K x
0 Δx
xmax
x
2、分辨力:
指传感器能检出被测信 号的最小变化量,是有量纲 的数。当被测量的变化小于 分辨力时,传感器对输入量 的变化无任何反应。对数字 仪表而言,如果没有其他附 加说明,可以认为该表的最 后一位所表示的数值就是它 的分辨力。一般地说,分辨 力的数值小于等于仪表的最 大绝对误差。
传感器实例
温度传感器
压力传感器
液位传感器
三、传感器基本特性
传感器的特性一般指输入、输出特性。 包括:灵敏度、分辨力、线性度、稳定度、 电磁兼容性、可靠性等。
1、灵敏度 :
灵敏度是指传感器在稳态下输出变化值与 输入变化值之比,用K 来表示:
dy y K dx x
(1-6)
对线性传感器而言,灵敏度为一常数;对非 线性传感器而言,灵敏度随输入量的变化而变 化。
产生粗大误差的一个例子
2.系统误差:
系统误差也称装置误差,它反映 了测量值偏离真值的程度。凡误差的 数值固定或按一定规律变化者,均属 于系统误差。
系统误差是有规律性的,因此可 以通过实验的方法或引入修正值的方 法计算修正,也可以重新调整测量仪 表的有关部件予以消除。
夏天摆钟变慢的原 因是什么?
3.随机误差
误差产生的因素:
1.粗大误差
明显偏离真值的误差称为粗大误差,也叫 过失误差。粗大误差主要是由于测量人员的粗 心大意及电子测量仪器受到突然而强大的干扰 所引起的。如测错、读错、记错、外界过电压 尖峰干扰等造成的误差。就数值大小而言,粗 大误差明显超过正常条件下的误差。当发现粗 大误差时,应予以剔除。
离线测量
产品质量检验
在线测量
在流水线上,边加工,边检验,可 提高产品的一致性和加工精度。
第二节
测量误差及分类
一、传感器的基本误差 1、真值:被测量本身的真实值。A0
理论真值(绝对真值):如平面三角形内角和恒 为180° 规定真值(约定真值):国际上的公认的某些基 准量值。 相对真值:指计量器按精度不同分为若干等级, 上一等级的指示值即为下一等级的真值,此真值 称为相对真值。
Lmax L 100% ymax ymin
(1-7)
作图法求线性度演示
( 1—拟合曲线 2—实际特性曲线 )
4、稳定性
稳定性包含稳定度和环境影响量两个方面。 稳定度是指仪表在所有条件都恒定不变 的情况下,在规定的时间内能维持其示值不 变的能力。 环境影响量仅指由外界环境变化而引起的 示值变化。例:零漂
5、电磁兼容性:
所谓电磁兼容性是指电子设备在规定的电磁 干扰环境中能按照原设计要求而正常工作的能力, 而且也不向处于同一环境中的其它设备释放超过 允许范围的电磁干扰。
6、可靠性 :
可靠性是反映检测系统在规定的条件下,在 规定的时间内是否耐用的一种综合性的质量指标。
图1-8 浴盆曲线
“老化”试验:在检测设备通电的情况下,将
环境参数指标
温度指标: 工作温度范围、温度 误差、温度漂移、温 度系数、热滞后等 抗冲振指标: 允许各向抗冲振的频 率、振幅及加速度、 冲振所引入的误差 其他环境参数: 抗潮湿、抗介质腐蚀 等能力、抗电磁场干 扰能力等
可靠性 指标
其他指标
工作寿 使用有关指标: 命、平 供电方式(直流 均无故 、 交 流 、 频 率 及 障时间、 波 形 等 ) 、 功 率 保险期、 、 各 项 分 布 参 数 疲劳性 值 、 电 压 范 围 与 能、绝 稳定度等 缘电阻、 外形尺寸、重量 耐压及 、 壳 体 材 质 、 结 抗飞弧 构特点等 等 安装方式、馈线 电缆等
相对误差(Relative Error)及准确度等级 100% 1-2 示值相对误差: x Ax
(标称) 满度相对误差: (引用) 准确度等级: (精度等级)
m 100% Am
m S 100 Am
1-3
1-4
满度误差又称为“引用误差”,精度等级按引用误差定为: 0.005, 0.02, 0.05 0.1, 0.2, 0.5 1.0, 1.5, 2.5, 5.0 I军用或作为标准 II 工业用 III 民用
精确度
测量结果评定
精确度:是精密度与准确度两者的总和,精确度高表示 精密度和准确度都比较高。在最简单的情况下,可取两 者的代数和。机器的常以测量误差的相对值表示。
(a)准确度高而精密度低 (b)准确度低而精密度高
(c)精确度高
在测量中我们希望得到精确度高的结果。
第三节
传感器及其基本特性
一、传感器的组成
本章作业:
P13:第3、5、6题
休息一下
静态测量
对缓慢变化的对象进行测 量亦属于静态测量。
最高、最低 温度计
动态测量
地震测量 振动波形
直接测量
电子卡尺
间接测量
对多个被测量进行测量,经过计算求得被测 量(阿基米德测量皇冠的比重)。
接触式测量
非接触式测量
例:雷达测速
车载电子警察
雷射测速枪以测量红外线光波传送时间来决定 速度。由于光速是固定,激光脉冲传送到目标 再折返的时间会与距离成正比。以固定间隔发 射两个脉冲,即可测得两个距离;将此二距离 之差除以发射时间间隔即可得到目标的速度。 理论上,发射两次脉冲即可量测速度;实际上, 为避免错误,一般雷射测速器(枪)在瞬间发 射高达七组的脉冲波,自以最小平方法求其平 均值,去计算目标速度。 当然,此种速度侦测装置可以将所侦测到 的速度,转换为「公里/小时」或是「英哩/小 时」。
其他各种弹性敏感元件
在上图中的各种弹性元件也能将压力转换为角 位移或直线位移。
压力传感器的外形及内部结构
2、传感元件 被测量通过敏感元件转换后,再经传感元 件转换成电参量 在右图中, 电位器为传 感元件,它 将角位移转 换为电参 量——电阻 的变化(ΔR)
360度圆盘形电位器
右图所示 的360度圆 盘形电位器 的中间焊片 为滑动片, 右边焊片接 地,左边焊 片接电源。
举例:测量压力的电位器式压力传感器 P10页 图1-4 传感器组成 框图
1-弹簧管
2-电位器
1、敏感元件
敏感元件在传感器中直接感受被测量,并转换 成与被测量有确定关系、更易于转换的非电量。
弹性敏感元件(弹簧管)
弹性敏感元件(弹簧管)
在下图中,弹簧管将压力转换为角位移α
弹簧管放大图
当被测压力p增大时,弹簧管撑直,通过齿条带动 齿轮转动,从而带动电位器的电刷产生角位移。
接地
3、 测量转换电路 测量转换电路的作用是将传感元件输出的电 参量转换成易于处理的电压、电流或频率量。 在左图中,当电 位器的两端加上电源 后,电位器就组成分 压比电路,它的输出 量是与压力成一定关 系的电压Uo 。
分压比电路的计算公式如下:
直滑电位器式传感器的输出 电压Uo 与滑动触点C的位移量x成 正比:
第一章
检测技术的基本概念
本章学习测量的基本概念、测量方法、
误差分类、测量结果的数据统计处理,以
及传感器的基本特性等,他们是检测与转
换技术的理论基础。
第一节
检测技术的基本概念及方法
检测方法分类
1、静态测量和动态测量 2. 直接测量 (绝对测量、相对测量) 和间接测量 3. 模拟测量与数字测量 4、接触式测量和非接触式测量 5. 在线测量和离线测量
3、线性度:
线性度又称非线性误差,是指传感器实际特 性曲线与拟合直线(有时也称理论直线)之间的 最大偏差与传感器量程范围内的输出之百分比。 将传感器输出起始点与满量程点连接起来的直线 作为拟合直线,这条直线称为端基理论直线,按 上述方法得出的线性度称为端基线性度,非线性 误差越小越好 。线性度的计算公式如下:
之放置于高温环境 低温环境 高温环境……反 复循环。老化之后的系统在现场使用时,故障率大 为降低 。
“老化” 试验台
传感器的选用原则
一、与测量条件有关的因素 (1)测量的目的; (2)被测试量的选择; (3)测量范围; (4)输入信号的幅值,频带宽度; (5)精度要求; (6)测量所需要的时间。
2、标称值(示值、测量值):由测量器具 读数装置所指示出来的被测量的数值。Ax 3、测量误差(绝对误差) :测量值与真值 之差。Δ
Δ=Ax-A0
(1-1)
测量的目的是希望通过测量求取被测量 的真值(True value)。
某采购员分别在三家商店购买100kg大米、 10kg苹果、1kg巧克力,发现均缺少约0.5kg, 问这三种商品的测量误差分别为多少?但该采 购员对卖巧克力的商店意见最大,是何原因?
传感器的选用原则
二、与传感器有关的技术指标
(1)精度; (2)稳定度; (3)响应特性; (4)模拟量与数字量; (5)输出幅值; (6)对被测物体产生的负载效应; (7)校正周期; (8)超标准过大的输入信号保护。
三、与使用环境条件有关的因素
(1)安装现场条件及情况; (2)环境条件(湿度、温度、振动等); (3)信号传输距离; (4)所需现场提供的功率容量。
四、与购买和维修有关的因素
(1)价格; (2)零配件的储备; (3)服务与维修制度,保修时间; (4)交货日期。
基本参数指标
量程指标: 量程范围、过载能力等 灵敏度指标: 灵敏度、分辨力、满量程输 出等 精度有关指标: 精度、误差、线性、滞后、 重复性、灵敏度误差、稳定 性 动态性能指标: 固定频率、阻尼比、时间常 数、频率响应范围、频率特 性、临界频率、临界速度、 稳定时间等